Supplementary Information

Synthesis and Structure of Stable Base-Free Dialkylsilanimines

Takeaki Iwamoto,* Nobuyoshi Ohnishi, Zhenyu Gui, Shintaro Ishida, Hiroyuki Isobe, Satoshi Maeda,[‡] Koichi Ohno[‡] and Mitsuo Kira* Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan ‡Toyota Physical and Chemical Research Institute, Nagakute, Aichi 480-1192, JAPAN

Contents

- 1. Details of Theoretical Study
- 2. References

1. Details of Theoretical Study

All theoretical calculations were performed using a Gaussian 03^{S1} program and reaction routes were searched by the GRRM method available in GRRM 1.2 program.^{S2} Geometry optimization of 6a-6d was carried out at the B3LYP/6-311+G(d,p) level. Optimized atomic coordinates of 6a-6d are summarized in Tables S1-S4. Potential surface of **6a-6d** as a function of Si-N-R bent angle θ for model compounds were shown in Figure S1, which is the same as Figure 1 in the main text. Absorption band maxima and oscillator strength of 5a-5d whose structural parameters were fixed to the experimental values determined by X-ray analysis were calculated at the TD-B3LYP/6-311+G(d,p) level. Excited states of **5a-5d** were summarized in Tables S5-S8 and Frontier Kohn-Sham orbitals and their energy levels of 5a-5d were shown in Figures S2. For a reaction route search for formation of silanimines H₂Si=NH (7a), betains 11a and 15a whose geometries were optimized at the B3LYP/6-311G(d) level were used as initial structures for GRRM methods.^{S2} For exploration of low-barrier routes to **7a**, large-ADD (*I*ADD) method was applied.^{S2d} Although automatic reaction route search using GRRM methods explored various reaction routes among H₃SiN isomers including 7a, only the reaction routes to 7a with the smallest activation barrier except for degenerate rearrangement such as a configuration inversion are shown in Scheme S1 in the main text, which is the same as Scheme 2 in the main text. For a reaction route search for formation of silanimines Me₂Si=NMe (**7b**), equilibrium structures 11b-17b and transition structures TS12b-TS18b were optimized at the B3LYP/6-31G(d) level. Optimized atomic coordinates and their energies of 7-TS18 are also summarized in Tables S9-S31. A plot of chemical shift of the unsaturated silicon atom (δSi_{ij}) of (*N*-methyl)dimethylsilanimine **6b** as a function of Si-N-R bent angle calculated at the GIAO/B3LYP/6-311+G(2df,p)//B3LYP/6-311+G(d,p) level was shown in Figure S3.

Chart S1

Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Ζ	
1	14	0	-0.856218	-0.012038	-0.000015	
2	7	0	0.715678	-0.166731	-0.000021	
3	14	0	2.404446	-0.011652	0.00007	
4	6	0	-2.023519	-1.473347	-0.000007	
5	6	0	-1.778438	1.618984	0.000022	
6	1	0	2.995060	-0.662153	-1.204480	
7	1	0	2.880600	1.405668	0.000197	
8	1	0	2.995055	-0.662472	1.204325	
9	1	0	-2.674028	-1.452070	0.880523	
10	1	0	-1.461865	-2.407999	-0.001353	
11	1	0	-2.676051	-1.450624	-0.878993	
12	1	0	-2.424732	1.698968	-0.880343	
13	1	0	-1.080930	2.457499	0.001003	
14	1	0	-2.426315	1.698130	0.879292	

Table S2. Atomic Coordinates of 6b Optimized at the B3LYP/6-311+G(d,p) Level

 H_3C CH_3 Si=N H_3C

00	

Center Number	Atomic Number	Atomic	Coc x	ordinates (A	ngstroms) Z	
Number	Namber	TYPC	21	1	2	
1	14	0	0.373287	-0.035813	0.000000	
2	7	0	-1.109152	-0.627997	0.00001	
3	6	0	-2.442410	-0.087357	-0.000001	
4	6	0	1.813344	-1.225258	-0.000000	
5	6	0	0.903208	1.772004	-0.000000	
6	1	0	-2.994473	-0.448349	0.877129	
7	1	0	-2.510054	1.012596	-0.000024	

8	1	0	-2.994486	-0.448386	-0.877107	
9	1	0	2.446429	-1.080178	-0.880764	
10	1	0	1.438165	-2.249284	-0.000017	
11	1	0	2.446413	-1.080201	0.880778	
12	1	0	1.512058	1.998994	0.881078	
13	1	0	0.037115	2.436825	0.000019	
14	1	0	1.512029	1.999005	-0.881095	
(energy	with zero po	int energy:	-464.04996	54784 hartre	e)	

Table S3. Atomic Coordinates of 6c Optimized at the B3LYP/6-311+G(d,p) Level

			H ₃ C Si=N H ₃ C 6c	н I		
Center	Atomic	Atomic	Coc	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	14	0	0.012016	0.164821	-0.000001	
2	7	0	0.383996	1.728239	0.000001	
3	1	0	-0.328650	2.449525	-0.000001	
4	6	0	1.415484	-1.065542	0.00000	
5	6	0	-1.677632	-0.662233	0.00000	
6	1	0	1.374067	-1.714032	0.880542	
7	1	0	2.366569	-0.531495	0.000004	
8	1	0	1.374072	-1.714027	-0.880546	
9	1	0	-1.793908	-1.302196	-0.880784	
10	1	0	-2.481552	0.075892	-0.000001	
11	1	0	-1.793906	-1.302192	0.880788	
(energy	with zero po	oint energy	y: -424.73835	57476 hartre	e)	

