Chiroptical binaphthopyran switch: amplified CD response in polystyrene film

Anna Kicková,^a Jana Donovalová,^b Peter Kasák^c and Martin Putala*^a

 ^a Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 842 15 Bratislava, Slovak Republic. Fax: 00421 2 60296 337; Tel: 00421 2 60296 323; E-mail:putala@fns.uniba.sk
^b Chemistry Institute, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, 842 15 Bratislava, Slovak Republic. E-mail:donovalova@fns.uniba.sk
^c Bohmen Institute of the Slovak Acquery of Sciences, Comence of Sciences, Sciences,

^c Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 842 36 Bratislava, Slovak Republic. Email:upolgazo@savba.sk

Supporting Information

OH

Preparations

(R)-1,1'-Binaphthalene-2,2'-diol (6) S1,S2

Fig. S1 ¹H NMR (300 MHz; CDCl₃; Me₄Si) of compound (R)-6.

¹H NMR: $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3}; \text{Me}_{4}\text{Si})$ 5.04 (2H, br s, 2 × OH), 7.16 (2H, d, J 8.2, C(8)H, C(8')H), 7.31 (2H, ddd, J 1.4 6.9 and 8.2, C(7)H, C(7')H), 7.35-7.41 (4H, m, C(3)H, C(3')H and C(6)H, C(6')H), 7.90 (2H, d, J 8.0, C(5)H, C(5')H), 7.99 (2H, d, J 9.1, C(4)H, C(4')H).

mp 206-208 °C (from benzene) (lit.^{S1} 206-207 °C).

 $[\alpha]_D^{22} + 35.4$ (c 1 in THF) (lit.^{S2} +35.4 (c 1 in THF)).

>99.9% *ee* (Chiralcel Daicel OD-H column, hexane-isopropyl alcohol (90:10), temperature 21 °C, flow rate 0.75 mL/min, pressure 27.5 bar, $\lambda = 275$ nm: $t_1 = 22.34$ min (S)-6; $t_2 = 25.69$ min (R)-6).

Fig. S2 ¹H NMR(300 MHz; CDCl₃; Me₄Si) of (R)-2,2'-dimetoxy-1,1'-binaphthalene.

¹H NMR: $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3}; \text{Me}_{4}\text{Si})$ 3.76 (6H, s, 2 × OCH₃), 7.10 (2H, d, *J* 8.4, C(8)*H*, C(8')*H*), 7.20 (2H, ddd, *J* 1.3 6.8 and 8.1, C(6)*H*, C(6')*H*), 7.31 (2H, ddd, *J* 1.3 6.8 and 8.1, C(7)*H*, C(7')*H*), 7.45 (2H, d, *J* 9.1 Hz, C(4)*H*, C(4')*H*), 7.86 (2H, d, *J* 8.1 Hz, C(5)*H*, C(5')*H*), 7.97 (2H, d, *J* 8.9, C(3)*H*, C(3')*H*). mp 224-226 °C (lit.^{S3} 224-225 °C).

(*R*)-3,3'-Diiodo-2,2'-dimetoxy-1,1'-binaphthalene^{S4,S5}

¹H NMR: $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3}; \text{Me}_{4}\text{Si})$ 3.42 (6H, s, 2 × OCH₃), 7.07 (2H, d, J 8.4, C(8)H, C(8')H), 7.27 (2H, ddd, J 1.2 6.9 and 8.2, C(6)H, C(6')H), 7.41 (2H, ddd, J 1.2 6.9 and 8.1, C(7)H, C(7')H), 7.79 (2H, d, J 8.2, C(5)H, C(5')H), 8.53 (2H, s, C(4)H, C(4')H). mp 194-195 °C (lit.^{S5} 189-193 °C).

(*R*)-3,3'-Diiodo-1,1'-binaphthalene-2,2'-diol (8) ^{S6,S7}

Fig. S4 ¹H NMR(300 MHz; CDCl₃; Me₄Si) of compound (R)-8.

¹H NMR: $\delta_{H}(300 \text{ MHz}; \text{CDCl}_{3}; \text{Me}_{4}\text{Si})$ 5.42 (2H, bs, 2 × OH), 7.07 (2H, d, J 8.2, C(8)H, C(8')H), 7.31 (2H, ddd, J 1.3 6.9 and 8.2, C(6)H, C(6')H), 7.38 (2H, ddd, J 1.3 6.9 and 8.2, C(7)H, C(7')H), 7.79 (2H, d, J 7.7, C(5)H, C(5')H), 8.52 (2H, s, C(4)H, C(4')H). mp 312-315 °C (lit.^{S7} 312-314 °C).

