Fe₃(BF)₃(CO)₈ Structures with Face-Semibridging Fluoroborylene Ligands and a Bicapped Tetrahedral Fe₃B₃ Cluster Isoelectronic with Os₆(CO)₁₈

Liancai Xu,^a Qian-shu Li,^{*a,b} Yaoming Xie,^c R. Bruce King,^{*a,c} and Henry F. Schaefer III^c

 ^a Center for Computational Quantum Chemistry, South China Normal University, Guangzhou 510631, P. R. China
 ^bInstitute of Chemical Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
 ^cDepartment of Chemistry and Center for Computational Chemistry, University of Georgia, Athens, Georgia 30602, USA

Supporting Information

Tables S1-S3: Theoretical harmonic vibrational frequencies for Fe₃(BF)₃(CO)₈ (15 structures) from B3LYP/DZP.

Tables S4-S18: Theoretical Cartesian coordinates for Fe₃(BF)₃(CO)₈ (15 structures), using BP86/DZP method.

Table S19 Wiberg bond indices from NBO analysis for 8-1S, 9-1S and Fe(BF)(CO)₄.

Complete Gaussian 03 reference (reference 44).

2()2()3	0	(1	
8-1S(C _s)	$8-2S(C_{2V})$	$8-3S(C_s)$	8-4S(C ₁)	$8-5S(C_{\rm s})$
11.5(a",0.0)	22.0(b ₂ ,0.0)	16.3(a",0.1)	9.7 (a, 0.1)	24.2 <i>i</i> (a",0.0)
33.9(a",0.0)	27.0(a ₂ ,0.0)	24.6(a",0.1)	38.7 (a, 0.1)	28.9(a',0.1)
42.6(a",0.0)	45.0(b ₂ ,0.0)	39.9(a",0.1)	53.3 (a, 0.1)	48.0(a",0.0)
50.7(a",0.0)	56.3(b ₂ ,0.1)	48.8(a",0.0)	54.6 (a, 0.0)	49.4(a',0.0)
56.1(a',0.2)	59.1(a ₂ ,0.0)	55.4(a',0.2)	56.1 (a, 0.0)	54.2(a",0.0)
69.8(a",0.0)	70.5(a ₁ ,0.0)	65.8(a',0.5)	74.6 (a, 0.0)	66.7(a",0.0)
72.7(a',0.2)	73.6(b ₁ 0.0)	68.6(a",0.1)	78.0 (a, 0.0)	71.4(a',0.0)
80.2(a",0.5)	82.9(a ₂ ,0.0)	77.7(a",0.2)	79.2 (a, 0.0)	78.6(a',0.3)
83.9(a',0.1)	83.7(b ₂ ,0.4)	84.8(a',0.0)	86.2 (a, 0.1)	83.8(a',0.1)
84.2(a",0.1)	90.3(a ₁ ,0.0)	84.9(a',0.6)	89.7 (a, 0.1)	87.9(a",0.2)
89.4(a',0.0)	93.0(b ₁ ,0.0)	88.2(a",0.1)	91.6 (a, 0.1)	90.8(a',0.0)
93.9(a",0.0)	93.0(a ₁ ,0.1)	91.3(a",0.1)	92.8 (a, 0.1)	94.4(a',0.0)
95.8(a',0.0)	96.5(b ₂ ,0.3)	92.6(a',0.4)	100.1 (a, 0.0)	95.3(a",0.2)
98.5(a',0.0)	96.5(b ₁ ,0.1)	94.0(a',0.0)	101.2 (a, 0.0)	99.3(a",0.0)
103.9(a',0.0)	108.6(a ₁ ,0.7)	104.2(a',0.0)	104.1 (a, 0.3)	108.9(a',0.1)
112.6(a',0.2)	111.6(b ₁ ,1.0)	108.7(a',0.0)	105.2 (a, 0.0)	111.1(a",0.0)
115.9(a",0.0)	116.9(a ₂ ,0.0)	117.1(a",0.1)	128.7 (a, 0.0)	144.3(a',0.1)
155.7(a',0.1)	153.9(b ₂ ,0.1)	127.1(a',2.8)	134.1 (a, 0.3)	149.4(a",0.1)
163.4(a",0.0)	182.0(a ₁ ,0.1)	140.8(a",0.1)	157.9 (a, 0.8)	163.8(a",0.3)
173.9(a',0.4)	192.3(b ₁ ,0.0)	151.8(a',1.2)	185.6 (a, 0.1)	172.1(a',0.4)
207.6(a',0.2)	200.5(b ₁ ,0.1)	168.4(a',2.1)	193.7 (a, 0.3)	211.8(a',0.2)
210.7(a',1.1)	225.5(b ₁ ,0.1)	209.0(a',0.5)	206.4 (a, 0.2)	224.6(a",0.5)
235.9(a",0.0)	240.9(a ₁ ,1.7)	234.3(a',1.3)	225.3 (a, 0.5)	233.1(a',0.9)
250.2(a',0.1)	247.8(a ₂ ,0.0)	242.8(a',1.3)	235.4 (a, 0.4)	237.6(a",0.0)
262.1(a',0.2)	260.9(a ₁ ,0.2)	245.5(a",0.1)	250.9 (a, 0.9)	262.1(a',0.7)
337.0(a',1.0)	318.5(b ₁ ,2.3)	343.3(a',9.1)	349.8 (a, 0.9)	285.8(a",0.3)
352.2(a",0.2)	355.2(b ₁ ,2.8)	363.0(a",0.5)	367.5 (a, 0.4)	315.9(a",0.0)
357.3(a',3.6)	361.6(b ₂ ,0.0)	368.6(a',0.0)	373.7 (a, 0.3)	351.9(a',1.8)
375.1(a',3.2)	376.8(a ₁ ,5.1)	380.9(a',2.6)	380.6 (a, 0.1)	365.2(a",4.0)
376.0(a",0.0)	379.7(a ₂ ,0.0)	382.8(a",0.4)	392.5 (a, 0.4)	369.4(a',0.8)
380.7(a",0.3)	387.6(a ₁ ,0.0)	393.9(a",1.8)	396.3 (a, 2.0)	380.7(a',0.4)
393.2(a',18.9)	397.5(b ₂ ,0.8)	402.9(a",0.0)	407.6 (a, 4.9)	386.7(a',4.4)
397.5(a",0.1)	406.7(a ₁ ,9.0)	404.1(a',12.2)	417.5 (a, 1.2)	393.3(a",4.2)
414.2(a",0.2)	410.1(b ₂ ,0.5)	409.7(a",0.2)	426.7 (a, 2.2)	393.3(a',8.4)
425.4(a",0.2)	410.9(a ₂ ,0.0)	415.4(a",0.0)	432.4 (a, 2.6)	399.7(a",14.5)
430.9(a',11.4)	417.4(b ₁ ,4.4)	435.0(a",0.6)	433.3 (a, 0.5)	409.3(a",11.3)
444.0(a",0.9)	421.6(b ₂ ,0.7)	442.1(a',4.5)	441.6 (a, 4.5)	421.3(a',2.9)
451.2(a',0.7)	$427.3(a_1, 6.3)$	449.3(a",0.5)	448.6 (a, 2.3)	426.4(a',2.6)
458.5(a",0.0)	436.6(b ₁ ,11.0)	466.4(a",0.2)	468.0 (a, 0.1)	431.9(a',0.2)
466.2(a",0.0)	442.9(b ₂ ,0.8)	473.7(a',0.2)	478.4 (a, 2.6)	451.8(a",0.1)
469.5(a',4.3)	463.5(a ₂ ,0.0)	480.5(a",0.2)	488.3 (a, 4.6)	464.7(a',0.9)
477.1(a",0.1)	476.2(a ₂ ,0.0)	491.8(a',2.5)	493.4 (a, 1.0)	474.0(a",6.0)
492.4(a",1.7)	482.2(b ₂ ,0.0)	502.5(a',8.7)	502.9 (a, 2.6)	479.0(a',6.0)
499.2(a',4.3)	489.8(a ₁ ,102.7)	502.5(a",3.3)	511.6 (a, 2.6)	493.0(a",10.2)
507.6(a',4.2)	502.5(b ₂ ,0.6)	513.5(a',0.1)	514.4 (a, 5.9)	503.0(a',2.9)
526.2(a',4.8)	502.5(a ₂ ,0.0)	517.0(a",0.3)	522.2 (a, 2.2)	514.2(a",4.8)
527.6(a",0.6)	520.3(b ₁ ,24.9)	528.4(a',6.1)	532.7 (a, 0.0)	517.6(a',0.4)
536.2(a',14.4)	525.5(a ₁ ,41.2)	537.0(a',13.3)	544.6 (a, 9.8)	535.8(a',5.5)