			6d			
Center	Atomic	Atomic	Сос	ordinates (A	ngstroms)	
Number	Number	Туре	Х	Y	Z	
1	14	0	-0.348995	-0.000194	-0.000018	
2	7	0	0.955441	-1.019359	0.000020	
3	9	0	2.189572	-0.263366	-0.000005	
4	6	0	-1.993686	-0.873849	0.000005	
5	6	0	-0.288586	1.864413	0.000006	
6	1	0	-2.581693	-0.609811	0.883343	
7	1	0	-1.826523	-1.952531	-0.000061	
8	1	0	-2.581738	-0.609708	-0.883273	
9	1	0	-0.788372	2.272058	-0.883404	
10	1	0	0.751980	2.193161	0.00003	
11	1	0	-0.788328	2.271978	0.883479	
(energy	with zero p	oint energy	r: -523.92754	l6688 hartre	e)	

Table S4. Atomic Coordinates of 6d Optimized at the B3LYP/6-311+G(d,p) Level

Si=N H₃C

Table S5. Transition energy, Wavelengths, and Oscillator Strengths of the Electronic Transitions of **5a** Calculated at the TD-B3LYP/6-311++G(d,p) Level (The 131th orbital is Highest Occupied n(N) Orbital Shown in Figure S2)

Excited State 130 ->132 131 ->132	1:	Singlet-A 0.17768 0.66258	4.1657 eV	297.63 nm	f=0.0002	128 ->132 130 ->138 131 ->135	-0.10864 0.10475 0.44486			
Excited State 130 ->132 131 ->132	2:	Singlet-A 0.62492 -0.17277	4.8980 eV	253.13 nm	f=0.0997	131 ->137 131 ->137 131 ->138	-0.19680 0.43136			
Excited State 131 ->133 131 ->136	3:	Singlet-A 0.67832 -0.12514	5.0637eV	244.85 nm	f=0.0083	ExcitedState 14: 128 ->132 129 ->132 129 ->137	Singlet-A 0.62780 -0.18372 0.15896	5.5021 eV	225.34 nm	f=0.0021
Excited State 130 ->133 130 ->136 131 ->137	4:	Singlet-A 0.63177 -0.14893 -0.16655	5.1796eV	239.37 nm	f=0.0026	ExcitedState 15: 130 ->134 130 ->135 130 ->136 130 ->137	Singlet-A -0.43880 -0.19344 0.44709 0.15171	5.5257 eV	224.38 nm	f=0.0007
Excited State 128 ->138 129 ->132 130 ->133 131 ->135 131 ->136 131 ->137	5:	Singlet-A 0.11579 0.14670 0.22251 0.25175 -0.11234 0.53253	5.1938 eV	238.72 nm	f=0.0114	ExcitedState 16: 129 ->137 130 ->135 130 ->136 130 ->137 130 ->137 130 ->138	Singlet-A -0.18947 0.41112 0.21163 -0.33639 0.24530 -0.10267	5.5747eV	222.41 nm	f=0.0101
Excited State 128 ->138 129 ->132 129 ->137 130 ->138 131 ->134 131 ->136 131 ->137 131 ->137 131 ->137	6:	Singlet-A 0.16458 0.40970 0.19482 -0.19050 -0.10822 -0.13226 -0.18648 -0.17625 -0.19836 0.19633	5.2707 eV	235.24 nm	f=0.0144	Excited State 17: 128 ->138 129 ->133 129 ->136 130 ->135 130 ->139 131 ->139 131 ->142	Singlet-A 0.10250 0.30684 -0.19409 0.12576 0.22001 -0.17299 0.36633 0.15134	5.6598 eV	219.06 nm	f=0.0294
Excited State 129 ->132 129 ->137 130 ->138 131 ->133 131 ->134 131 ->136	7:	Singlet-A 0.20972 0.12442 -0.13647 0.11171 0.44595 0.40766	5.3384 eV	232.25 nm	f=0.0439	ExcitedState 18: 129 ->136 129 ->136 129 ->137 130 ->139 131 ->139 131 ->141 131 ->142	Singlet-A 0.46379 -0.14702 -0.12449 -0.13272 -0.26946 -0.21305 -0.17304	5.7085 eV	217.19 nm	f=0.0212
Excited State 129 ->132 130 ->135 130 ->137 131 ->134 131 ->135 131 ->137 131 ->137 131 ->137 131 ->138	8:	Singlet-A -0.32865 -0.12748 -0.17926 0.21538 -0.24039 -0.11177 0.18840 0.39727	5.3561 eV	231.48 nm	f=0.0087	ExcitedState 19: 128 ->133 128 ->136 129 ->133 130 ->139 130 ->142 131 ->140 131 ->141	Singlet-A -0.12313 0.14816 0.32546 0.41787 0.12022 -0.14221 0.28861	5.7519 eV	215.55 nm	f=0.0089
Excited State 128 ->138 129 ->132 129 ->137 130 ->135 130 ->136 130 ->137 130 ->138 131 ->134	9:	Singlet-A -0.13328 0.21825 -0.10656 0.17611 -0.14904 0.42859 0.16981 0.13775	5.3655 eV	231.08 nm	f=0.0022	ExcitedState 20: 128 ->138 129 ->137 130 ->138 131 ->140 131 ->141 131 ->142 ExcitedState 21:	Singlet-A -0.17200 -0.12719 -0.14618 -0.24518 -0.29100 0.45730 -0.11447 Singlet-A	5.7746 eV 5.8039 eV	214.71 nm 213.62 nm	f=0.0090 f=0.0031
131 ->135 131 ->136 131 ->138		-0.22480 -0.10756 0.22106				128 ->133 128 ->136 128 ->138 129 ->137	-0.29150 0.13647 -0.17716 -0.16894			
ExcitedState 1 131 ->134 131 ->135 131 ->136 131 ->137 131 ->138	10:	Singlet-A 0.43616 0.26977 -0.37743 -0.15940 -0.10585	5.4136 eV	229.03 nm	£=0.0027	130 ->138 131 ->139 131 ->140 131 ->142 ExcitedState 22:	-0.20868 0.40413 0.10621 -0.16397 Singlet-A	5.8129 eV	213.29 nm	f=0.0019
ExcitedState 1 128 ->132 130 ->133 130 ->134	11:	Singlet-A -0.10100 0.15348 0.40063	5.4344 eV	228.15 nm	f=0.0092	131 ->139 131 ->140 131 ->141 131 ->142	-0.14013 0.58061 0.27836 0.14033			
130 ->135 130 ->136 130 ->137 130 ->138 131 ->136		0.16312 0.40053 0.17122 -0.14758 -0.14841				Excited State 23: 128 ->138 129 ->137 130 ->138 131 ->140 121 ->141	Singlet-A -0.17853 -0.13194 -0.16500 -0.16694	5.8267 eV	212.79 nm	f=0.0050
Excited State 1 129 ->132 129 ->137 130 ->134 130 ->138 131 ->136 131 ->137	12:	Singlet-A -0.17074 0.17401 -0.33526 0.40663 -0.30786 -0.12025 -0.10494	5.4589eV	227.12 nm	f=0.0435	131 ->141 131 ->142 Excited State 24: 128 ->133 128 ->136 128 ->136 129 ->136 130 ->138 120 ->130	-0.19164 0.51842 Singlet-A 0.50844 -0.14214 -0.14214 -0.12836 -0.12836	5.8358 eV	212.45 nm	f=0.0013
Excited State 1	13:	Singlet-A	5.4620eV	226.99 nm	f=0.0009	130 ->139	0.17472			