(R)-2,2,2',2'-Tetraphenyl-10,10'-bi(2H-naphtho[2,3-b]pyran) (5a)

Fig. S7 ¹H NMR (300 MHz; DMSO- d_6 ; Me₄Si) of compound (*R*)-5a.

(*R*)-1-(2,2-Diphenyl-2*H*-naphtho[2,3-*b*]pyran-10-yl)-3-(3,3-diphenylprop-2-enylidene)naphthalen-2(3*H*)-one (5b):

Fig. S10¹³C NMR (75 MHz; CDCl₃; Me₄Si) of mixture (*R*)-5a and (*R*)-5b.

Switching in solution

Fig. S11 HPLC chromatogram of (*R*)-5 in ground state: $t_{(R)-5a} = 22.73$ min, 100%.

Fig. S12 HPLC chromatogram of (*R*)-5 in the first cycle: after irradiation at 313 nm for 5 minutes: $t_{(R)-5a} = 22.75$ min, 93.36%; $t_{(R)-5b} = 24.33$ min, 6.64%.

Fig. S13 HPLC chromatogram of (*R*)-5 in the first cycle: after heating at 84 °C for 5 minutes: $t_{(R)-5a} = 22.70$ min, 99.64%; $t_{(R)-5b} = 24.21$ min, 0.36%.

Fig. S14 HPLC chromatogram of (*R*)-5 in the second cycle: after irradiation at 313 nm for 5 minutes: $t_{(R)-5a} = 22.72$ min, 93.55%; $t_{(R)-5b} = 24.36$ min, 6.45%.

Fig. S15 HPLC chromatogram of (*R*)-5 in the second cycle: after heating at 84 °C for 5 minutes: $t_{(R)-5a} = 22.70$ min, 99.57%; $t_{(R)-5b} = 24.23$ min, 0.43%.

Fig. S16 HPLC chromatogram of (*R*)-**5** in the tenth cycle: after irradiation at 313 nm for 5 minutes: $t_{(R)-5a} = 22.67$ min, 84.46%; $t_{(R)-5b} = 24.24$ min, 5.12% (9.45 min, 4.32%; 12.22 min., 3.34%; 18.21 min, 2.76%).

Fig. S17 HPLC chromatogram of (*R*)-**5** in tenth cycle: after heating at 84 °C for 5 minutes: $t_{(R)-5a} = 22.70 \text{ min}$, 89.66%; $t_{(R)-5b} = 24.05 \text{ min}$, 0.31% (9.48 min, 4.87%; 12.25 min., 3.22%; 18.35 min, 1.95%).

Table S1 Switching of the absorption intensity of (*R*)-5 (sample irradiated/heated in d-benzene at $c = 1.52 \times 10^{-2}$ M, diluted for measurement of absorbance by benzene to $c = 3.5 \times 10^{-5}$ M) at 298 nm. Increase of the intesity after irradiation with UV light (313 nm) for 5 min., decrease after heating (84 °C) for 5 min.

Cycle No.	Absorbance (AU) at 298 nm
0	1.08
0.5	1.10
1	0.97
1.5	1.09
2	0.99
2.5	1.10
3	1.00
3.5	1.10
4	1.04
4.5	1.11
5	1.03
5.5	1.10
6	1.04
6.5	1.12
7	1.08
7.5	1.12
8	1.08
8.5	1.12
9	1.07
9.5	1.10
10	1.07

Kinetic measurements

Switching proces (*R*)-5a \rightarrow (*R*)-5b at 26.5 °C:

Time (min)	% (R)-5a	% (R)- 5b	X _{(R)-5a}	ln x _{(R)-5a}
1.5	96.63	3.37	0.97	-0.03
5	93.36	6.64	0.94	-0.06
8	89.42	10.58	0.90	-0.10
10	87.94	12.06	0.89	-0.12
12	86.7	13.3	0.87	-0.13
14	85.68	14.32	0.87	-0.14
16	82.69	17.31	0.84	-0.18
18	81.96	18.04	0.83	-0.19
20	81.68	18.32	0.83	-0.19
40	67.11	32.89	0.69	-0.38

Table S2 Calculated values of molar ratio of compound (*R*)-**5a** during irradiation sample in d-benzene at $c = 1.52 \times 10^{-2}$ M in time at 26.5 °C.