Table S1. Theoretical harmonic vibrational frequencies (in cm⁻¹) for optimized structures of $Fe_3(BF)_3(CO)_8$ using the BP86/DZP method (infrared intensities in parentheses are in km/mol).

Supplementary Material (ESI) for New Journal of Chemistry
This journal is © The Royal Society of Chemistry and
The Centre National de la Recherche Scientifique, 2010

567.1(a',7.8)	549.1(a ₁ ,9.4)	552.8(a',19.4)	559.4 (a, 3.7)	561.1(a',55.4)
568.9(a",48.8)	563.0(b ₂ ,13.7)	573.7(a",26.8)	566.9 (a, 21.0)	570.3(a",3.5)
578.3(a',46.1)	570.4(b ₁ ,50.5)	578.4(a',48.3)	577.6 (a, 11.0)	572.4(a',37.4)
582.2(a",3.7)	575.7(a ₂ ,0.0)	582.7(a",9.6)	587.5 (a, 20.1)	581.5(a',23.8)
599.8(a',76.8)	588.4(b ₂ ,112.9)	596.1(a',98.1)	596.3 (a, 125.6)	591.5(a",20.3)
610.3(a',80.0)	605.5(b ₁ ,15.1)	599.5(a",79.2)	600.5 (a, 125.0)	599.0(a',82.3)
610.9(a",71.1)	610.9(a ₁ ,87.1)	613.1(a',41.3)	617.9 (a, 27.7)	601.4(a",39.6)
626.1(a',55.7)	625.4(a ₁ ,121.8)	631.6(a',277.8)	631.8 (a, 73.0)	626.0(a",159.5)
644.6(a',415.3)	649.2(b ₁ ,321.7)	634.0(a',207.1)	636.3 (a, 138.9)	633.7(a',27.6)
652.3(a',151.9)	670.3(a ₁ ,52.3)	655.5(a',44.4)	653.5 (a, 330.5)	650.5(a',387.4)
1307.8(a",593.9)	1317.6(b ₂ ,594.1)	1307.6(a",583.7)	1190.9 (a, 196.1)	1311.8(a',253.6)
1322.7(a',22.5)	1338.4(a ₁ ,136.0)	1324.9(a',10.3)	1318.2 (a, 381.4)	1346.3(a",727.0)
1355.1(a',432.5)	1349.7(a ₁ ,432.2)	1371.1(a',499.1)	1333.3 (a, 482.8)	1362.7(a',357.9)
1902.3(a',579.9)	1883.8(b ₁ ,806.4)	1938.9(a',279.1)	1847.1 (a, 312.8)	1846.9(a',245.3)
1982.3(a",121.4)	1904.1(a ₁ ,209.1)	1976.7(a",383.3)	1977.4 (a, 19.9)	1906.4(a',607.8)
1986.7(a",783.2)	1992.2(b ₂ ,141.1)	1991.1(a",542.4)	1986.6 (a, 41.3)	1989.8(a",4.0)
2001.5(a',23.2)	1998.3(a ₂ ,0.0)	1997.0(a',50.2)	1992.7 (a, 233.8)	1993.5(a',661.4)
2004.2(a",977.1)	2003.1(b ₂ ,1680.5)	2006.1(a",934.2)	2002.3 (a, 1085.4)	2001.6(a',1061.6)
2011.9(a',1928.3)	2013.5(b ₁ ,1958.1)	2006.8(a',1977.7)	2015.9 (a, 2000.1)	2015.8(a',1757.6)
2019.5(a',1388.6)	2021.7(a ₁ ,1367.0)	2025.1(a',1485.1)	2024.3 (a, 1708.2)	2018.2(a",1471.5)
2057.3(a',164.4)	$2054.0(a_1, 8.4)$	2058.6(a',176.2)	2055.3 (a, 35.0)	2051.1(a',1.8)