Supplemental Information

131 ->139 0.14184

Supplemental Information

Table S6. Transition energy, Wavelengths, and Oscillator Strengths of the Electronic Transitions of **5b** Calculated at the TD-B3LYP/6-311++G(d,p) Level (The 127^{th} orbital is Highest Occupied n(N) Orbital Shown in Figure S2)

Excited State 127 ->128	1:	Singlet-A 0.69528	3.4286 eV	361.62 nm	f=0.0016	126 ->133 127 ->141	0.11126 0.13920			
Excited State 127 ->129 127 ->132	2:	Singlet-A 0.68691 0.13942	4.3096 eV	287.70 nm	f=0.0012	127 ->142 127 ->144 127 ->145	-0.33135 0.39732 0.21643			_
Excited State 126 ->134 126 ->139 127 ->130 127 ->132 127 ->133	3:	Singlet-A 0.14169 -0.10240 0.11210 -0.21693 0.59192	4.5862 eV	270.34 nm	f=0.0218	ExcitedState 18: 124 ->128 127 ->140 127 ->141 127 ->142 127 ->143 127 ->143	Singlet-A -0.13447 0.15545 -0.20520 -0.42275 0.42020 -0.15109	5.5433 eV	223.66 nm	±=0.0005
Excited State 127 ->129 127 ->130 127 ->131 127 ->132 127 ->133	4:	Singlet-A -0.14135 -0.28055 -0.23873 0.51917 0.20776	4.5995 eV	269.56 nm	f=0.0067	ExcitedState 19: 124 ->128 127 ->140 127 ->141 127 ->142 127 ->143 127 ->144	Singlet-A 0.36044 -0.14713 -0.22882 0.27564 0.40329 0.19866	5.5591 eV	223.03 nm	f=0.0027
Excited State 127 ->130 127 ->131 127 ->132 127 ->133 127 ->138	5:	Singlet-A -0.16763 0.64462 0.13031 0.13527 -0.10856	4.6271 eV	267.95 nm	f=0.0017	ExcitedState 20: 124 ->128 127 ->141 127 ->142 127 ->143 127 ->144	Singlet-A 0.49924 0.11132 -0.13097 -0.11711 -0.35572	5.5710 eV	222.55 nm	f=0.0004
Excited State 127 ->130 127 ->132	6:	Singlet-A 0.60511 0.33283	4.6467 eV	266.82 nm	f=0.0025	127 ->145 ExcitedState 21:	0.19552 Singlet-A	5.5830 eV	222.07 nm	f=0.0020
Excited State 127 ->134 127 ->135 127 ->137 127 ->144	7:	Singlet-A 0.59192 0.25538 -0.12088 0.12346	4.7934 eV	258.66 nm	f=0.0682	124 ->128 127 ->140 127 ->142 127 ->144 127 ->145	-0.22065 -0.19906 0.20433 -0.14355 0.54834			
Excited State 126 ->128 127 ->136 127 ->137	8:	Singlet-A 0.50975 -0.38569 0.23513	4.9871 eV	248.61 nm	f=0.0315	Excited State 22: 126 ->129 126 ->132 Excited State 23:	Singlet-A 0.65721 0.19520 Singlet-A	5.5994 eV 5.6742 eV	221.43 nm 218.51 nm	f=0.0007 f=0.0001
Excited State 126 ->128 127 ->134 127 ->135 127 ->136 127 ->137	9:	Singlet-A -0.38572 -0.10720 0.43050 -0.31488 0.13655	5.0148 eV	247.24 nm	f=0.0272	125 ->129 125 ->132 ExcitedState 24: 127 ->141 127 ->146	0.67595 0.10802 Singlet-A -0.10890 0.66816	5.7026 eV	217.42 nm	f=0.0008
Excited State 126 ->128 127 ->134 127 ->135 127 ->136 127 ->138	10:	Singlet-A 0.27518 -0.26205 0.43105 0.33057 -0.17925	5.0225 eV	246.86 nm	f=0.0185					
Excited State 127 ->134 127 ->136 127 ->137	11:	Singlet-A 0.10843 0.28027 0.59996	5.0703 eV	244.53 nm	f=0.0209					
ExcitedState 127 ->135 127 ->136 127 ->138	12:	Singlet-A 0.17140 0.11394 0.64253	5.0937eV	243.41 nm	f=0.0124					
Excited State 125 ->128 127 ->137 127 ->140 127 ->144 127 ->145	13:	Singlet-A 0.53722 -0.10626 -0.17745 -0.21126 -0.20407	5.1929eV	238.76 nm	f=0.2678					
Excited State 125 ->128 127 ->136 127 ->139 127 ->140	14:	Singlet-A -0.11669 -0.13460 0.64447 -0.10995	5.2133 eV	237.82 nm	f=0.0921					
Excited State 125 ->128 127 ->139 127 ->140 127 ->141 127 ->142 127 ->143	15:	Singlet-A 0.14436 0.12863 0.55237 0.16206 0.22312 0.14356	5.4328 eV	228.21 nm	f=0.0087					
Excited State 127 ->138 127 ->140 127 ->141 127 ->143 127 ->145	16:	Singlet-A 0.11505 -0.19132 0.56168 0.29628 -0.11737	5.4874 eV	225.94 nm	f=0.0005					
ExcitedState 124 ->128 125 ->128	17:	Singlet-A 0.15970 0.23351	5.5075eV	225.12 nm	f=0.0025					