Fig. S18 Dependence of natural logarithm of molar ratio of compound (*R*)-**5a** against time at 26.5 °C (apparent rate constant: $k_1 = (8.77\pm0.25) \times 10^{-3} \text{ min}^{-1}$, reaction half time: $t_{1/2} = 79.0\pm2.3 \text{ min}$).

Rate constant of reversed proces (*R*)-5b \rightarrow (*R*)-5a at 14 °C:

Table S3 Calculated values of molar ratio of compound (*R*)-**5b** in time at 14 °C (from the sample irradiated in d-benzene at $c = 1.52 \times 10^{-2}$ M).

Time (min)	% (R)- 5a	% (R)- 5b	X _{(R)-5b}	ln x _{(R)-5b}
0	70.56	29.44	0.28	-1.27
60	71.6	28.4	0.27	-1.31
120	71.63	28.37	0.27	-1.31
180	73.62	26.38	0.25	-1.39
240	74.79	25.21	0.24	-1.43
300	78.32	21.68	0.20	-1.58
360	78.57	21.43	0.20	-1.60
420	78.31	21.69	0.21	-1.58

Fig. S19 Dependence of natural logarithm of molar ratio of compound (*R*)-**5b** against time at 14 °C (rate constant: $k_{.1} = (0.89 \pm 0.11) \times 10^{-3} \text{ min}^{-1}$, half time of the reaction: $t_{1/2} = (778.8 \pm 97.8) \text{ min}$).

Rate constant of reversed proces (*R*)-5b \rightarrow (*R*)-5a at 26.5 °C:

Table S4 Calculated values of molar ratio of compound (*R*)-**5b** in time at 26.5 °C (from the sample irradiated in d-benzene at $c = 1.52 \times 10^{-2}$ M).

Time (min)	% (R)- 5a	% (R)- 5b	X _{(R)-5b}	ln x _{(R)-5b}
0	81.68	18.32	0.17	-1.76
30	86.89	13.11	0.12	-2.09
60	88.38	11.62	0.11	-2.22
120	90.78	9.22	0.09	-2.45
180	92.74	7.26	0.07	-2.69
240	93.77	6.23	0.06	-2.84
300	94.33	5.67	0.05	-2.94

Fig. S20 Dependence of natural logarithm of molar ratio of compound (*R*)-**5b** against time at 26.5 °C (rate constant: $k_{-1} = (3.73\pm0.41) \times 10^{-3} \text{ min}^{-1}$, half time of the reaction: $t_{1/2} = (185.8\pm20.7) \text{ min}$).

Rate constant of reversed proces (*R*)-5b \rightarrow (*R*)-5a at 35 °C:

Table S5 Calculated values of molar ratio of compound (*R*)-**5b** in time at 35 °C (from the sample irradiated in d-benzene at $c = 1.52 \times 10^{-2}$ M).

Time (min)	% (R)- 5a	% (R)- 5b	X _{(R)-5b}	ln x _{(R)-5b}
0	72.78	27.22	0.26	-1.35
15	74.54	25.46	0.24	-1.42
30	75.89	24.11	0.23	-1.48
45	78.7	21.3	0.20	-1.60
60	79.79	20.21	0.19	-1.66
75	81.13	18.87	0.18	-1.73
90	83.95	16.05	0.15	-1.89
105	87.94	12.06	0.11	-2.18
120	88.09	11.91	0.11	-2.19

Fig. S21 Dependence of natural logarithm of molar ratio of compound (*R*)-**5b** against time at 35 °C (rate constant: $k_{-1} = (7.30\pm0.66) \times 10^{-3} \text{ min}^{-1}$, half time of the reaction: $t_{1/2} = (95.0\pm8.7) \text{ min}$).