8-6S(C_s)	$8-7S(C_s)$	$8-1T(C_s)$	$8-2\mathrm{T}(C_{\mathrm{s}})$	$8-3T(C_s)$
40.5 <i>i</i> (a",0.0)	3.9 <i>i</i> (a",0.0)	9.0(a",0.0)	20.9(a",0.0)	7.3 (a", 0.0)
27.1(a",0.0)	15.8(a",0.0)	35.5(a",0.0)	33.3(a",0.1)	34.6 (a", 0.0)
39.4(a',0.3)	34.2(a',0.1)	43.4(a",0.0)	44.5(a",0.0)	41.8 (a", 0.0)
41.2(a",0.0)	46.1(a",0.1)	56.6(a",0.1)	50.5(a',0.0)	51.4 (a', 0.3)
60.7(a",0.1)	48.0(a",0.4)	59.5(a',0.6)	54.0(a",0.1)	52.2 (a", 0.0)
64.3(a',0.0)	60.4(a',0.0)	61.5(a',0.1)	67.4(a',0.4)	68.7 (a', 0.4)
70.7(a",0.0)	69.9(a',0.3)	69.5(a",0.0)	73.0(a",0.0)	73.5 (a", 0.0)
74.6(a',0.2)	72.4(a",0.0)	79.0(a",0.4)	77.2(a",0.2)	77.5 (a", 0.3)
81.8(a",0.0)	85.0(a',0.4)	81.4(a',0.2)	79.4(a',0.6)	79.0 (a', 0.1)
83.7(a',0.5)	91.1(a",0.1)	83.0(a",0.0)	85.2(a',0.3)	83.4 (a', 0.0)
86.8(a',0.3)	93.5(a',0.1)	83.1(a',0.2)	85.5(a",0.0)	83.4 (a", 0.2)
86.9(a",0.5)	95.1(a',0.0)	85.5(a',0.2)	88.3(a',0.0)	89.7 (a', 0.3)
95.7(a',0.2)	95.5(a",0.0)	98.6(a',0.1)	89.9(a",0.2)	91.9 (a", 0.0)
103.8(a',0.2)	101.3(a",0.1)	100.4(a",0.0)	93.1(a',0.4)	96.6 (a', 0.1)
107.3(a",0.0)	101.4(a',0.1)	101.8(a',0.3)	101.1(a',0.5)	101.5 (a', 0.2)
109.0(a',0.9)	107.5(a',0.1)	107.2(a',0.0)	109.9(a',0.3)	112.9 (a", 0.0)
112.2(a",0.0)	112.9(a",0.1)	113.3(a",0.0)	116.7(a",0.0)	119.5 (a', 0.3)
147.1(a',0.6)	117.5(a',0.0)	131.3(a',0.3)	122.2(a',1.5)	161.4 (a', 0.6)
165.9(a",0.0)	126.4(a',0.1)	161.7(a',0.0)	139.3(a",0.1)	167.8 (a", 0.1)
170.2(a',0.1)	163.3(a",0.7)	174.0(a",0.0)	141.5(a',0.6)	169.1 (a', 0.2)
189.3(a',0.0)	183.7(a',0.4)	186.6(a',0.2)	165.3(a',0.4)	200.0 (a', 4.9)
201.2(a",0.1)	200.9(a",0.5)	210.9(a',0.2)	216.4(a',0.4)	205.0 (a', 0.9)
224.1(a',0.5)	223.9(a',1.2)	222.2(a",0.0)	231.0(a',0.2)	220.9 (a", 0.0)
233.8(a',0.4)	225.7(a",0.0)	231.2(a',0.1)	238.2(a",0.0)	224.8 (a', 0.8)
261.1(a',0.3)	249.3(a',0.9)	239.3(a',0.1)	241.5(a',1.9)	251.1 (a', 0.8)
294.2(a",0.0)	349.3(a",3.1)	316.0(a',7.9)	333.3(a",1.1)	306.6 (a', 1.7)
324.3(a",0.0)	364.3(a',2.4)	325.4(a",1.0)	355.8(a',9.6)	313.2 (a", 0.1)
352.7(a',7.5)	380.9(a",1.1)	357.0(a",0.1)	367.3(a',1.4)	339.4 (a', 1.9)
358.6(a",0.0)	382.8(a',2.6)	358.3(a',3.0)	378.0(a",0.1)	353.5 (a", 0.0)
371.9(a',2.3)	395.8(a",0.1)	372.0(a',3.1)	379.5(a',1.3)	369.2 (a", 1.8)
375.5(a",1.0)	400.6(a',0.7)	377.2(a',0.2)	386.2(a",0.9)	370.9 (a', 1.2)
387.1(a',0.8)	404.7(a",1.5)	379.4(a",0.6)	387.1(a",0.4)	384.1 (a', 10.0)
389.4(a",0.0)	409.4(a',2.7)	388.0(a",0.2)	396.3(a",0.2)	389.8 (a", 0.2)
403.7(a",0.4)	420.3(a',0.5)	395.1(a",1.0)	403.2(a',5.4)	390.7 (a", 0.5)
408.9(a',0.9)	423.1(a",2.5)	411.3(a",0.3)	405.4(a",0.7)	407.2 (a', 16.7)
423.3(a",1.0)	432.8(a",0.0)	416.5(a",0.1)	417.7(a",0.1)	409.5 (a", 0.0)
439.6(a",0.0)	438.4(a',1.3)	424.5(a',0.0)	437.7(a",1.0)	412.5 (a", 0.0)
447.9(a',3.2)	457.4(a",0.3)	437.2(a",0.0)	440.7(a',0.3)	427.6 (a", 0.1)
448.4(a",1.6)	472.5(a',0.2)	442.8(a",1.3)	442.0(a",0.1)	444.1 (a', 6.7)
452.6(a',11.6)	472.7(a",0.4)	445.4(a',1.4)	463.6(a',0.3)	454.1 (a', 2.0)
463.0(a",0.5)	480.0(a",2.1)	469.1(a",0.5)	467.9(a",1.8)	458.2 (a", 0.8)
482.2(a',4.4)	483.6(a',1.0)	477.4(a',16.9)	486.6(a',6.7)	463.4 (a", 0.3)
488.3(a",2.8)	504.2(a",13.5)	480.7(a',0.2)	495.2(a',16.5)	474.7 (a', 46.9)
489.4(a',7.1)	504.2(a',8.9)	486.5(a",0.6)	496.7(a',6.6)	485.5 (a", 0.7)
513.1(a',6.8)	515.4(a',36.9)	502.0(a',33.9)	507.4(a",3.4)	495.6 (a', 5.9)

Table S2. Theoretical harmonic vibrational frequencies (in cm⁻¹) for optimized structures of $Fe_3(BF)_3(CO)_8$ using the BP86/DZP method (infrared intensities in parentheses are in km/mol).

Supplementary Material (ESI) for New Journal of Chemistry
This journal is © The Royal Society of Chemistry and
The Centre National de la Recherche Scientifique, 2010

522.1(a',1.2)	524.7(a",28.0)	508.1(a',1.3)	512.5(a",0.6)	509.9 (a', 0.8)
526.5(a",0.0)	535.0(a',1.4)	519.2(a',7.4)	516.0(a',16.0)	514.8 (a', 2.8)
535.6(a',0.5)	537.0(a",49.0)	526.6(a",0.0)	523.4(a',4.7)	520.6 (a", 5.7)
554.7(a",9.8)	548.8(a',23.1)	527.7(a',4.5)	537.2(a',4.7)	526.3 (a', 18.5)
555.5(a',3.9)	562.8(a",4.7)	540.0(a",15.8)	548.5(a',62.4)	535.5 (a", 17.5)
562.4(a',46.3)	571.9(a',14.9)	555.0(a',24.2)	561.4(a",11.9)	554.8 (a', 102.2)
582.1(a",26.8)	587.7(a",6.5)	563.4(a",40.1)	566.8(a',68.4)	559.8 (a", 29.5)
586.1(a',144.6)	600.2(a',111.1)	572.6(a',121.8)	568.5(a",40.8)	572.6 (a', 66.5)
590.9(a',53.8)	603.4(a",122.4)	591.2(a',55.5)	590.5(a",58.2)	586.1 (a', 18.3)
592.3(a",74.5)	611.3(a',73.4)	599.4(a",63.7)	597.5(a',110.7)	598.9 (a", 66.9)
613.5(a',41.8)	628.9(a',141.7)	606.5(a',53.3)	599.0(a',190.4)	600.3 (a', 132.4)
621.9(a',387.6)	630.3(a',83.1)	612.0(a',96.7)	609.9(a',121.4)	622.5 (a', 59.6)
639.0(a',185.6)	640.5(a",248.8)	632.7(a',427.5)	630.0(a',175.6)	635.8 (a', 490.9)
1262.4(a",465.4)	1296.3(a',222.3)	1293.7(a",539.5)	1296.2(a",500.9)	1295.3 (a", 520.4)
1287.2(a',17.3)	1314.2(a",101.6)	1304.9(a',15.1)	1317.9(a',10.6)	1314.4 (a', 7.5)
1367.4(a',426.0)	1350.4(a',741.3)	1357.0(a',456.8)	1359.0(a',459.1)	1367.7 (a', 479.5)
1957.5(a',232.0)	1950.0(a",0.3)	1949.8(a',335.1)	1968.3(a',72.3)	1891.9 (a', 480.2)
1963.2(a",513.4)	1971.0(a",99.7)	1973.2(a",528.6)	1979.0(a",63.7)	1983.8 (a", 287.2)
1978.8(a',1.4)	1980.0(a',944.8)	1988.0(a',495.8)	1984.2(a",998.5)	1989.8 (a", 578.0)
1991.5(a",296.6)	1981.2(a",416.5)	1992.4(a",220.1)	1988.3(a',74.5)	1990.7 (a', 45.9)
1992.5(a',2023.6)	1987.5(a',17.3)	1998.7(a",1290.4)	1999.6(a',2296.8)	2001.3 (a", 1203.4)
1998.8(a",1299.8)	2009.4(a",1810.4)	2002.3(a',1813.0)	2002.6(a",968.3)	2003.2 (a', 2083.9)
2011.5(a',1415.5)	2009.9(a',2157.8)	2011.9(a',1399.5)	2012.9(a',1533.6)	2013.7 (a', 1498.8)
2049.5(a',201.1)	2047.4(a',88.7)	2053.5(a',213.0)	2054.1(a',174.0)	2052.3 (a', 77.8)