Table S7. Transition energy, Wavelengths, and Oscillator Strengths of the Electronic Transitions of **5c** Calculated at the TD-B3LYP/6-311++G(d,p) Level (The 144th orbital is Highest Occupied n(N) Orbital Shown in Figure S2)

Excited State 144 -> 145	1:	Singlet-A 0.61075	3.7845 eV	327.61 nm	f=0.0006
Excited State 144 -> 145 144 -> 146 144 -> 147	2:	Singlet-A 0.32870 0.60966 -0.11011	4.5645 eV	271.63 nm	f=0.0068
Excited State 144 -> 146 144 -> 147 144 -> 148	3:	Singlet-A 0.10208 0.66038 0.19403	4.8073 eV	257.91 nm	f=0.0000
Excited State 144 -> 147 144 -> 148 144 -> 149	4:	Singlet-A -0.20698 0.61893 0.23538	4.8767 eV	254.24 nm	f=0.0004
Excited State 144 -> 148 144 -> 149	5:	Singlet-A -0.24108 0.65554	4.8851 eV	253.80 nm	f=0.0001
Excited State 143 -> 145 143 -> 146 144 -> 150 144 -> 155 144 -> 162	6:	Singlet-A 0.39239 -0.13707 0.47630 0.13227 -0.11601 0.15502	5.0819 eV	243.97 nm	f=0.0934
Excited State 143 -> 145 143 -> 146 144 -> 150 144 -> 152	7:	Singlet-A 0.47412 -0.10261 -0.42666 -0.10680	5.1242 eV	241.96 nm	f=0.1278
Excited State 143 -> 145 143 -> 146 143 -> 147	8:	Singlet-A 0.20469 0.65260 -0.12966	5.2065 eV	238.13 nm	f=0.0122
Excited State 144 -> 151 144 -> 152	9:	Singlet-A -0.22968 0.64006	5.2365 eV	236.77 nm	f=0.0107
Excited State 144 -> 151 144 -> 152	10:	Singlet-A 0.65842 0.23518	5.2612 eV	7 235.66 nm	f=0.0022
Excited State 144 -> 153	11:	Singlet-A 0.68772	5.2843 eV	7 234.63 nm	f=0.0006
Excited State 144 -> 150 144 -> 154 144 -> 155 144 -> 162	12:	Singlet-A -0.22461 0.61553 -0.16150 0.14695	5.2963 eV	7 234.09 nm	f=0.0030
Excited State 143 -> 146 143 -> 147 143 -> 147 143 -> 148 144 -> 155	13:	Singlet-A 0.11489 0.64305 0.16391 0.13456	5.4441 eV	7 227.74 nm	f=0.0014
Excited State 143 -> 147 144 -> 150 144 -> 154 144 -> 155 144 -> 162	14:	Singlet-A -0.17506 0.12499 0.25476 0.50578 -0.30734	5.4518 eV	7 227.42 nm	f=0.0120
Excited State 143 -> 147 143 -> 148 143 -> 149	15:	Singlet-A -0.16534 0.61329 0.29013	5.5163 eV	7 224.76 nm	f=0.0007
Excited State 143 -> 148 143 -> 149	16:	Singlet-A -0.28354 0.63109	5.5239 eV	7 224.45 nm	f=0.0035

