Supporting Information

A Reversible E _m -FRET Rhodamine-Based Chemosensor for
Carboxylate Anions Using a Ditopic Receptor Strategy
Chatthai Kaewtong,* ^{<i>a</i>} Jakkapong Noiseephum, ^{<i>a</i>} Yuwapon Uppa, ^{<i>b</i>}
Nongnit Morakot, ^a Neramit Morakot, ^a Banchob Wanno, ^a Thawatchai
Tuntulani ^c and Buncha Pulpoka ^c

^aSupramolecular Chemistry Research Unit, Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Mahasarakham, 44150, Thailand.

^bDepartment of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan Khon Kaen Campus, Khonkaen 40000, Thailand.

^cSupramolecular Chemistry Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.

kchatthai@gmail.com

Contents

Scheme S1. Synthetic pathways of L1 and 2.	S3
Fig. S1 UV-vis spectra of L1 upon addition of various	S 3
anions. Conditions: L1 (10 μ M) in MeCN, TBAX (30 equiv)	
in MeCN.	
Fig. S2 Fluorescence emission spectra of L1 upon addition	S4
of various anions. Conditions: L1 (10 μ M) in MeCN,	
excitation at 300 nm, TBAX (30 equiv) in MeCN.	
Fig. S3 Proposed binding modes of (a) L1, (b) L1+PhCOO ⁻	S5
(1:1), (c) L1+PhCOO ⁻ (2:2), (c) L1+Cu ²⁺ , (d) L1·Cu ²⁺ +	
$CH_3COO^{-}(1;1)$, (f) $L1 \cdot Cu^{2+} + CH_3COO^{-}(2;2)$.	
Fig. S4 Job plot between receptor L1 and various Cu^{2+}	S 7
concentration. The total concentration of $L1 + Cu^{2+}$ was	~ /
kept constant at 10 //M The complex concentration [HG]	
was calculated by the equation: $[HG] = \Lambda A/A_0 * [H]$ (a)	
IV-vis spectra at 275 nm (b) fluorescent spectra at at 558	
$nm (\lambda - 300 \text{ nm})$	
Fig. S5 Mole ratio plot between recentor L1 and various	88
Cu^{2+} concentration (equiv) (a) UV_{-} vis spectra at 558 nm	50
(b) fluorescent spectra at 584 nm (λ = 300 nm)	
Fig. S6 Time evolution of sensor L1 (10 μ M) in MeCN in	50
the presence of 5.0 equiv. of Cu^{2+} ion. Spectra changes of	57
UV vis intensity at 275 560 nm (a) and fluorescence	
intensity at 400 and 584 nm $\lambda = 200$ nm (b) as a function	
intensity at 490 and 584 min, $\lambda_{ex} = 500$ min (0) as a function of time (0.0 to 2.0 h)	
of time (0.0 to 5.0 ii). Fig. 87 LW wig groater average of $1.1 \circ C w^{2+}$ when addition of	S10
Fig. 57 UV-VIS spectra excess of $L1 \cdot Cu^{2+}$ (10 M) in M (N)	510
various anions. Conditions: $LI \bullet Cu^{-1}$ (10 μ M) in MeCN,	
IBAX (30 equiv.) in MeCN. E : $SP^{1}U NAD$ an extreme of N (the densities D) between	010
Fig. 88 H NMR spectrum of N-(rhodamine B)lactam-	510
etnylenediamine (1).	011
Fig. 89 'H NMR spectrum of 1-buty1-3-(naphthalen-1-	511
yi)tniourea (2).	011
Fig. S10 ⁻ H NMR spectrum of <i>N</i> -(Rhodamine-B)lactam- <i>N</i> -	511
naphthylthiourea-ethylenediamine (L1).	010
Fig. S11 ¹³ C NMR spectrum of <i>N</i> -(Rhodamine-B)lactam- <i>N</i> ² -	S 12
naphthylthiourea-ethylenediamine (L1).	
Fig. S12 ESI-Mass spectrum of <i>N</i> -(Rhodamine-B)lactam-	S 13
<i>N</i> ′-naphthylthiourea-ethylenediamine (L1).	

Scheme S1. Synthetic pathways of L1 and 2

Fig. S1 UV-vis spectra of L1 upon addition of various anions. Conditions: L1 (10 μ M) in MeCN, TBAX (30 equiv) in MeCN.

Fig. S2 Fluorescence emission spectra of L1 upon addition of various anions. Conditions: L1 (10 μ M) in MeCN, excitation at 300 nm, TBAX (30 equiv) in MeCN.

a)

b)

c)

Fig. S3 Proposed binding modes of (a) L1, (b) L1+PhCOO⁻ (1:1), (c) L1+PhCOO⁻ (2:2), (d) L1+Cu²⁺, (e) L1·Cu²⁺+CH₃COO⁻ (1:1), (f) L1·Cu²⁺+CH₃COO⁻ (2:2) were generated with the MOLEKEL 4.3 program.^{S1}

b)

Fig. S4 Job plot^{S2} between receptor L1 and various Cu^{2+} concentrations. The total concentration of L1 + Cu^{2+} was kept constant at 10 μ M. The complex concentration, [HG] was calculated by the equation; [HG] = $\Delta A/A_0*$ [H]. (a) UV-vis spectra at 275 nm, (b) fluorescent spectra at 490 nm (λ_{ex} 300 nm).

Fig. S5 Mole ratio plots^{S3} between receptor L1 and various Cu^{2+} concentrations (equiv). (a) UV-vis spectra at 558 nm, (b) fluorescent spectra at 584 nm (λ_{ex} 300 nm).

b)

Fig. S6 Time evolution of sensor L1 (10 μ M) in MeCN in the presence of 5.0 equiv. of Cu²⁺ ion. Spectra changes of UV-vis intensity at 275, 560 nm (a) and fluorescence intensity at 490 and 584 nm, λ_{ex} = 300 nm (b) as a function of time (0.0 to 3.0 h).

Fig. S7 UV-vis spectra excess of $L1 \bullet Cu^{2+}$ upon addition of various anions. Conditions: $L1 \bullet Cu^{2+}$ (10 μ M) in MeCN, TBAX (30 equiv.) in MeCN.

Fig. S8 ¹H NMR spectrum of *N*-(rhodamine B)lactam-ethylenediamine (1).

Fig. S9 ¹H NMR spectrum of 1-butyl-3-(naphthalen-1-yl)thiourea (2).

Fig. S10 ¹H NMR spectrum of *N*-(Rhodamine B)lactam-*N*'-naphthylthioureaethylenediamine (L1).

Fig. S11 ¹³C NMR spectrum of N-(Rhodamine B)lactam-N'-naphthylthioureaethylenediamine (L1).

Fig. S12 ESI-Mass spectrum of *N*-(Rhodamine B)lactam-*N*'-naphthylthioureaethylenediamine (L1).

S1 P. P. Flükiger, H.P. Lüthi, S. Portmann, J. Weber, Swiss Center for Scientific Computing,

Manno (Switzerland), 2000-2002, MOLEKEL 4.3

S2 P. Job, Ann. Chim., 1928, 9, 113.

S3 J. H. Yoe and A. E. Harvey, J. Am. Chem. Soc., 1948, 70, 648.