This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2011

Pyridyl and pyridiniumyl β -diketones as building blocks for palladium(II) and allyl-palladium(II) isomers. Multinuclear NMR structural elucidation and liquid crystal behaviour

María José Mayoral,^a Pilar Cornago,^b Rosa M. Claramunt,^b Mercedes Cano^{*a}

^a Departamento de Química Inorgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain. Fax: 34 91394 4352; E-mail: mmcano@quim.ucm.es ^bDepartamento de Química Orgánica y Bio-Orgánica, Facultad de Ciencias, UNED, Senda del Rev 9, E-28040 Madrid, Spain. Fax: +34 91 3988372; E-mail: rclaramunt@ccia.uned.es

ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Table of Contents

Tables

Table S1. Analytical data of the compounds [HL ^{R(n)py}] (1-4).	2
Table S2. NMR data of 1 . Chemical shifts (δ in ppm) and coupling constants (<i>J</i> in Hz)	3
Table S3. NMR data of 8 at 323 K. Chemical shifts (δ in ppm) and coupling constants (J in Hz)	5
Table S4. Analytical data of the complexes $[Pd(\kappa^2-L^{R(n)py})_2]$ (9-12)	6
$\textbf{Table S5.} Analytical data of the organometallic compounds [Pd(\eta^3-C_3H_5)(HL^{R(n)py})][PF_6] (\textbf{13-16})$	6
Table S6. NMR data of 14 at 323 K. Chemical shifts (δ in ppm) and coupling constants (J in Hz)	7
$\label{eq:compounds} \ [Pd(\eta^3-C_3H_5)(L^{R(n)pyH})][PF_6]\ (17\text{-}20)$	8
Table S8. NMR data of 18 at 323 K. Chemical shifts (δ in ppm) and coupling constants (J in Hz)	9

Figures

Fig. S1 IR spectrum of the complex $[Pd(\kappa^2 - L^{R(12)py})_2]$ (9)	10
Fig. S2 IR spectrum of the complex $[Pd(\eta^3 - C_3H_5)(L^{R(14)pyH})][PF_6]$ (18).	10
Fig. S3 X-Ray diffraction pattern of $[Pd(\eta^3-C_3H_5)(HL^{R(16)py})][PF_6]$ (15) at 160 °C on heating	.11

COMPOUND				MOLECULIE	ELEMENTAL ANALYSIS						
		FORMULA	YIELD (%)	MOLECULAR WEIGHT	REQUIRES (%)			FO	FOUND (%)		
n		ronunen		(gmol ⁻¹)	С	Н	Ν	С	Н	Ν	
12	1	C ₂₆ H ₃₅ NO ₃	68	409.6	76.2	8.6	3.4	75.9	8.6	3.5	
14	2	C ₂₈ H ₃₉ NO ₃	66	437.6	76.8	9.0	3.2	76.4	8.9	3.3	
16	3	$C_{30}H_{43}NO_{3}$	65	465.7	77.4	9.3	3.0	77.0	9.3	2.9	
18	4	C ₃₂ H ₄₇ NO ₃	65	493.7	77.9	9.6	2.8	77.4	9.5	2.8	

Table S1. Analytical data of the compounds $[HL^{R(n)py}]$ (1-4).

Atom	$^{1}\mathrm{H}$	$^{1}\mathrm{H}$	¹³ C	¹³ C	¹³ C	¹⁵ N	¹⁵ N	¹⁵ N
Ratio	Enol, 94%	Keto, 6%	Enol	Keto		Enol	Keto	
Phase Conc.	CDCl₃ 0.05 M	CDCl ₃ 0.05 M	CDCl ₃ 0.19 M	CDCl ₃ 0.19 M	CPMAS	CDCl ₃ 0.19 M	CDCl ₃ 0.19 M	CPMAS
7			181.2	196.8	180.7			
8	7.52	4.8	92.9	48.0 ¹ J= 129.3	91.1			
9			187.1	193.6	187.0			
ОН	16.64							
2			152.6 $^{3}J= ^{3}J= 8.6$	152.7	151.2			
3	8.15 $^{3}J=7.8$	8.17	122.0 ${}^{1}J=166.4$ ${}^{3}I=6.4$	122.1	118.5			
4	7.87 ${}^{3}J={}^{3}J=7.7$ ${}^{4}J=1.7$	7.89	137.1 ${}^{1}J=163.4$ ${}^{3}J=6.1$	137.0 ${}^{1}J=163.7$ ${}^{3}J=6.8$	135.4			
5	7.43 ${}^{3}J=7.5$ ${}^{3}J=4.8$ ${}^{4}J=1.1$	7.47	126.1 ${}^{1}J=164.3$ ${}^{3}J={}^{2}J=7.5$	126.1	122.7			
6	8.71 ${}^{3}J=4.8$ ${}^{4}J=1.7$ ${}^{5}J=0.8$	8.62	149.1 ${}^{1}J= 179.6$ ${}^{3}J= 6.8$ ${}^{4}J= 2.8$	149.0 ¹ <i>J</i> = 179.6	151.2			
0	8.06	7.96	129.7 ${}^{1}J=160.3$ ${}^{3}J=7.0$	130.9 $^{1}J=160.7$ $^{3}J=7.0$	129.8			
m	6.96	6.93	${}^{1}J=161.0$ ${}^{3}J=4.5$	${}^{1}J=161.1$ ${}^{3}J=4.5$	112.4			
р			163.1	163.4	163.6			