8-4T(C ₂)	8-5T(C_{2V})	8-6T(C _s)	8-7T(D _{3h})	8-8T(C ₁)
103.0 <i>i</i> (b,7.2)	185.3 <i>i</i> (a ₂ , 0.0)	10.4(a",0.1)	30.9(?a,0.0)	22.0(a,0.1)
18.6(b,0.0)	15.5 <i>i</i> (b ₂ , 0.0)	29.4(a',0.0)	30.9(?a,0.0)	28.9(a,0.0)
24.1(a,0.4)	36.4 (a ₂ , 0.0)	43.0(a",0.0)	50.0(?a,0.0)	33.7(a,0.0)
37.3(a,0.1)	46.6 (b ₂ , 0.0)	48.7(a',0.1)	50.0(?a,0.0)	41.4(a,0.0)
41.0(b,0.1)	55.9 (b ₂ , 0.0)	55.3(a",0.0)	51.0(?a,0.0)	56.1(a,0.1)
64.2(a,0.3)	58.6 (a ₂ , 0.0)	61.6(a",0.0)	51.7(?a,0.0)	64.6(a,0.0)
68.9(b,0.0)	63.7 (a ₁ , 0.0)	61.9(a',0.2)	69.2(e',0.2)	71.3(a,0.1)
71.7(b,0.8)	66.6 (b ₁ , 0.0)	73.3(a',0.3)	69.2(e',0.2)	78.9(a,0.1)
76.7(a,0.1)	77.2 (b ₂ , 1.3)	78.0(a',0.2)	72.2(a ₂ ",0.4)	85.2(a,0.1)
78.6(a,0.0)	84.0 (a ₁ , 0.1)	90.2(a',0.1)	90.9(a ₁ ',0.0)	90.1(a,0.2)
81.4(b,0.2)	85.0 (b ₁ , 0.3)	90.7(a",0.5)	93.5(?b,0.0)	90.2(a,0.3)
89.9(b,0.0)	90.6 (a ₁ , 0.0)	91.4(a",0.0)	94.6(?b,0.4)	92.4(a,0.3)
91.2(a,0.2)	93.3 (b ₂ , 0.0)	95.9(a',0.1)	94.6(?b,0.4)	98.5(a,0.2)
97.6(b,0.2)	94.2 (b ₁ , 0.1)	104.4(a",0.0)	113.5(e",0.0)	102.3(a,0.1)
106.8(a,0.1)	105.7 (a ₂ , 0.0)	111.6(a',0.0)	113.5(e",0.0)	112.1(a,0.2)
108.5(a,0.0)	107.6 (a ₁ , 0.2)	135.4(a",0.3)	131.9(e",0.0)	124.7(a,0.0)
109.0(b,0.3)	149.8 (b ₁ , 0.4)	137.5(a',0.1)	131.9(e",0.0)	125.2(a,0.3)
129.7(b,0.2)	160.2 (b ₂ , 0.1)	141.8(a",0.1)	135.2(e',0.1)	133.0(a,0.0)
140.9(a,0.9)	169.9 (a ₁ , 0.1)	169.1(a",1.4)	135.2(e',0.1)	149.2(a,0.6)
182.1(b,0.1)	179.7 (b ₁ , 1.4)	171.8(a',1.4)	181.1(e',1.2)	177.7(a,0.5)
195.8(a,0.7)	189.3 (a ₂ , 0.0)	179.3(a',0.1)	181.1(e',1.2)	186.7(a,0.5)
196.8(b,0.3)	191.6 (b ₁ , 3.1)	193.1(a",0.1)	221.9(e',5.4)	201.4(a,0.1)
202.4(a,0.0)	214.2 (a ₁ , 0.0)	226.8(a',2.1)	221.9(e',5.4)	210.9(a,0.1)
225.8(b,0.0)	225.4 (a ₂ , 0.0)	228.6(a",3.1)	233.3(a ₂ ',0.0)	222.7(a,1.3)
228.2(a,0.9)	246.7 (b ₁ , 0.0)	258.6(a',1.2)	262.6(a ₁ ',0.0)	225.9(a,0.0)
290.1(b,3.3)	255.6 (a ₁ , 0.3)	286.1(a',0.3)	297.4(e",0.0)	333.2(a,2.3)
314.1(b,4.1)	301.6 (b ₂ , 0.3)	300.2(a",0.1)	297.5(e",0.0)	337.4(a,1.8)
315.3(a,1.3)	316.7 (b ₁ , 0.6)	311.2(a",2.2)	313.7(a ₂ ',0.0)	371.2(a,3.5)
334.1(a,1.0)	318.8 (a ₁ , 0.4)	345.3(a',1.3)	346.6(e',0.0)	372.9(a,2.7)
366.5(a,0.1)	323.9 (a ₂ , 0.0)	353.9(a",0.2)	346.6(e',0.0)	382.1(a,0.6)
370.4(b,0.0)	346.6 (b ₁ , 2.5)	376.4(a',1.1)	369.2(a ₁ ',0.0)	388.4(a,1.1)
386.4(b,0.8)	369.2 (b ₂ , 0.8)	378.8(a',0.8)	378.4(a ₂ ",0.2)	393.7(a,0.2)
387.2(a,0.1)	372.4 (a ₁ , 0.9)	381.1(a",0.4)	383.6(a ₁ ',0.0)	397.0(a,1.7)
399.4(b,0.1)	377.9 (a ₁ , 8.3)	381.7(a',0.9)	392.2(e",0.0)	405.8(a,1.3)
407.5(a,0.4)	384.5 (a ₁ , 0.1)	392.5(a',2.6)	392.2(e",0.0)	415.7(a,1.4)
408.2(b,1.2)	385.4 (b ₂ , 0.0)	399.6(a',1.2)	395.3(e',0.3)	418.6(a,0.5)
419.8(a,0.0)	393.8 (b ₂ , 2.1)	403.6(a",0.2)	395.3(e',0.3)	429.0(a,16.5)
423.0(b,0.4)	408.1 (b ₁ , 6.7)	423.7(a',0.9)	431.5(?C,7.1)	447.5(a,3.9)
431.9(a,16.2)	417.6 (a ₂ , 0.0)	425.1(a",11.8)	443.4(?C,0.5)	453.7(a,0.1)
451.6(b,2.0)	422.8 (b ₂ , 10.0)	436.4(a",14.7)	446.7(?C,0.0)	457.5(a,11.6)
456.8(a,0.8)	433.8 (a ₁ , 7.2)	439.4(a',2.5)	446.7(?C,0.0)	465.5(a,8.4)
457.8(b,2.2)	438.3 (b ₂ , 4.6)	447.0(a",0.2)	448.9(?C,0.0)	474.4(a,1.8)
469.8(b,0.2)	443.2 (a ₂ , 0.0)	449.5(a',1.1)	454.3(?C,0.0)	486.5(a,8.4)
474.8(a,18.2)	451.5 (a ₂ , 0.0)	455.3(a",8.9)	454.3(?C,0.0)	498.2(a,19.3)
488.3(a,26.8)	476.1 (b ₂ , 5.0)	467.4(a',0.5)	487.5(e',29.7)	513.9(a,8.6)
491.2(b,59.7)	484.3 (a ₁ , 37.4)	489.1(a',27.1)	487.5(e',29.7)	515.3(a,0.6)

Table S3. Theoretical harmonic vibrational frequencies (in cm⁻¹) for optimized structures of $Fe_3(BF)_3(CO)_8$ using the BP86/DZP method (infrared intensities in parentheses are in km/mol).