Table S8. Transition energy, Wavelengths, and Oscillator Strengths of the Electronic Transitions of **5d** Calculated at the TD-B3LYP/6-311++G(d,p) Level (The 127^{th} orbital is Highest Occupied n(N) Orbital Shown in Figure S2)

Excited State 127 ->128	1:	Singlet-A 0.69501	3.9962 eV	310.26 nm	f=0.0006
Excited State 127 ->129 127 ->132	2:	Singlet-A 0.69206 0.11390	5.0185 eV	247.06 nm	f=0.0172
Excited State 126 ->128	3:	Singlet-A 0.66062	5.1135 eV	242.47 nm	f=0.1934
Excited State 127 ->129 127 ->132	4:	Singlet-A -0.12145 0.68424	5.2907 eV	234.34 nm	f=0.0163
Excited State 127 ->130 127 ->131	5:	Singlet-A 0.68885 0.11754	5.3535 eV	231.60 nm	f=0.0034
Excited State 127 ->130 127 ->131	6:	Singlet-A -0.11667 0.69111	5.3572 eV	231.44 nm	f=0.0001
Excited State 126 ->129 126 ->132	7:	Singlet-A 0.68464 0.14651	5.5542 eV	223.23 nm	f=0.0037
Excited State 127 ->134 127 ->135 127 ->136 127 ->138 127 ->143 127 ->144	8:	Singlet-A 0.34339 0.50669 0.15194 -0.16058 0.14924 0.14431	5.6460 eV	219.60 nm	f=0.0019
Excited State 125 ->128 127 ->133	9:	Singlet-A 0.66911 -0.16209	5.7369 eV	216.12 nm	f=0.0046
Excited State 125 ->128 127 ->133	10:	Singlet-A 0.15712 0.68345	5.7400 eV	216.00 nm	f=0.0036
Excited State 127 ->134 127 ->135 127 ->138	11:	Singlet-A 0.60262 -0.30277 0.13530	5.7630 eV	215.14 nm	f=0.0016
Excited State 126 ->132 127 ->135 127 ->136	12:	Singlet-A -0.12187 -0.17309 0.65511	5.7805 eV	214.49 nm	f=0.0044
Excited State 124 ->128 126 ->129 126 ->131 126 ->132 127 ->136	13:	Singlet-A 0.19601 -0.14734 0.10277 0.62077 0.12542	5.8261 eV	212.81 nm	f=0.0155
Excited State 127 ->137	14:	Singlet-A 0.68654	5.8435 eV	212.17 nm	f=0.0001
Excited State 124 ->128 126 ->132 127 ->135	15:	Singlet-A 0.63713 -0.19268 -0.12125	5.8592 eV	211.61 nm	f=0.0249
Excited State 126 ->130 126 ->131	16:	Singlet-A 0.68608 0.12389	5.8838 eV	210.72 nm	f=0.0003

 Table S9.
 Atomic Coordinates of 7a Optimized at the B3LYP/6-311G(d) Level

Table S12. Atomic Coordinates of N_2 (10) Optimized at the B3LYP/6-311G(d) Level

	Coor	dinates (Angstroms)	
	Х	Y	Z
N N	0.0000000000000000000000000000000000000	0.0000000000000000000000000000000000000	0.002251000000 1.107749000000
(ENERGY	= -109.5559297	749 hartree)	

		N=N	
		HN H、 Si_	
		H [*] 11a	
	Cool	rdinates (Angstroms)	
	Х	Y	Z
N H N Si H H	0.522036032717 -0.009626208502 2.698003392612 1.656784799889 -0.226505869117 -0.695089716058 -1.510081530559	-0.075181802815 -0.331074507550 -0.986383748055 -0.590153152642 1.190675494656 2.119244350779 0.362889554918	-0.141257147623 0.687210264871 -0.309683700981 -0.163682869322 -1.650160739611 -0.530702882859 -1.600689717304
(ENEF	RGY = -455.491048	419307 hartree)	

	Coo:	rdinates (Angstroms)	
	Х	Y	Z
N	0.474829206576	-0.192148674188	-0.241791975405
Η	-0.154552079101	-0.665180844009	0.400319356809
Ν	2.739785382635	-0.880765821194	-0.231625852770
Ν	1.649344923497	-0.602242409964	-0.167363787614
Si	-0.272424802649	1.168446830791	-1.642072553926
Η	0.701248529096	2.223731596817	-1.121016789724
Н	-1.331420315320	1.482745009123	-0.586973533451
(ENI	ERGY = -455.490310	473375 hartree)	

		NH NH H, ⊢Si-	
		13a	
	Coor X	dinates (Angstroms) Y	Z
N H N Si H H	0.433436238428 0.232824814931 2.373621432025 1.475445113615 -0.715866463480 0.529185042309 -0.685554507931	-0.504521478901 -1.479467088655 -0.034690288677 -0.343695763635 1.049019754335 1.787864291341 1.671338861785	-0.817449663045 -1.011610266526 0.472109352084 -0.130903358822 -1.467702214717 -1.945313955841 -0.076364510249
(ENERGY	= -455.4941883	38604 hartree)	

