Electronic Supplementary Information (ESI)

Direct Dizinc Displacement Approach for Efficient Detection of Cu²⁺ in Aqueous Media: Acetate versus Phenolate Bridging Platforms

Snehadrinarayan Khatua, Jina Kang and David G. Churchill*

Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea, Fax: +82-42-350-2810, Tel: +82-42-350-2885; E-mail: <u>dchurchill@kaist.ac.kr</u>

Figure S1. ¹H NMR spectrum of compound **3** in D_2O .

Figure S2. ESI mass spectrum of compound 3 in $H_2O / MeOH (1:1)$ mixture.

Figure S3. Job's plot for compound **3** and Cu²⁺ binding (λ_{ex} at 354 nm and λ_{em} at 452 nm) in an aqueous buffer solution (pH 7.4, 10 mM HEPES, H₂O : MeOH; 9 : 1) at 25 °C by emission spectroscopy. In the plot, the value 0.4 supports a nearly 1:2 compound, **3**:Cu²⁺ binding stoichiometry.

Figure S4. (a) Emission spectra of compound **3** (50 μ M) in an aqueous buffer solution (pH 7.4, 0.01 M HEPES) with 2 equivalents of Cu²⁺ solution (100 μ M) and 40 equivalents of Zn²⁺ solution to the mixture of **3** and Cu²⁺ ion.

Figure S5. "Naked eye" colorimetric detection of Cu^{2+} ion: (a) Compound **3** (1000 μ M) and **3** + Cu^{2+} (2000 μ M) on visible light; (b) Compound **3** (100 μ M) and **2** + Cu^{2+} (200 μ M) under UV lamp light (365 nm).

Figure S6. ¹H NMR spectrum of compound **2** in D_2O .¹

Figure S7. ¹³C NMR spectrum of compound **2** in a D₂O/MeOD (4:1) mixture. (Though the compound is highly soluble in water, some MeOD is required for solubility purposes.¹)

Figure S8. 1 H- 1 H COSY NMR spectrum of compound 2 in D₂O. 1

Figure S9. Crystal structure of (a) Compound $\mathbf{1}^2$ and (b) $\mathbf{2}^1$. Thermal ellipsoids at 30 % probability. Solvent waters are omitted for clarity from the drawing.

Figure S10. (a) UV-Vis spectra of **2** (50 μ M) with different cations (100 μ M) in aqueous buffer solution (pH 7.4, 0.01 M HEPES). (b) Absorbance titration of compound **2** (50 μ M) in aqueous buffer solution (pH 7.4, 0.01 M HEPES) with an increasing amount of Cu²⁺ titrant (100 μ M).¹

Figure S11. (a) Emission spectra of **2** (50 μ M, $\lambda_{ex} = 352$ nm, $\lambda_{em} = 452$ nm) with different cations (each with a concentration of 100 μ M). (b) Emission titration of **2** (50 μ M) in aqueous buffer solution (pH 7.4, 0.01 M HEPES) with increasing amounts of Cu²⁺ solution (100 μ M).¹

Figure S12. Non-linear curve fitting of copper binding from emission titration data. (a) Compound **1** and increasing amounts of Cu^{2+} ; (b) Compound **2** and increasing amounts of Cu^{2+} .¹

Figure S13. Job's plot for compound **2** and Cu^{2+} binding (λ_{max} at 352 nm) in an aqueous buffer solution (pH 7.4, 10 mM HEPES) at 25 °C by (a) by UV-vis spectroscopy (against a Cu^{2+} concentration; value of 0.6 suggests nearly 1 : 2 compound 2 : Cu^{2+} binding stoichiometry), and (b) by emission spectroscopy (plot against compound **2** concentration; value of 0.4 shows nearly a 1 : 2 compound **2** : Cu^{2+} binding stoichiometry).¹

Figure S14. (a) Emission spectra of Compound **2** (50 μ M) in an aqueous buffer solution (pH 7.4, 0.01 M HEPES) with 2 equivalents of Cu²⁺ (100 μ M solution) and 40 equivalents of Zn²⁺ (solution) to the mixture of **2** and Cu²⁺ ion. (b) Expanded spectra.¹

Figure S15. (*Row A*) Emission spectra of **2** (50 μ M) in aqueous buffer solution (pH 7.4, 0.01 M HEPES) with different cations (500 μ M), the bar on far left is only compound **2**. (*Row B*) Emission spectra of a mixture of **2** (50 μ M) with other metal ions (500 μ M) and with Cu²⁺ solution (100 μ M)¹.

Figure S16. Crystal structures of copper acetate and D/L lysine-based schiff base complex obtained from one pot reactions and one pot crystallization methods. (a) Mononuclear purple and (b) dinuclear blue complexes.³

References:

- S. Khatua, S. H. Choi, J. Lee, J. O. Huh, Y. Do, D. G. Churchill, *Inorg. Chem.* 2009, 48, 1799-1801.
- 2. S. Khatua, S. H. Choi, J. Lee, K. Kim, Y. Do, D. G. Churchill, Inorg. Chem. 2009, 48, 2993-2999.
- S. Khatua, J. Kang, J. O. Huh, C. S. Hong, D. G. Churchill, *Cryst. Growth Des.* 2010, 10, 327-334.

END###