Supplementary Material (ESI) for New Journal of Chemistry
This journal is © The Royal Society of Chemistry and
The Centre National de la Recherche Scientifique, 2010

510.3(b,1.8)	508.9 (b ₁ , 1.4)	512.6(a",63.7)	528.3(e',117.1)	518.4(a,3.6)
511.8(a,0.1)	509.1 (b ₂ , 19.9)	522.7(a',43.1)	528.4(e',117.1)	526.5(a,3.3)
519.0(b,6.6)	528.1 (a ₁ , 1.0)	534.3(a',73.7)	532.0(a1',0.0)	532.1(a,6.2)
525.7(a,6.2)	534.6 (b ₁ , 0.4)	543.1(a",1.2)	557.9(?D,0.0)	539.1(a,17.5)
546.6(b,51.5)	554.3 (a ₂ , 0.0)	552.7(a',38.4)	557.9(?D,0.0)	564.4(a,95.1)
560.4(a,33.4)	559.4 (b ₁ , 145.5)	564.0(a',59.9)	559.9(?D,118.8)	572.2(a,25.3)
579.9(a,0.7)	571.2 (a ₁ , 138.8)	568.5(a",49.3)	569.2(?b,76.2)	581.6(a,44.4)
589.4(b,49.1)	578.8 (b ₂ , 82.6)	570.3(a',57.5)	569.2(?b,76.2)	589.6(a,40.1)
594.1(b,110.1)	588.4 (a ₁ , 0.8)	581.8(a",13.4)	576.1(?b,0.0)	591.5(a,75.0)
599.8(a,150.3)	591.0 (b ₁ , 18.9)	606.3(a",175.1)	613.4(e',194.7)	601.0(a,50.1)
627.1(a,60.2)	623.7 (a ₁ , 90.0)	611.6(a',89.1)	613.4(e',194.6)	620.2(a,124.6)
633.2(b,482.9)	631.1 (b ₁ , 396.7)	625.3(a',125.3)	621.8(a ₁ ',0.0)	635.5(a,187.9)
1302.6(b,629.1)	1325.2 (b ₂ , 598.0)	1331.4(a',250.7)	1362.1(e',830.1)	1157.4(a,219.1)
1311.8(a,7.1)	1333.9 (a ₁ , 48.5)	1354.6(a",789.7)	1362.1(e',830.1)	1321.0(a,293.9)
1362.5(a,486.5)	1354.2 (a ₁ , 508.8)	1374.2(a',366.5)	1393.2(a ₁ ',0.0)	1342.3(a,601.9)
1951.7(a,6.4)	1892.2 (b ₁ , 812.2)	1803.3(a',245.4)	1776.4(a ₂ ",473.3)	1969.2(a,112.1)
1957.5(b,447.1)	1907.0 (a ₁ , 218.9)	1906.6(a',498.7)	1796.9(a ₁ ',0.0)	1972.3(a,22.5)
1975.9(b,501.6)	1980.6 (b ₂ , 717.8)	1986.9(a",40.7)	1988.8(e",0.0)	1982.8(a,309.2)
1994.2(a,246.9)	1992.9 (a ₂ , 0.0)	1989.1(a',47.8)	1988.8(e",0.0)	1985.4(a,550.7)
1999.6(a,2051.7)	1997.7 (b ₂ , 1301.0)	1994.6(a',1796.8)	1994.5(a ₂ ",1796.2)	1996.4(a,722.0)
2000.3(b,1477.2)	2010.3 (a ₁ , 1880.5)	2004.7(a",1794.1)	2008.4(e',1593.6)	2008.0(a,2026.5)
2014.9(b,1518.2)	2012.0 (b ₁ , 1625.3)	2008.1(a',1661.9)	2008.4(e',1593.4)	2014.3(a,1796.3)
2050.7(a,20.9)	2048.0 (a ₁ , 1.7)	2043.5(a',6.8)	2040.2(a1',0.0)	2056.3(a,302.0)

Table S4. Theoretical Cartesian coordinates (in Å) for the structure **8-1S** (C_s) using the B3LYP/DZP method

Center	Atomic	Atomic	Coord	dinates (Angstr	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.635587	-0.163713	1.272294
2	8	0	3.427778	-0.268163	2.106846
3	26	0	1.407626	0.031779	0.000000
4	5	0	-0.413049	0.090969	1.466737
5	9	0	-0.435759	0.099247	2.777282
6	5	0	-0.413049	0.090969	-1.466737
7	26	0	-0.378519	1.449128	0.000000
8	6	0	-1.214508	2.458344	-1.235908
9	8	0	-1.735931	3.137874	-2.012077
10	9	0	-0.435759	0.099247	-2.777282
11	26	0	-0.940359	-1.196044	0.000000
12	6	0	-2.656393	-0.635543	0.000000
13	8	0	-3.765787	-0.318317	0.000000
14	6	0	2.635587	-0.163713	-1.272294
15	8	0	3.427778	-0.268163	-2.106846
16	5	0	1.061078	-1.820251	0.000000
17	9	0	1.622268	-2.995010	0.000000
18	6	0	-1.113860	-2.346650	1.371575
19	8	0	-1.248857	-3.107945	2.229489
20	6	0	-1.113860	-2.346650	-1.371575
21	8	0	-1.248857	-3.107945	-2.229489
22	6	0	1.357810	2.113517	0.000000
23	8	0	2.113026	3.008550	0.000000
24	6	0	-1.214508	2.458344	1.235908
25	8	0	-1.735931	3.137874	2.012077

Table S5. Theoretical Cartesian coordinates (in Å) for the structure 8-2S ($C_{2\nu}$) using the B3LYP/DZP method.

Center Atomic Atomic		Coord	linates (Angstr	roms)	
Number	Number	Туре	Х	Ŷ	Z
1	26	0	1.266694	0.000000	-0.644499
2	26	0	-1.266694	0.000000	-0.644499
3	26	0	0.000000	0.000000	1.473085
4	6	0	-2.354830	1.293281	-1.244051
5	6	0	0.000000	1.253145	2.744619
6	6	0	2.354830	1.293281	-1.244051
7	6	0	-2.354830	-1.293281	-1.244051
8	6	0	2.354830	-1.293281	-1.244051
9	6	0	0.000000	-1.253145	2.744619
10	8	0	-3.085066	2.087563	-1.657522
11	8	0	0.000000	2.081163	3.546824
12	8	0	3.085066	2.087563	-1.657522
13	9	0	0.000000	0.000000	-3.459266
14	8	0	-3.085066	-2.087563	-1.657522
15	8	0	3.085066	-2.087563	-1.657522
16	8	0	0.000000	-2.081163	3.546824
17	5	0	0.000000	-1.519296	-0.456340
18	5	0	0.000000	1.519296	-0.456340
19	9	0	0.000000	2.829609	-0.501897
20	9	0	0.000000	-2.829609	-0.501897
21	6	0	-1.955508	0.000000	1.223795
22	6	0	1.955508	0.000000	1.223795
23	8	0	-2.958312	0.000000	1.828332
24	8	0	2.958312	0.000000	1.828332
25	5	0	0.000000	0.000000	-2.156168

