Electronic Supplementary Information (ESI) for:

Optically Active Copper(II) Phthalocyanine Supramolecules Induced by Peripheral Group Homochirality

^s Wei Zhang^{*a,b}, Akira Ishimaru^{a,c}, Hisanari Onouchi^{a,d}, Roopali Rai^{a,e}, Anubhav Saxena^{a,e}, Akihiro Ohira^{a,f}, Masaaki Ishikawa^{a,g}, Masanobu Naito^a and Michiya Fujiki^{*a,h}

^a Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192

^b College of Chemistry, Chemical Engineering and Materials Science of Soochow (Suzhou) University, Suzhou 215123, China. E-mail:

weizhang@ms.naist.jp, weizhang@suda.edu.cn

^c Current address, Chemifa Corporation

^d Current address, Nitto Denko Corporation

^e Current address, Momentive Performance Materials, India

^fCurrent address, Advanced Industrial Science and Technology (AIST)

^g Current address, JASCO Corporation

^h Phone:81-743-72-6040, E-mail: fujikim@ms.naist.jp

Synthesis of CuPc-(S)

A typical synthetic procedure of CuPc-(S) was described: 4(5),4'(5'),4''(5'')-Tetracarboxyphthalocyanate ²⁰ copper(II) (Wako, 0.10 g) was reacted with SOCl₂ (20 mL) in *o*-dichlorobenzene (40 mL) in the presence of catalytic amount of pyridine to give copper(II) 4(5),4'(5'),4''(5''),4'''(5''')-tetrakis(chlorocarbonyl)phthalocyanine. After removing *o*-dichlorobenzene and SOCl₂ in a reduced pressure, the resulting solid and (S)-1-(*p*-tolyl)ethylamine (0.068 g, 0.50 mmol) in a dry pyridine (5 mL) was reacted at 100 °C for 24 h. The crude solid was washed with hexane repeatedly and dried in a vacuum overnight. The crude product was purified by silica gel column chromatography

 $_{25}$ (CHCl₃/methanol = 100/2 (v/v)) and collected as a first purple fraction (CuPc-(S)). Because a very small amount of the product was isolated, the product was not weighed. CuPc-(R) and CuPc-(RS) were prepared by the similar methods, respectively.

Scheme S1. Synthetic route of 4(5),4′(5′),4′′(5′′),4′′′(5′′′)-tetrakis{(*S*)-(1-(*p*-tolyl)ethylaminocarbonyl}phthalocyanate copper(II), CuPc-(*S*).

Figure S2. FT-IR spectrum of (a) CuPc-(R), (b) CuPc-(S) and (c) CuPc-(R,S).

Frequencies / cm ⁻¹			
(a)	(b)	(c)	(d)
J _{N-H}	$J_{\text{Ar-C-H}}$ $J_{\text{C-H}}$	J _{C=0}	$J_{ m C-N}$ and $\delta_{ m C-H}$
3265	2962, 2922, 2854	1631	1540

Figure S3. CD and UV-vis spectra of CuPc-(S) $(5.0 \times 10^{-5} \text{ mol/L})$ in DMF at 25 °C.

Figure S4. CD and UV-vis spectra of CuPc-(RS) $(5.0 \times 10^{-5} \text{ mol/L})$ in CHCl₃ at 25 °C.

10

Figure S5. CD spectra of CuPc-(S) and CuPc-(R) $(5.0 \times 10^{-5} \text{ mol/L})$ in chloroform at 25 °C.

Figure S6. VSM curves of CuPc-(*R*) on mica casting from chloroform solution $(1 \times 10^{-4} \text{ mol/L})$ at 25 °C. The VSM curves of CuPc-(*R*) involved the contribution from that of mica because mica itself has its own VSM characteristics.

Figure S7. EPR spectrum of CuPc-(*S*) $(1 \times 10^{-4} \text{ mol/L})$ in chloroform at room temperature measured by JEOL JES-FA 100.

Figure S8. AFM images and section analysis of specimen on mica cast from dilute chloroform solutions of (left) CuPc-(S) $(1 \times 10^{-4} \text{ mol/L})$ and (right) CuPc-(R) $(1 \times 10^{-4} \text{ mol/L})$.

Figure S9. AFM imaging of NiPc-(*R*) specimen on mica prepared by cast from its chloroform solution (8×10^{-5} mol/L). The image was re-edited from the original data appeared in Figure 3a of Ref. 9. AFM image was recorded on a Seiko s SPI3800N atomic force microscope with dynamic force mode and a standard silicon probe with a 14 N/m spring constant.

Figure S10. (left) AFM imaging and (right) its MFM imaging of CuPc-(R) specimen on mica prepared by cast from its chloroform solution (1 × 10⁻⁴ mol/L), conducted by a Veeco NanoScope IIIa with AFM and MFM modes.