Supplementary information

Logic gates from ion-selective bulk optodes

Dhassida Sooksawat,^a Wanlapa Aeungmaitrepirom,^a Wittaya Ngeontae^b and Thawatchai Tuntulani^{*a}

 ^a Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand. Email: thawatchai.t@chula.ac.th.
^b Department of Chemistry and Center for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.

1. Calculations of threshold values for absorbance outputs

The value chosen for 1 or 0 represents the difference between the corresponding spectra. Threshold values are determined by fix degree of deprotonation (α) at 0.6. The measured absorbance *A* at a given equilibrium can be related to α by measuring the absorbances of the fully protonated (*A*_{*P*}) and nonprotonated form (*A*_{*D*}) of the chromoionophore:

$$\alpha = \frac{A_P - A}{A_P - A_D}$$

Table S1. Wavelength for outputs O1 and O2

Chromoiononhore	Wavelength for output	Wavelength for output		
Chronophore	O1 absorbance (nm)	O2 absorbance (nm)		
Chromoionophore I	540	665		
Chromoionophore VII	530	670		
Chromoionophore XIV	435	660		
Nile Blue-urea	540	665		

Chromoionophore I

Threshold value for output O1 (540 nm): $A_D = 0.0957$ $A_P = 0.0256$ $A = A_D - (A_D - A_P) \alpha$ Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

 $A = 0.0957 - (0.0957 - 0.0256) \times 0.6$ A = 0.0536Threshold value for output O2 (665 nm): $A_D = 0.0979 \qquad A_P = 0.0018$ $A = A_P - (A_P - A_D) \alpha$ $A = 0.0979 - (0.0979 - 0.0018) \times 0.6$ A = 0.0402

Chromoionophore VII

Threshold value for output O1 (530 nm): $A_D = 0.0584$ $A_P = 0.0039$ $A = A_D - (A_D - A_P) \alpha$ $A = 0.0584 - (0.0584 - 0.0039) \times 0.6$ A = 0.0257Threshold value for output O2 (670 nm): $A_D = 0.0921$ $A_P = 0.0021$ $A = A_P - (A_P - A_D) \alpha$ $A = 0.0921 - (0.0921 - 0.0021) \times 0.6$ A = 0.0381

Chromoionophore XIV

Threshold value for output O1 (435 nm): $A_D = 0.0253$ $A_P = 0.0033$ $A = A_D - (A_D - A_P) \alpha$ $A = 0.0253 - (0.0253 - 0.0033) \times 0.67$ A = 0.0105Threshold value for output O2 (660 nm): $A_D = 0.0463$ $A_P = 0.0017$ $A = A_P - (A_P - A_D) \alpha$ $A = 0.0463 - (0.0463 - 0.0017) \times 0.6$ A = 0.0195

Nile Blue-urea

Threshold value for output O1 (540 nm): $A_D = 0.0528$ $A_P = 0.0098$ $A = A_D - (A_D - A_P) \alpha$ $A = 0.0528 - (0.0528 - 0.0098) \times 0.6$ A = 0.0270Threshold value for output O2 (665 nm): $A_D = 0.0696$ $A_P = 0.0015$ $A = A_P - (A_P - A_D) \alpha$ $A = 0.0696 - (0.0696 - 0.0015) \times 0.6$ Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

$$A = 0.0287$$

2. Details of non-logic gate operations

Table S2. Truth table for non-logic gates X/X' and Y/Y'

Input A H^+	Input B Na ⁺	Х	X'	Y	Y'
0	0	1	0	0	1
0	1	0	1	0	1
1	0	1	0	1	0
1	1	0	1	1	0

Table S3. pHs and metal concentrations which operated X, X', Y, and Y' logic gates for Na^+ and K^+ selective bulk optodes

	$\mathrm{X}/\mathrm{X}^{,a,b,c}$			$\mathbf{Y}/\mathbf{Y}^{,a,b,c}$				
pH 1.0	(Concentration of $Na^+(M)$			Concentration of Na ⁺ (M)			
1,0 -	10-1	10-2	10-3	10-4	10-1	10^{-2}	10-3	10^{-4}
3,5	С							
3,6	С							
3,7							С	С
3,8					bc	Bbc	BCbc	BCbc
3,9					bc	Bbc	BCbc	BCbc
3,10					bc	Bbc	BCbc	BCbc
4,6	BC	С						
4,8					b	bc	Bbc	BCbc
4,9					b	bc	BCbc	BCbc
4,10					b	bc	bc	Bc
5,8					bc	bc	bc	Bbc
5,9					bc	bc	bc	Bbc
5,10					bc	bc	bc	Bbc
6,8	AD						bc	bc
6,9	AD						bc	bc
6,10	D						bc	bc
7,9	AD	AD					с	с
7,10	D	D						с
8,10	Dd	D	D	D				

^{*a*}A, B, C and D refer to chromoionophores I, VII, XIV and Nile Blue-urea, respectively in sodium optode. ^{*b*}a, b, c and d refer to chromoionophores I, VII, XIV and Nile Blue-urea, respectively in potassium optode. ^{*c*}X' and Y' operations were obtained from output O2 of the chromoionophores.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

Figure S1. Absorbance features of the X and X' of sodium optode of studied chromoionophores: (a) Chromoionophore I (10^{-1} M NaNO₃ pH7, pH9) (b) Chromoionophore VII (10^{-1} M NaNO₃ pH4, pH6) (c) Chromoionophore XIV (10^{-1} M NaNO₃ pH3, pH5) (d) Nile Blue-urea (10^{-1} M NaNO₃ pH7, pH9) Input combination 0,0: blue; 0,1: pink; 1,0: green and 1,1: orange.

Figure S2. Absorbance features of the Y and Y' of sodium optode of studied chromoionophores: (a) Chromoionophore VII (10^{-4} M NaNO₃ pH3, pH10) (b) Chromoionophore XIV (10^{-4} M NaNO₃ pH3, pH10) Input combination 0,0: blue; 0,1: pink; 1,0: green and 1,1: orange.

Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2010

Figure S3. Absorbance features of the X and X' of potassium optode of studied Chromoionophores I (10^{-1} M NaNO₃ pH8, pH10) Input combination 0,0: blue; 0,1: pink; 1,0: green and 1,1: orange.

Figure S4. Absorbance features of the Y and Y' of potassium optode of studied chromoionophores: (a) Chromoionophore VII (10^{-1} M NaNO₃ pH3, pH8) (b) Chromoionophore XIV (10^{-1} M NaNO₃ pH3, pH8) Input combination 0,0: blue; 0,1: pink; 1,0: green and 1,1: orange.