Table S6. Theoretical Cartesian coordinates (in Å) for the structure **8-3S** (C_s) using the B3LYP/DZP method

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	5	0	0.505262	0.300665	1.484652
2	9	0	0.512280	0.295951	2.798583
3	26	0	1.148023	-0.837324	0.000000
4	6	0	2.323215	-1.332261	-1.250488
5	8	0	3.088278	-1.706757	-2.034981
6	26	0	0.149823	1.574156	0.000000
7	6	0	-0.479173	2.586244	-1.363193
8	8	0	-0.855230	3.272702	-2.211178
9	26	0	-1.237868	-0.761078	0.000000
10	6	0	-2.143267	-1.605011	-1.283549
11	8	0	-2.691025	-2.161543	-2.132708
12	5	0	0.083186	-2.346208	0.000000
13	9	0	-0.022372	-3.646805	0.000000
14	6	0	2.323215	-1.332261	1.250488
15	8	0	3.088278	-1.706757	2.034981
16	5	0	0.505262	0.300665	-1.484652
17	9	0	0.512280	0.295951	-2.798583
18	6	0	1.804422	2.211488	0.000000
19	8	0	2.879681	2.634555	0.000000
20	6	0	-0.479173	2.586244	1.363193
21	8	0	-0.855230	3.272702	2.211178
22	6	0	-2.263376	0.750368	0.000000
23	8	0	-3.176632	1.467907	0.000000
24	6	0	-2.143267	-1.605011	1.283549
25	8	0	-2.691025	-2.161543	2.132708

Table S7. Theoretical Cartesian coordinates (in Å) for the structure **8-4S** (C_1) using the B3LYP/DZP method.

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Ŷ	Z
1	6	0	1.216755	-2.686242	0.595883
2	8	0	1.328308	-3.679268	1.175148
3	26	0	1.036538	-1.146267	-0.282131
4	6	0	0.030583	-1.386058	-1.760310
5	8	0	-0.798744	-1.450989	-2.590531
6	26	0	0.308497	1.441053	0.033335
7	6	0	-0.786901	2.142980	-1.220243
8	8	0	-1.449431	2.655125	-2.019156
9	26	0	-1.397517	-0.650087	-0.318064
10	6	0	-3.040658	-0.038980	-0.749125
11	8	0	-4.100914	0.329212	-1.012250
12	5	0	1.752178	0.277437	0.832645
13	9	0	2.821578	0.518370	1.557305
14	5	0	0.003399	-0.329197	1.215368
15	9	0	-0.117058	-0.551745	2.543705
16	6	0	2.720535	-1.188879	-0.916723
17	8	0	3.804145	-1.228647	-1.313716
18	5	0	-1.450450	0.855379	0.849269
19	9	0	-2.331399	1.404372	1.654730
20	6	0	1.764543	1.921541	-0.916720
21	8	0	2.685017	2.279925	-1.516635
22	6	0	0.388029	2.725530	1.263087
23	8	0	0.443218	3.553972	2.065236
24	6	0	-2.079693	-2.049034	0.536182
25	8	0	-2.511394	-2.929881	1.144166

Table S8. Theoretical Cartesian coordinates (in Å) for the structure **8-5S** (C_s) using the B3LYP/DZP method

Center	Atomic	Atomic	Coord	linates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.240815	-1.548894	2.150622
2	8	0	2.075897	-2.040298	2.780116
3	26	0	-0.050287	-0.815208	1.173524
4	6	0	-0.332628	-2.386218	0.000000
5	8	0	-0.516742	-3.540774	0.000000
6	26	0	-0.094661	1.462037	0.000000
7	6	0	-1.634923	0.424334	0.000000
8	8	0	-2.794922	0.225727	0.000000
9	5	0	0.161676	0.997873	1.936397
10	9	0	0.416579	1.568471	3.075002
11	6	0	-1.268046	-1.174742	2.451448
12	8	0	-2.026640	-1.428645	3.282422
13	5	0	1.416873	0.182376	0.000000
14	9	0	2.729953	0.182429	0.000000
15	26	0	-0.050287	-0.815208	-1.173524
16	6	0	1.240815	-1.548894	-2.150622
17	8	0	2.075897	-2.040298	-2.780116
18	6	0	-1.268046	-1.174742	-2.451448
19	8	0	-2.026640	-1.428645	-3.282422
20	5	0	0.161676	0.997873	-1.936397
21	9	0	0.416579	1.568471	-3.075002
22	6	0	1.288266	2.591374	0.000000
23	8	0	2.132107	3.383217	0.000000
24	6	0	-1.221096	2.863498	0.000000
25	8	0	-1.914453	3.787043	0.000000

Table S9. Theoretical Cartesian coordinates (in Å) for the structure **8-6S** (C_s) using the B3LYP/DZP method

Center	Atomic	Atomic	Coord	dinates (Angstroms)	
Number	Number	Туре	Х	Ŷ	Z
1	6	0	1.752487	-1.880530	1.461234
2	8	0	2.099748	-2.514854	2.363968
3	26	0	1.227418	-0.958307	0.000000
4	5	0	0.201239	0.145119	1.469853
5	9	0	0.187384	0.126255	2.793129
6	5	0	0.201239	0.145119	-1.469853
7	26	0	0.463338	1.505352	0.000000
8	6	0	0.144659	2.620919	-1.388383
9	8	0	-0.045085	3.369147	-2.246716
10	9	0	0.187384	0.126255	-2.793129
11	26	0	-1.251321	-0.402978	0.000000
12	6	0	-2.179845	1.143457	0.000000
13	8	0	-2.932566	2.024804	0.000000
14	6	0	1.752487	-1.880530	-1.461234
15	8	0	2.099748	-2.514854	-2.363968
16	5	0	-0.336473	-2.140278	0.000000
17	9	0	-0.575601	-3.416253	0.000000
18	6	0	-2.128017	-1.043238	1.425753
19	8	0	-2.740797	-1.470475	2.309435
20	6	0	-2.128017	-1.043238	-1.425753
21	8	0	-2.740797	-1.470475	-2.309435
22	6	0	2.220109	1.710744	0.000000
23	8	0	3.377464	1.768452	0.000000
24	6	0	0.144659	2.620919	1.388383
25	8	0	-0.045085	3.369147	2.246716

Table S10. Theoretical Cartesian coordinates (in Å) for the structure 8-7S (C_s) using the B3LYP/DZP method.