 Table S15.
 Atomic Coordinates of 13a Optimized at the B3LYP/6-311G(d) Level

(ENERGY = -455.487665579201 hartree)

 Table S17.
 Atomic Coordinates of 15a Optimized at the B3LYP/6-311G(d) Level

	H H H TS16a	‡
 Coordinates	(Angstroms)	

	Coord	dinates (Angstroms)	
	Х	Y	Z
N H N N	0.230166335485 0.148635854927 1.678089926307 1.459915957346	-0.434006306239 -0.521555650920 -0.169235927165 -0.447247513130	0.442336628459 1.460274859806 -1.148932852056 0.109175066320
ы Н Н	0.432443559578 0.131939446432 0.204364092930	0.872784777603 2.089549075229 1.094653718586	-1.621610055376 -0.838562119833 -3.070604530708
(ENERGY	= -455.4991556	38547 hartree)	

Table S19. Atomic Coordinates of 17a Optimized at the B3LYP/6-311G(d) Level

	TS18a		
	Coord X	dinates (Angstroms) Y	Z
 N H	-0.115327031817	-0.101361437772 0.202264214083	0.067278185676
N N	1.958857205006 1.766001436027	-0.185843785457 -0.529776796619	-1.154967315519 -0.056034951487
Si H H	0.335426964218 0.862229591052 -0.327251603826	0.749288791694 2.138875716955 0.528636457012	-1.324022142429 -1.305530177289 -2.637451740068
(ENERGY	Y = -455.5206671	12055 hartree)	

		H ₃ C S H ₃ C	i=N		
			7b		
	C	Coordinates (Angst:	roms)		
	Х	Y	Z		
si Si	-0.0212605373	-0.3692445563	-0.1467542177		
Ν	-0.7258235765	1.0480015153	0.0725017821		
С	1.8137953006	-0.7359065877	-0.4147548842		
Н	2.4039056381	0.1856389367	-0.4049746663		
Н	2.1978384433	-1.3994350151	0.3698042590		
Н	1.9750205710	-1.2382146862	-1.3765189319		
С	-1.0908341142	-1.9095549397	-0.1504280513		
Н	-1.0125397723	-2.4458035244	-1.1037323184		
Н	-0.7881567759	-2.6057846617	0.6408554088		
Н	-2.1348101294	-1.6283346004	0.0095988219		
С	-0.2875132874	2.4148938780	0.1410303899		
Н	-0.7971327634	3.0132514632	-0.6290174894		
Н	-0.5750386534	2.8549700419	1.1076639780		
Η	0.7969244368	2.5806444264	0.0174466193		
(ENER	(ENERGY = -463.968916443 hartree)				

 Table S21.
 Atomic Coordinates of 7b Optimized at the B3LYP/6-31G(d) Level

		H ₃	CSi		
		H ₃	c		
			8b		
	C	oordinates (Angsti	roms)		
	Х	Y	Z		
Si C H H C H H H	$\begin{array}{c} 0.4723781011\\ -1.4011276544\\ -1.9773460564\\ -1.6130314228\\ -1.7903815180\\ 1.0949247017\\ 0.4405425953\\ 1.1003157804\\ 2.1183126431 \end{array}$	0.7041350426 0.3204771072 1.1696947157 -0.5632738392 0.0939647226 -1.1046430166 -1.7391003293 -1.5511156136 -1.1700525694	1.7700330641 1.5788554696 1.1971673435 0.9617869911 2.5866237916 1.955723712 2.5688592691 0.9462391593 2.3395008498		
(ENE	(ENERGY = -346.040785302272 hartree)				

		- N +N 9b	∠CH ₃		
	Сс	oordinates (Angsti	roms)		
	Х	Y	Z		
C	-0.5061666341	0.1907039635	0.6467463797		
Η	0.3653432741	0.3132857966	-0.0084697805		
Η	-0.9395462694	1.1714291765	0.8442698583		
Η	-1.2529245026	-0.4311866567	0.1373642884		
Ν	-0.1304081730	-0.3693233263	1.9574501299		
Ν	0.3837141818	-1.4916277132	1.933315978		
Ν	0.8677061232	-2.5204182403	2.0520921461		
(ENER	(ENERGY = -204.093314278 hartree)				

 Table S23.
 Atomic Coordinates of 9b Optimized at the B3LYP/6-31G(d) Level

	H ₃ CN H ₃ C、		
		H ₃ C ^{Si} -	
		11b	
	Coo	rdinates (Angstroms)	
	Х	Y	Z
Si	-1.058232158510	0.988717175541	-0.803210873774
Ν	-0.218379691534	-0.347656733979	0.721035518823
С	-2.699696601862	-0.043334681438	-0.908005996063
С	-1.620155757554	2.281013359485	0.532172564816
Ν	0.934174502814	-0.770967353922	0.503459613500
Ν	1.979754233423	-1.096636109108	0.205648273148
Н	-2.553465207213	-1.007373544568	-1.410160891736
Н	-3.222945782099	-0.221268174180	0.042526561251
Н	-3.392742716541	0.532718291552	-1.540751646647
Η	-0.772700952150	2.823914017660	0.968170972780
Η	-2.228639215131	3.031570368265	0.004099028993
Η	-2.245281273420	1.894104140747	1.349825234745
С	-0.834029925955	-0.806394859498	1.988817092302
Η	-0.267859277726	-0.442138996090	2.851997186921
Η	-1.835307782977	-0.379700535112	2.006536411054
Н	-0.903119183567	-1.898431175349	2.018035939894

