Assembling Coordination Networks of Bis-amido Pyridines *via* Hydrogen Bonds: Isostructurality and Large Hydrophobic Cavities for Guest Inclusion

Lalit Rajput and Kumar Biradha*

Department of Chemistry, Indian Institute of Technology, Kharagpur-721302, India

Fax:+91-3222-282252; Tel: +91-3222-283346;

E-mail: kbiradha@chem.iitkgp.ernet.in

TGA:

{Cu (2b)(SCN)₂(DMF)₂} (5)

At 155°C 11.30% weight loss corresponds to the loss of first DMF molecule (Cal: 11.70%), from 155°C to 170°C 12.01% weight loss corresponds to the loss of second DMF molecule (Cal: 11.70%) and from 170°C onwards ligand degradation takes place. $\{[Cu (1c)(SCN)_2(H_2O)_2]\cdot 2(H_2O)\}$ (6)

At 147°C 11.91% weight loss corresponds to the loss of two free & two coordinated water molecules i.e. total four waters molecules (Cal: 12.44%).

 ${[Cu (2d)(SCN)_2(DMF)_2] (anthracene)} (9)$

At 224°C 36.64% weight loss corresponds to the loss of one anthracene molecules and two DMF molecules (Cal: 36.01%) and from 224°C onwards ligand degradation takes place.

 ${[Cu(2d)(SCN)_2(DMF)_2]}\cdot(biphenyl)} (10)$

At 173°C 35.29% weight loss corresponds to the loss of one biphenyl molecules and two DMF molecules (Cal: 36.01%) and from 173°C onwards ligand degradation takes place.

 ${[Cu(1b)(SCN)_2]\cdot 2(nitrobenzene)}$ (13)

At 185°C 34.55% weight loss corresponds to the loss of two nitrobenzene molecules (Cal: 34.00%), and from 185°C onwards ligand degradation takes place. $\{[Cu (2d)_2(SCN)_2] 2(9-anthraldehyde)\}$ (16)

At 279°C 31.86% weight loss corresponds to the loss of two 9-anthraldehyde molecules (Cal: 31.70%) and from 279°C onwards ligand degradation takes place.

The N-H stretch; 3265 cm⁻¹; CN vibrational stretch of the thiocyanate, 2074 cm⁻¹ & 2106 cm⁻¹; amide C=O stretch (amide-I band), 1657 cm⁻¹; N-H bending (amide-II band), 1537 cm⁻¹.

The N-H stretch; 3266 cm⁻¹; CN vibrational stretch of the thiocyanate, 2105 cm⁻¹; amide C=O stretch (amide-I band), 1659 cm⁻¹; N-H bending (amide-II band), 1541 cm⁻¹.

IR:

 $\{[Cu(1c)(SCN)_2(H_2O)_2]\cdot 2(H_2O)\}$ (6)

The N-H stretch; 3273 cm⁻¹; CN vibrational stretch of the thiocyanate, 2094 cm⁻¹; amide C=O stretch (amide-I band), 1631 cm⁻¹; N-H bending (amide-II band), 1575 cm⁻¹. $\{[Cu(1d)(SCN)_2(DMF)_2]\cdot 2(H_2O)\}$ (7)

The N-H stretch; 3286 cm⁻¹; CN vibrational stretch of the thiocyanate, 2072 cm⁻¹; amide C=O stretch (amide-I band), 1664 cm⁻¹; N-H bending (amide-II band), 1559 cm⁻¹.

 ${[Cu(1e) (SCN)_2(DMF)_2] 2(DMF)}_n(8)$

The N-H stretch; 3341 cm⁻¹; CN vibrational stretch of the thiocyanate, 2070 cm⁻¹; amide C=O stretch (amide-I band), 1676 cm⁻¹; N-H bending (amide-II band), 1557 cm⁻¹. $\{[Cu(2d)(SCN)_2(DMF)_2]\cdot(anthracene)\}$ (9)

The N-H stretch; 3272 cm⁻¹; CN vibrational stretch of the thiocyanate, 2108 cm⁻¹; amide C=O stretch (amide-I band), 1659 cm⁻¹; N-H bending (amide-II band), 1535 cm⁻¹.

 ${[Cu(2d)(SCN)_2(DMF)_2]}\cdot(biphenyl)}$ (10)

The N-H stretch; 3254 cm⁻¹; CN vibrational stretch of the thiocyanate, 2085 cm⁻¹; amide C=O stretch (amide-I band), 1677 cm⁻¹; N-H bending (amide-II band), 1535 cm⁻¹. $\{[Cu(2d)(SCN)_2(DMF)_2]\cdot(pyrene)\}$ (11)

The N-H stretch; 3271 cm⁻¹; CN vibrational stretch of the thiocyanate, 2107 cm⁻¹; amide C=O stretch (amide-I band), 1656 cm⁻¹; N-H bending (amide-II band), 1538 cm⁻¹.

 ${[Cu(2a)(SCN)_2]} \cdot 2(DMF) \cdot (nitrobenzene)_n (12)$

The N-H stretch; 3266 cm⁻¹; CN vibrational stretch of the thiocyanate, 2107 cm⁻¹ & 2075 cm⁻¹; amide C=O stretch (amide-I band), 1657 cm⁻¹; N-H bending (amide-II band), 1539 cm⁻¹.

 ${[Cu(1b)(SCN)_2] \cdot 2(nitrobenzene)}$ (13)

The N-H stretch; 3339 cm⁻¹; CN vibrational stretch of the thiocyanate, 2091 cm⁻¹; amide C=O stretch (amide-I band), 1653 cm⁻¹; N-H bending (amide-II band), 1550 cm⁻¹.

 ${[Cu(2d)_2(SCN)_2] 2(9-anthraldehyde)} (16)$

The N-H stretch; 3298 cm⁻¹; CN vibrational stretch of the thiocyanate, 2079 cm⁻¹; amide C=O stretch (amide-I band), 1668 cm⁻¹; N-H bending (amide-II band), 1546 cm⁻¹. $\{[Cu(2e)_2(SCN)_2]\cdot 2(nitrobenzene)\}n, (18b)$

The N-H stretch; 3289 cm⁻¹; CN vibrational stretch of the thiocyanate, 2071 cm⁻¹; amide C=O stretch (amide-I band), 1651 cm⁻¹; N-H bending (amide-II band), 1531 cm⁻¹.

Discussion on IR spectra

The -NH stretching vibration in all the CPs observed near 3340-3250 cm⁻¹ because of the involvement of amide moiety in the hydrogen bond formation. The C=O stretching vibration (amide-I band) of the CPs involving amide to amide recognition shows differences in the stretching frequencies for amide, **1** and reverse amide, **2** CPs. In case of amide CPs where C=O is in conjugation with pyridyl group the stretching frequency is observed in the range of 1645-1630 cm⁻¹. However in reverse amides CPs where C=O is not in conjugation with pyridyl group, the stretching frequency observed in between 1670-1650 cm⁻¹. In the reverse amide CPs where C=O is involved in C-H…O hydrogen bond with pyridyl -CH, the stretching frequency of C=O is observed at 1680-1655 cm⁻¹. The -NH bending (amide-II band) in complexes involving N-H…O or N-H…S hydrogen bond shifted to lower wave number and appears in between 1545-1535 cm⁻¹.