Center	Atomic	Atomic	Coord	dinates (Angstr	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	-0.510769	-0.459156	3.018218
2	8	0	-0.415930	-0.834383	4.109095
3	26	0	-0.688234	0.116185	1.348039
4	6	0	-0.197526	1.856486	1.489570
5	8	0	0.148799	2.956504	1.604047
6	26	0	-0.688234	0.116185	-1.348039
7	6	0	-0.197526	1.856486	-1.489570
8	8	0	0.148799	2.956504	-1.604047
9	26	0	1.478104	0.308613	0.000000
10	6	0	2.750286	0.273234	-1.257329
11	8	0	3.579712	0.210232	-2.059225
12	5	0	-1.240152	-1.236108	0.000000
13	9	0	-1.910324	-2.367865	0.000000
14	5	0	0.781901	-1.150747	1.126107
15	9	0	1.262891	-2.278950	1.586298
16	6	0	-2.466039	0.266251	1.570420
17	8	0	-3.607040	0.337182	1.738496
18	5	0	0.781901	-1.150747	-1.126107
19	9	0	1.262891	-2.278950	-1.586298
20	6	0	-2.466039	0.266251	-1.570420
21	8	0	-3.607040	0.337182	-1.738496
22	6	0	-0.510769	-0.459156	-3.018218
23	8	0	-0.415930	-0.834383	-4.109095
24	6	0	2.750286	0.273234	1.257329
25	8	0	3.579712	0.210232	2.059225

Table S11. Theoretical Cartesian coordinates (in Å) for the structure **8-1T** (C_s) using the B3LYP/DZP method

Center	Atomic	Atomic	Coord	linates (Angstr	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.004148	-1.716642	1.419806
2	8	0	2.501256	-2.278660	2.296959
3	26	0	1.236090	-0.836175	0.000000
4	5	0	-0.075068	0.270512	1.465575
5	9	0	-0.062561	0.207541	2.779799
6	5	0	-0.075068	0.270512	-1.465575
7	26	0	0.473874	1.491473	0.000000
8	6	0	0.137294	2.701264	-1.305779
9	8	0	-0.045676	3.504579	-2.115950
10	9	0	-0.062561	0.207541	-2.779799
11	26	0	-1.344973	-0.458429	0.000000
12	6	0	-2.446664	0.966864	0.000000
13	8	0	-3.203815	1.838856	0.000000
14	6	0	2.004148	-1.716642	-1.419806
15	8	0	2.501256	-2.278660	-2.296959
16	5	0	-0.142440	-2.166237	0.000000
17	9	0	-0.372729	-3.443509	0.000000
18	6	0	-2.151559	-1.248467	1.398918
19	8	0	-2.701337	-1.765126	2.274205
20	6	0	-2.151559	-1.248467	-1.398918
21	8	0	-2.701337	-1.765126	-2.274205
22	6	0	2.253785	1.484054	0.000000
23	8	0	3.411888	1.580050	0.000000
24	6	0	0.137294	2.701264	1.305779
25	8	0	-0.045676	3.504579	2.115950

Table S12. Theoretical Cartesian coordinates (in Å) for the structure **8-2T** (C_s) using the B3LYP/DZP method

Center	Atomic	Atomic	Coord	dinates (Angstroms)	
Number	Number	Туре	Х	Ŷ	Z
1	5	0	0.583088	0.317716	1.503485
2	9	0	0.514813	0.279780	2.815517
3	26	0	1.224234	-0.863982	0.000000
4	6	0	2.006394	-1.705439	-1.397174
5	8	0	2.502131	-2.276016	-2.272144
6	26	0	0.396326	1.566765	0.000000
7	6	0	-0.270210	2.568518	-1.342910
8	8	0	-0.686428	3.248535	-2.178855
9	26	0	-1.279266	-0.582259	0.000000
10	6	0	-2.120716	-1.377741	-1.411037
11	8	0	-2.663164	-1.896999	-2.288630
12	5	0	-0.134290	-2.245261	0.000000
13	9	0	-0.273592	-3.536671	0.000000
14	6	0	2.006394	-1.705439	1.397174
15	8	0	2.502131	-2.276016	2.272144
16	5	0	0.583088	0.317716	-1.503485
17	9	0	0.514813	0.279780	-2.815517
18	6	0	2.051788	2.207433	0.000000
19	8	0	3.132945	2.617962	0.000000
20	6	0	-0.270210	2.568518	1.342910
21	8	0	-0.686428	3.248535	2.178855
22	6	0	-2.391021	0.854502	0.000000
23	8	0	-3.211468	1.670230	0.000000
24	6	0	-2.120716	-1.377741	1.411037
25	8	0	-2.663164	-1.896999	2.288630

Table S13. Theoretical Cartesian coordinates (in Å) for the structure **8-3T** (C_s) using the B3LYP/DZP method

Center	Atomic	Atomic	Coord	linates (Angstroms)	
Number	Number	Туре	Х	Y	Z
1	26	0	-0.764289	-1.323187	0.000000
2	26	0	1.327524	0.281334	0.000000
3	26	0	-0.817730	1.311429	0.000000
4	6	0	2.500339	0.186528	1.366420
5	6	0	-1.408700	2.382836	1.373281
6	6	0	-0.749122	-2.477266	1.376195
7	6	0	2.500339	0.186528	-1.366420
8	6	0	-0.749122	-2.477266	-1.376195
9	6	0	-1.408700	2.382836	-1.373281
10	8	0	3.283930	0.136132	2.214917
11	8	0	-1.754716	3.080948	2.225018
12	8	0	-0.761272	-3.253996	2.231650
13	9	0	2.035752	-2.700708	0.000000
14	8	0	3.283930	0.136132	-2.214917
15	8	0	-0.761272	-3.253996	-2.231650
16	8	0	-1.754716	3.080948	-2.225018
17	5	0	-0.401229	0.011806	-1.493750
18	5	0	-0.401229	0.011806	1.493750
19	9	0	-0.358207	-0.009685	2.805864
20	9	0	-0.358207	-0.009685	-2.805864
21	6	0	1.233169	2.171826	0.000000
22	6	0	-2.547188	-1.065410	0.000000
23	8	0	1.662854	3.252475	0.000000
24	8	0	-3.697771	-0.961705	0.000000
25	5	0	1.304259	-1.625107	0.000000

Table S14. Theoretical Cartesian coordinates (in Å) for the structure **8-4T** (C_2) using the B3LYP/DZP method

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)		
Number	Number	Туре	X	Y	Z	
1	26	0	-1.295134	-0.046072	-0.598877	
2	26	0	1.295134	0.046072	-0.598877	
3	26	0	0.000000	0.000000	1.682430	
4	6	0	2.066851	-1.356950	-1.413556	
5	6	0	0.498671	-1.448213	2.758071	
6	6	0	-1.998209	-1.444485	-1.462895	
7	6	0	1.998209	1.444485	-1.462895	
8	6	0	-2.066851	1.356950	-1.413556	
9	6	0	-0.498671	1.448213	2.758071	
10	8	0	2.606178	-2.224134	-1.956432	
11	8	0	0.801615	-2.335370	3.427128	
12	8	0	-2.486953	-2.325321	-2.031835	
13	9	0	0.000000	0.000000	-3.406796	
14	8	0	2.486953	2.325321	-2.031835	
15	8	0	-2.606178	2.224134	-1.956432	
16	8	0	-0.801615	2.335370	3.427128	
17	5	0	0.000000	1.450744	0.189718	
18	5	0	0.000000	-1.450744	0.189718	
19	9	0	0.045610	-2.772148	0.195767	
20	9	0	-0.045610	2.772148	0.195767	
21	6	0	2.483473	0.078862	0.753393	
22	6	0	-2.483473	-0.078862	0.753393	
23	8	0	3.340728	0.111808	1.533479	
24	8	0	-3.340728	-0.111808	1.533479	
25	5	0	0.000000	0.000000	-2.107800	

Table S15. Theoretical Cartesian coordinates (in Å) for the structure **8-5T** (C_{2v}) using the B3LYP/DZP method