			‡ 3
	Соо	rdinates (Angstroms)	
	Х	Y	Z
N	0.400135965296	-0.336663277519	-0.333948827438
Ν	2.456708348529	-1.313630787137	-1.018323568715
Ν	1.478210163181	-0.891383794183	-0.621254404463
Si	-0.195257300504	1.340741046579	-1.660091524916
С	1.015203561973	2.583517910878	-0.788751923751
Н	0.911749168402	2.651648106945	0.302429566355
Н	2.066438573091	2.379445452106	-1.028114627030
Н	0.799161188851	3.583259558406	-1.196388358031
С	-1.788422850572	1.726089970680	-0.621019059059
Н	-2.192990761367	2.662146861580	-1.037292631218
Н	-2.578291423606	0.975389449732	-0.750723434361
Н	-1.637699075351	1.905459214557	0.452763648180
С	-0.312578277132	-0.896352635306	0.837058888481
Н	0.214196771736	-0.651302627824	1.765171789633
Н	-1.295556372127	-0.429731100636	0.846282710922
Н	-0.423259500411	-1.981548788859	0.746310425405
(ENE	ERGY = -573.378207	488853 hartree)	

 Table S25.
 Atomic Coordinates of 12b Optimized at the B3LYP/6-31G(d) Level

Table S26. Atomic Coordinates of 13b Optimized at the B3LYP/6-31G(d) Level

		Ñ=N NC+ H₃C、 H₃C ^{Si} - 1 3b	H ₃
	Coo X	rdinates (Angstroms Y) Z
Si NCCCNNHHHHHHHH	-0.284565918844 0.472519728229 -1.933693393074 -0.899884175245 1.864625498874 -0.306664703724 -1.237755226738 -1.794556662066 -2.467452560683 -2.606097651247 -0.076367396431 -1.512965815066 -1.536081717329 1.914506916160 2.352696225757 2.360950691405	0.710114917585 - 0.538322341450 - 0.240999158839 2.066176695317 - 1.006754995165 - 0.912678802541 - 1.068919598384 - 1.178896100670 - 0.465312386970 0.387583874341 2.628093020091 2.790210823241 1.665365541996 - 2.100593696999 - 0.611465052693 - 0.616053138859	$\begin{array}{c} -0.884405501241\\ 0.476165540491\\ -1.164110573279\\ 0.339888630225\\ 0.562729158957\\ 1.412999223096\\ 2.060260132595\\ -1.714271755704\\ -0.224650144164\\ -1.764259142072\\ 0.795903878053\\ -0.214711109963\\ 1.145416536242\\ 0.557076931326\\ -0.329161358750\\ 1.457431924178\end{array}$
(ENI	ERGY = -573.387950	981540 hartree)	

			H ₃] [‡]
		TS14b	
	Coo. X	rdinates (Angstroms) Y	Z
Si NCCCNN HHHH HHHH HHH	-1.201948728688 -0.240435177406 -2.101897128900 0.258520394557 -0.706003063015 0.730683117507 1.507649099088 -2.596087952881 -2.876976013367 -1.400677953866 0.917507805460 -0.095395768057 0.873861771393 0.142927743426 -1.318591126587 -1 314106168662	0.746994395062 - 0.763898706853 1.368831322883 1.957177696077 - 2.156761272811 - 0.566042323030 0.126354150168 2.326559124104 0.67263241180 1.540305651022 1.729375606234 2.989199058091 1.925985901795 - 2.844138371437 - 2.415432627632 - 2.237147494853	-0.700637141444 -0.049208313298 0.879366329752 -0.845558614496 -0.100626589446 0.832161323385 1.326301202792 0.669236284218 1.219462938267 1.710120789573 -1.690468497605 -0.965062150125 0.078047428258 -0.168123890576 0.770927268435 -1.002644017691

 Table S27.
 Atomic Coordinates of TS14b Optimized at the B3LYP/6-31G(d) Level

		H ₃ C N	:H ₃
		H ₃ C	
		15b	
	Coo:	rdinates (Angstroms)	
	Х	Ү	Z
S1 NCCCNNHHHHHHH HHHHH	-0.204479675114 -0.297996695665 -0.208680653255 -0.722064033825 0.028471187629 0.738303412795 0.559515491351 -1.222082655180 0.416261795519 0.176547686773 -0.119157315158 -1.773292025006 -0.605542531575 -0.389949289523 1.108694360281 -0.463400960054	0.780811220403 - 0.832794939928 0.801374099531 2.368361468829 - 1.123740183644 - 0.686566935631 - 0.464010914960 0.948670325154 1.613705388364 - 0.150102146130 3.218300154485 2.599085494749 2.258156428074 - 2.102692250490 - 1.121516683141 - 0.377630685654	-1.160446013600 1.562158114912 -3.031084543563 -0.300094955502 2.959358145101 0.864802951344 -0.440687239188 -3.421848137427 -3.420593347431 -3.407418450394 -0.641383211056 -0.508918559400 0.781511446891 3.223840300732 3.147196260684 3.595543257891
(ENERGY = -573.417542207362 hartree)			

