This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2010

Supporting Information Available

Ruthenium cluster attachment.

Table S1. Experimental conditions and BET surface area measurements for materials incorporating the ruthenium clusters. * As-synthesised, ** After calcination.

	Mass of	Mass of Silica Mass of Cluster		Reaction Conditions				BET		
Material	Silica		Solvent	Stir	Reflux	Et ₃ N	Colour	Surface		
	(mg)	(mg)		(days)	(days)	(mL)		Area (m ² /g)		
MCM-48*	-	-	-	-	-	-	-	121		
MCM-48**	-	-	-	-	-	-	-	1376		
MCM-48/Ru ₁₀ -X										
1	150	48	CH ₂ Cl ₂	2	-	-	Grey	724		
2	150	48	CH_2Cl_2	-	2	1	Grey	230		
MCM-41*	-	-	-	-	-	-	-	90		
MCM-41**	-	-	-	-	-	-	-	1000		
MCM-41/Ru ₃ -X										
1	310	200	CH_2Cl_2	3	-	-	Cream	1027		
2	401	199	CH ₂ Cl ₂	3	-	4	Grey	344		
3	756	251	CH_2Cl_2	2	-	5	Brown	159		

Figure S1. TEM images of MCM-48/Ru₁₀-1 **A** BFTEM image **B** HRTEM image **C** FFT image with spots highlighted. These spots (at ~0.23nm and ~0.20nm) are consistent with the {1000} and {11-20} planes of Ru.

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

Figure S2. Powder XRD patterns of MCM-41/Ru3-2 after calcinations at various temperatures.

Bimetallic Cluster Attachment.

This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2010

Table S2. Experimental conditions and BET surface area measurements for materials incorporating the copper-iron clusters. * As-synthesised, ** After calcination, ^ Sonicated for 2 days.

Material	Mass of	Mass of		Rea	ction Conditi		BET			
Wateria	Silica	Cluster	Solvent	Stir	Reflux	Et ₃ N	Colour	Surface		
(X =)	(mg) (mg)			(days)	(days)	(mL)		Area (m ² /g)		
MCM-48*	-	-	-	-	-	-	-	121		
MCM-48**	-	-	-	-	-	-	-	1376		
MCM-48/Cu ₆ Fe ₄ -X										
1	200	100	CH ₂ Cl ₂	3	-	-	Cream	1062		
2	200	100	CH_2Cl_2	-	3	-	Cream	1058		
3	200	100	CH_2Cl_2	3	-	1	Yellow	661		
4	200	100	CH_2Cl_2	-	3	1	Pink	453		
5	200	100	THF	-	3	1	Pink	919		
6	200	100	Et ₂ O/CH ₂ Cl ₂	-	3	1	Cream	1069		
7	200	100	THF	-	3	1	Pink	959		
8	200	133	THF	-	3	1	Pink	960		
9	100	100	THF	-	3	1	Pink	766		
10	200	133	THF	-	1	1	Pink	1198		
11	200	133	THF	-	7	1	Pink	1401		
12	202	133	THF	2^	-	1	Yellow	820		

 Table 4.3 BET surface area measurements for materials incorporating the copper-iron clusters. * As-synthesised, ** After calcination, ^ Sonicated for 2 days.

Figure S3. Powder XRD patterns of the materials with incorporated cluster $[(dppe)_2Cu][Cu_6Fe_4(CO)_{16}]$. The Cu reflections are labeled.

This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2010

4

This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2010

Figure S4. A TEM image of MCM-48/Cu₆Fe₄-8 with well ordered porous material **B** TEM image of MCM-48/Cu₆Fe₄-8 with a copper particle. **C** TEM image of MCM-48/Cu₆Fe₄-11 with a copper particle.

Table S3. Calcination conditions and BET surface areas of materials containing the Cu₆Fe₄ unit.