Center	Atomic	Atomic	Coord	linates (Angstr	roms)
Number	Number	Туре	Х	Y	Z
1	26	0	1.285318	0.000000	-0.646432
2	26	0	-1.285318	0.000000	-0.646432
3	26	0	0.000000	0.000000	1.456533
4	6	0	-2.294565	1.307693	-1.346191
5	6	0	0.000000	1.312375	2.817559
6	6	0	2.294565	1.307693	-1.346191
7	6	0	-2.294565	-1.307693	-1.346191
8	6	0	2.294565	-1.307693	-1.346191
9	6	0	0.000000	-1.312375	2.817559
10	8	0	-2.975167	2.116539	-1.812790
11	8	0	0.000000	2.041736	3.707886
12	8	0	2.975167	2.116539	-1.812790
13	9	0	0.000000	0.000000	-3.459719
14	8	0	-2.975167	-2.116539	-1.812790
15	8	0	2.975167	-2.116539	-1.812790
16	8	0	0.000000	-2.041736	3.707886
17	5	0	0.000000	-1.507403	-0.245746
18	5	0	0.000000	1.507403	-0.245746
19	9	0	0.000000	2.816023	-0.228497
20	9	0	0.000000	-2.816023	-0.228497
21	6	0	-2.086825	0.000000	1.092419
22	6	0	2.086825	0.000000	1.092419
23	8	0	-3.040168	0.000000	1.769852
24	8	0	3.040168	0.000000	1.769852
25	5	0	0.000000	0.000000	-2.158628

Table S16 Theoretical Cartesian coordinates (in Å) for the structure **8-6T** (C_s) using the B3LYP/DZP method

Center	Atomic	Atomic	Coord	dinates (Angsti	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	1.497937	1.326701	2.132497
2	8	0	1.977955	2.184587	2.743667
3	26	0	0.766146	-0.052250	1.257428
4	6	0	2.297617	-0.476426	0.000000
5	8	0	3.433502	-0.747307	0.000000
6	26	0	-1.420901	-0.136703	0.000000
7	6	0	-0.531690	-1.745727	0.000000
8	8	0	-0.246058	-2.874187	0.000000
9	5	0	-1.021594	0.103705	1.991790
10	9	0	-1.701187	0.299728	3.081932
11	6	0	1.265591	-1.244134	2.550140
12	8	0	1.578673	-1.931733	3.422509
13	5	0	0.164650	1.417404	0.000000
14	9	0	0.034042	2.720859	0.000000
15	26	0	0.766146	-0.052250	-1.257428
16	6	0	1.497937	1.326701	-2.132497
17	8	0	1.977955	2.184587	-2.743667
18	6	0	1.265591	-1.244134	-2.550140
19	8	0	1.578673	-1.931733	-3.422509
20	5	0	-1.021594	0.103705	-1.991790
21	9	0	-1.701187	0.299728	-3.081932
22	6	0	-2.471657	1.331897	0.000000
23	8	0	-3.209481	2.219994	0.000000
24	6	0	-2.927614	-1.096467	0.000000
25	8	0	-3.910062	-1.704972	0.000000

Table S17. Theoretical Cartesian coordinates (in Å) for the structure 8-7T (D_{3h}) using the B3LYP/DZP method.

Center	Atomic	Atomic	Coord	dinates (Angstr	roms)
Number	Number	Туре	Х	Ŷ	Z
1	6	0	0.000000	2.699081	1.275756
2	8	0	0.000000	3.547043	2.060383
3	26	0	0.000000	1.433135	0.000000
4	26	0	-1.241131	-0.716567	0.000000
5	6	0	0.000000	0.000000	-1.503092
6	8	0	0.000000	0.000000	-2.683622
7	5	0	-1.992037	1.150103	0.000000
8	9	0	-3.113237	1.797428	0.000000
9	6	0	0.000000	2.699081	-1.275756
10	8	0	0.000000	3.547043	-2.060383
11	26	0	1.241131	-0.716567	0.000000
12	6	0	2.337473	-1.349541	1.275756
13	8	0	3.071829	-1.773521	2.060383
14	6	0	2.337473	-1.349541	-1.275756
15	8	0	3.071829	-1.773521	-2.060383
16	5	0	0.000000	-2.300206	0.000000
17	9	0	0.000000	-3.594857	0.000000
18	6	0	-2.337473	-1.349541	1.275756
19	8	0	-3.071829	-1.773521	2.060383
20	6	0	-2.337473	-1.349541	-1.275756
21	8	0	-3.071829	-1.773521	-2.060383
22	6	0	0.000000	0.000000	1.503092
23	8	0	0.000000	0.000000	2.683622
24	5	0	1.992037	1.150103	0.000000
25	9	0	3.113237	1.797428	0.000000

Table S18. Theoretical Cartesian coordinates (in Å) for the structure **8-8T** (C_1) using the B3LYP/DZP method.

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Туре	Х	Y	Z
1	6	0	2.970707	-1.030409	0.080334
2	8	0	4.114022	-1.183841	-0.015229
3	26	0	1.216890	-0.846171	0.250146
4	6	0	1.328294	-0.472221	2.028696
5	8	0	1.497250	-0.206111	3.140772
6	26	0	-1.430773	-0.485026	0.014957
7	6	0	-1.440578	-0.829429	1.810706
8	8	0	-1.573552	-1.047034	2.937534
9	26	0	0.228469	1.551771	-0.086788
10	6	0	-0.950179	2.566180	0.891537
11	8	0	-1.697910	3.217169	1.483308
12	5	0	0.051483	-0.386208	-1.390259
13	9	0	0.063925	-0.698339	-2.710791
14	5	0	1.695674	0.466095	-1.071654
15	9	0	2.615778	0.801742	-1.950197
16	6	0	0.991888	-2.635252	0.105733
17	8	0	0.880214	-3.777000	-0.021058
18	5	0	-1.360251	0.924430	-1.244447
19	9	0	-1.967945	1.604584	-2.181508
20	6	0	-1.875150	-2.049351	-0.731346
21	8	0	-2.189290	-3.034003	-1.244871
22	6	0	-3.120366	0.090814	0.054393
23	8	0	-4.221883	0.442321	0.059606
24	6	0	1.606507	2.756861	-0.061217
25	8	0	2.467858	3.524555	-0.039427

		$(Fe-CO)_t$	(Fe1-CO) _{µ2}	(Fe2-CO) _{µ2}	(Fe2-BF) _{µ2}	(Fe3-BF) _{µ2}	(Fe1-BF) _{µ3}
8-1S	B3LYP	1.15±0.05	0.94	0.58	0.69	0.50	0.52
	BP86	1.22 ± 0.05	0.91	0.63	0.67	0.50	0.51
9-18	B3LYP	1.13±0.05			0.58	0.58	0.66,0.32
	BP86	1.20±0.3			0.57	0.57	0.61,0.37
Fe(BF)(CO) ₄	B3LYP	1.24±0.05			1.13		
	BP86	1.27±0.05			1.10		
conti		(Fe2-BF) _{µ3}	(Fe3-BF) _{µ3}	(Fe1-Fe2)	(Fe1-Fe3)	(Fe2-Fe3)	
8-1S	B3LYP	0.26	0.55	0.69	0.27	0.26	
	BP86	0.26	0.54	0.67	0.27	0.27	
9-18	B3LYP	0.51,0.39	0.51,0.39	0.34	0.34	0.30	
_	BP86	0.40,0.48	0.40,0.48	0.33	0.33	0.30	

Table 19 Wiberg bond indices from NBO analysis for 8-1S, 9-1S and Fe(BF)(CO)₄.

Complete Gaussian 03 reference (reference 44)

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.;
Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.;
Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.;
Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.;
Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.;
Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.;
Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A.
G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.;
Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople,
J. A. Gaussian 03, Revision D.01 Inc., Wallingford CT, 2004.