		Н ₃ С Н ₃ С Т S16b	H ₃] [‡]
	Coo: X	rdinates (Angstroms) Y	Z
	0 467002026607	0 605672220495	0 067002204647
N	-0.467692025567	-0.204022097465	1 252010004256
C	-1 093606576503	0 541328869385	-2 736750671671
C	-0 390408357571	2 359329562123	-0 297536908247
C	-0.709146906147	-0.244582491515	2.810791753064
N	0.474950136940	-0.689906722118	0.881632166950
Ν	0.547456535830	-0.633327242749	-0.441636971997
Н	-2.188037049327	0.621972169906	-2.756981938502
н	-0.695034567446	1.361501396229	-3.345836437672
Η	-0.818737858857	-0.413906958201	-3.193741802524
Η	0.106981680254	3.021239981263	-1.017012970232
Н	-1.399525369417	2.752956312120	-0.125726335816
Н	0.151436861836	2.388450903104	0.650936925092
Н	-1.567899478674	-0.827748757114	3.163683339530
Η	0.210967139913	-0.627837037885	3.264155428580
Н	-0.862512559509	0.795211804059	3.128199969775
 (ENE	RGY = -573.412516	910944 hartree)	

Table S29. Atomic Coordinates of TS16b Optimized at the B3LYP/6-31G(d) Level

Table S30. Atomic Coordinates of 17b Optimized at the B3LYP/6-31G(d) Level

H₃C 、	NCH ₃
H ₃ C ⁻	N N

	17b		
	Coordinates (Angstroms)		
	Х	Y	Z
Si	-0.403444058881	0.643914838652	-0.637415473726
Ν	-0.623900965951	-0.239253899375	0.898673606580
С	-1.593713134200	0.203362102362	-2.017431150858
С	-0.140486524827	2.492944073804	-0.460416492420
С	-1.242049272504	-0.285756167911	2.202726107111
Ν	0.662488581512	-0.760631125126	0.722037846696
Ν	1.093121170208	-0.367312402805	-0.416005096953
Н	-2.583134496684	0.644226985420	-1.841763263275
Н	-1.231336902240	0.577335412679	-2.982479044365
Н	-1.710786045261	-0.882202146822	-2.092825388088
Н	0.258042456398	2.921876980291	-1.387616669578
Н	-1.082250956949	3.008819029943	-0.235161841758
Н	0.570221819464	2.705356708008	0.344463782196
Н	-2.319466486634	-0.462661344181	2.107898765721
Н	-0.802159616155	-1.120538878201	2.757924737542
Η	-1.090978667301	0.633993913277	2.787678955171

(ENERGY = -573.450276320618 hartree)

		H ₃ C NCH H ₃ C Si N TS18b	H ₃ N
	Coo	rdinates (Angstroms)	7.
	A		ے۔۔۔۔۔
Si	-0.403352423416	0.604604841955	-0.536294234195
Ν	-0.844401969910	-0.153460332994	0.898998331613
С	-1.334139291562	0.291587805048	-2.141144658011
С	0.362607129313	2.325999551435	-0.583515403170
С	-1.790996410971	0.118031433115	1.946695547906
Ν	1.127741960151	-0.703262223114	0.706139099976
Ν	1.239254010678	-0.438333119881	-0.418580235391
Н	-2.292337127271	0.829633461895	-2.119201358565
Н	-0.779807511971	0.642615297686	-3.019269186378
Н	-1.559036126626	-0.772320300553	-2.265522959915
Н	0.932869765764	2.498473810963	-1.503834979121
Н	-0.437443811438	3.077489692211	-0.543779223007
Н	1.020884383990	2.496561698833	0.274189580026
Н	-2.831370498380	0.092482380565	1.575946782227
H	-1.726909852022	-0.666166759558	2.714299431441
н 	-1.654618116332	1.085766052403	2.458919694568
	(EN	ERGY = -573.427154	4612577 hartree)

 Table S31.
 Atomic Coordinates of TS18b Optimized at the B3LYP/6-31G(d) Level

Supplementary Information

Figure S1. Relative energy of *N*-substituted dimethylsilanimines **6a-6d** as a function of Si-N-R bent angle calculated at the B3LYP/6-311+G(d,p) level.

Figure S2. Frontier Kohn-Sham orbitals (B3LYP/6-311+G(d,p) level) of silanimines **5a-5d** whose structural parameters were fixed to the experimental values determined by X-ray analysis.

Scheme S1. Possible reaction routes from silvlene **8** and azide **9** to the corresponding silanimine **7** and nitrogen molecule (**10**) (**a**: R = H; **b**: $R = CH_3$). The values of relative energies in kJ mol⁻¹ for R = H calculated at the B3LYP/6-311G(d) level are shown in parentheses and for $R = CH_3$ calculated at the B3LYP/6-31G(d) level in brackets,

respectively.

Supplementary Information

Figure S3. Plots of isotropic chemical shift of the unsaturated silicon atom (δ Si_u relative to tetramethylsilane) of (*N*-methyl)dimethylsilanimine **6b** (orange line) and relative energy (blue line) as a function of Si-N-R bent angle calculated at the GIAO/B3LYP/6-311+G(2df,p)//B3LYP/6-311+G(d,p) level.

2. References

- Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. S1 Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- S2 (a) K. Ohno and S. Maeda, *Chem. Phys. Lett.*, 2004, **384**, 277. (b) S. Maeda and K. Ohno, *J. Phys. Chem. A*, 2005, **109**, 5742. (c) K. Ohno and S. Maeda, *J. Phys. Chem. A*, 2006, **110**, 8933. (d) S. Maeda and K. Ohno, *J. Phys. Chem. A* 2007, **111**, 4527.