Activation free energy:

Table S6 Calculated values of natural logarithm of rate constants reversed reactions (R)-5b \rightarrow (R)-5a at different temperatures.

t (°C)	T (K)	1/T (1/K)	k (min ⁻¹)	ln k (min ⁻¹)
14	287.15	3.48E-03	0.89E-03	-7.02
26.5	299.65	3.34E-03	3.73E-03	-5.59
35	308.15	3.25E-03	7.30E-03	-4.92

From dependence of natural logarithm of rate constants reversed reaction against reciprocal values of temperature (**Fig. 3**; Arrhenius equation: $\ln k = -8.96 \times 10^3/T + 24.2$) was estimated activation energy: $E_A = 8.96 \times 10^3 \text{ K} \times \text{R} = 74.5 \pm 5.8 \text{ kJ} \text{ mol}^{-1}$ and pre-exponential factor: $A = e^{24,2} = 3.23 \times 10^{10} \text{ min}^{-1} = 5.39 \times 10^8 \text{ s}^{-1}$.

Switching in polymer film

Table S7 Switching of the absorption intensity of (*R*)-5 in PMMA film (concentration of irradiated/heated film c = 0.02 mol/kg) at 296 nm. Increase of the intesity after irradiation with UV light (313 nm) for 1 h, decrease after heating (70 °C) for 8 min.

Cycle No.	Absorbance (AU) at 296 nm
0	1.31
0.5	1.41
1	1.29
1.5	1.41
2	1.29
2.5	1.40
3	1.30
3.5	1.41
4	1.29
4.5	1.41
5	1.29
5.5	1.41
6	1.29
6.5	1.41
7	1.30
7.5	1.41
8	1.30
8.5	1.41
9	1.30
9.5	1.41
10	1.30

Fig. S22 The absorption spectra of (*R*)-5 in 50 μ m PS film (concentration of irradiated/heated film c = 0.02 mol/kg), before and after irradiation with UV light (313 nm) for 1 h and after heating (70 °C) for 8 min.

Table S8 Switching of the CD signal intensity of (*R*)-5 in PS film (concentration of irradiated/heated film c = 0.02 mol/kg) at 282 nm. Decrease of the intesity after irradiation with UV light (313 nm) for 1 h, increase after heating (70 °C) for 8 min.

Cycle No.	CD (mdeg) at 282 nm
0	-7.98
0.5	-77.18
1	-7.38
1.5	-76.15
2	-7.60
2.5	-69.09
3	-7.90
3.5	-66.60
4	-6.55
4.5	-68.05
5	-8.37
5.5	-69.23
6	-8.54
6.5	-67.11
7	-6.42
7.5	-75.67
8	-6.31
8.5	-73.02
9	-6.07
9.5	-66.80
10	-5.17

Fig. S23 Switching of the CD signal intensity of (*R*)-**5** in 50 μ m PS film (0.02 mol/kg) at 282 nm. Decrease of the intesity after irradiation with UV light (313 nm) for 1 h, increase after heating (70 °C) for 8 min.

Table S9 Switching of the CD signal intensity of (*R*)-5 in PS film (concentration of irradiated/heated film c = 0.02 mol/kg) at 308 nm. Increase of the intesity after irradiation with UV light (313 nm) for 1 h, decrease after heating (70 °C) for 8 min.

Cycle No.	CD (mdeg) at 308 nm
0	17.25
0.5	132.28
1	16.14
1.5	128.82
2	15.20
2.5	118.80
3	15.62
3.5	116.63
4	13.02
4.5	119.45
5	16.77
5.5	124.16
6	18.56
6.5	119.32
7	11.31
7.5	126.06
8	14.31
8.5	125.74
9	12.36
9.5	116.71
10	8.85

References

- S1 D. Cai, D. L. Hughes, T. R. Verhoeven and P. J. Reider, Org. Synth., 1999, 76, 1.
- S2 Q. S. Hu, D. Vitharana and L. Pu, Tetrahedron: Asymmetry, 1995, 6, 2123.
- S3 D. S. Lingenfelter, R. C. Helgeson and D. J. Cram, J. Org. Chem., 1981, 46, 393.
- S4 Y. Meng, W. T. Slaven, D. Wang, T.- J. Liu, H.-F. Chow and C.-L. Li, Tetrahedron: Asymmetry, 1998, 9, 3693.
- S5 L. Gobbi, P. Seiler, F. Diederich, V. Gramlich, Helv. Chim. Acta, 2000, 83, 1711.
- S6 J. Hua and W. Lin, Org. Lett., 2004, 6, 861; Y. Yamashita, H. Ishitani, H. Shimizu and H. Kobayashi, J. Am. Chem. Soc., 2002, 124, 3292.
- S7 T. R. Wu, L. Shen and J. M. Chong, Org. Lett., 2004, 6, 2701.