Original	BET SA	Calcination Conditions		litions	Calcined	BET SA	Difference
Material	(m^2/g)	Temp	Time	Atm	Material	(m^2/g)	Difference
MCM-48/Cu ₆ Fe ₄ -8	960	300	3	N ₂	c(300)MCM-48/Cu ₆ Fe ₄ -8	1249	289
MCM-48/Cu ₆ Fe ₄ -8	960	400	4	air	c(400)MCM-48/Cu ₆ Fe ₄ -8	1083	123
MCM-48/Cu ₆ Fe ₄ -11	1401	300	3	N ₂	c(300)MCM-48/Cu ₆ Fe ₄ -11	1375	-26

Figure S5. Powder XRD patterns of materials incorporating $[(dppe)_2Cu][Cu_6Fe_4(CO)_{16}]$ in MCM-48 before and after calcination. Cu and CuO reflection labeled.

This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

Figure S6. A TEM image of $c(400)MCM-48/Cu_6Fe_4-8$, with arrows showing location of possible small metal particles **B** TEM image of $c(400)MCM-48/Cu_6Fe_4-8$ **C** TEM image of $c(300)MCM-48/Cu_6Fe_4-11$, with large amounts of aggregated metal.

This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2010

FePt incorporated M41S Materials.

Table S4. Experimental conditions and BET surface area measurements for materials incorporating the FePt nanoparticles. * As-synthesised, ** After calcination.

Material	Mass of	Volume of	Solvent	Stir	BET Surface				
widterial	Silica (g)	$Fe_{x}Pt_{y}(mL)$	Solvent	(hours)	Area (m ² /g)				
MCM-48*	-	-	-	-	121				
MCM-48**	-	-	-	-	1376				
MCM-48/Fe _x Pt _y -X									
MCM-48/Fe ₂₀ Pt ₈₀ -1	0.200	0.5	Hexane	1.5	1298				
MCM-48/Fe27Pt73-1	1.745	2.0	Hexane	1.5	487				
MCM-48/Fe ₄₀ Pt ₆₀ -1	1.192	0.9	Hexane	1.5	716				
MCM-41*	-	-	-	-	90				
MCM-41**	-	-	-	-	1000				
MCM-41/Fe _x Pt _y -X									
MCM-41/Fe ₂₀ Pt ₈₀ -1	0.100	1.0	-	48	839				
MCM-41/Fe ₂₀ Pt ₈₀ -2	0.200	0.3	Hexane	1.5	1019				
MCM-41/Fe ₂₀ Pt ₈₀ -3	2.463	3.1	Hexane	1.5	854				
MCM-41/Fe ₂₀ Pt ₈₀ -4	2.350	#	Dioctlyether	0.5	80				
MCM-41/Fe ₂₇ Pt ₇₃ -1	2.013	2.0	Hexane	1.5	751				
MCM-41/Fe ₂₇ Pt ₇₃ -2	0.514	0.7	Hexane	1.5	550				
MCM-41/Fe ₄₀ Pt ₆₀ -1	2.027	1.5	Hexane	1.5	623				
MCM-41/Fe ₄₇ Pt ₅₃ -1	1.992	3.0	Hexane	1.5	826				
MCM-41/Fe47Pt53-2	0.498	1.4	Hexane	1.5	803				
MCM-41/Fe ₆₄ Pt ₃₆ -1	0.937	0.9	Hexane	1.5	870				

Figure S7. TEM images of c(400)MCM-41/Fe₂₀Pt₈₀-4.

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

Figure S8. TEM images of tested catalysts A c(400)MCM-41/Fe₂₀Pt₈₀-3 B c(400)MCM-41/Fe₂₇Pt₇₃-1 C c(400)MCM-48/Fe₄₀Pt₆₀-1 D c(400)MCM-41/Fe₄₇Pt₅₃-2.

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

Figure S9. Gas Chromatogram of products formed during catalyst testing of $c(300)MCM-48/Cu_6Fe_4-11$. Blue = products at 100 °C, Red = products at 200 °C and Green = products at 300 °C.

This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2010

Figure S10. Gas Chromatogram of products formed during catalyst testing of $c(250)MCM-41/Ru_3-2$ in the glass reactor at 250 °C. Inset: Area 2 to 7 minutes in more detail.

This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2010

Figure S11. Gas Chromatogram of products formed during catalyst testing of $c(400)MCM-41/Fe_{20}Pt_{80}-3$ in the stainless steel reactor (T = temperature, N = normal conditions, P@X = pressurised to X kPa).

This journal is (c) The Royal Society of Chemistry and

The Centre National de la Recherche Scientifique, 2010