Table S2. NMR data of **1**. Chemical shifts (δ in ppm) and coupling constants (*J* in Hz)

	${}^{3}J={}^{3}J=10.3$			
	${}^{3}J = {}^{3}J = 7.8$			
in a c	127.8	107.2	126.2	
ipso	${}^{3}J = {}^{3}J = 7.4$	127.3	127.3	

Table S2 (Continue). NMR data of **1**. Chemical shifts (δ in ppm) and coupling constants (*J* in Hz)

Atom	$^{1}\mathrm{H}$	$^{1}\mathrm{H}$	¹³ C	¹³ C	¹³ C	¹⁵ N	¹⁵ N	¹⁵ N
Ratio	Enol, 94%	Keto, 6%	Enol	Keto		Enol	Keto	
Phase Conc.	CDCl ₃ 0.05 M	CDCl ₃ 0.05 M	CDCl ₃ 0.19 M	CDCl ₃ 0.19 M	CPMAS	CDCl ₃ 0.19 M	CDCl ₃ 0.19 M	CPMAS
						-73.5		
N1						$^{2}J(\text{H6})=13.1$	66.2	60 2
						$^{3}J(\text{H3})=8.1$	-00.5	-08.5
						$^{3}J(\text{H5})=9.9$		
CII	0.88		14.1		15.0			
CH ₃	$^{3}J = ^{3}J = 6.9$		$^{1}J = 124.4$		15.0			
(CH ₂) _x	1.27-1.81		22.7-31.9		24.6- 33.8			
	4.03		68.3					
OCH ₂	$^{3}J=^{3}J=6.6$		$^{1}J=143.2$		69.1			

Atom	$^{1}\mathrm{H}$	$^{1}\mathrm{H}$	¹³ C	¹³ C	¹³ C	¹⁵ N
Ratio	Enol, 93%	Keto, 7%	Enol	Keto		
Phase	CDCl ₃	CDCl ₃	CDCl ₃	CDCl ₃	CPMAS	CPMAS
Conc.	0.033 M	0.033 M	0.033 M	0.033 M		
7			174.1		170.5 ^[a]	
8	8.11	4.82	96.0		$94.8^{[a]}$	
9			189.9		188.6 ^[a]	
ОН	16.48					
2			140.0		$142.6^{[a]}$	
2			149.9		$144.4^{[a]}$	
3	8.39		123.8		$118 \ 2^{[a]}$	
5	³ J=7.9		125.0		110.2	
4	8.25	7.96	141.7		$134.1^{[a]}$	
	J = J = /.6					
5	7.59 3 L 3 L C 2	6.92	126.8		$127.1^{[a]}$	
	J = J = 6.3				150 1 ^[a]	
6	$\frac{3}{1}$	8.64	145.6		$150.1^{[a]}$	
	J= 4.9				$153.0^{[a]}$	
0	8.26	7.91	130.8		130.0 ^m	
	7.00	(01	114.0	114.2	130.0 ^[1]	
т	/.00	6.91	114.8	114.3	$113.5^{[a]}$	
р			104.0		105.0 ^[4]	
ipso			127.6		124.2	101 (
NI	0.97				1 C 4[a]	-181.6
CH ₃	0.87		14.0		16.4 ^[b]	
	J = J = 6.8				14.6 ¹⁰	
(CH ₂) _x	1.22-1.82	4.04	22.7-32.2	-1.0	24.8-35.5	
OCH ₂	4.06	4.01	68.5	71.3	69.1 ^[a]	

Table S3. NMR data of 8 at 323 K. Chemical shifts (δ in ppm) and coupling constants (J in Hz)

This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2011

 ${}^{3}J={}^{3}J=6.6$ 68.0^[b]

Table S4. Analytical data of the complexes $[Pd(\kappa^2-L^{R(n)py})_2]$ (9-12).

COMPOUND				MOLECULAR	ELEMENTAL ANALISYS						
		MOLECULAR FORMULA	YIELD (%)	WEIGHT	REQ	UIRES (%)	FO	UND (%)	
n			(,,,)	(gmol ⁻¹)	С	Н	Ν	С	Н	Ν	
12	9	$C_{52}H_{68}N_2O_6Pd$	70	923.5	67.6	7.4	3.0	67.4	7.3	3.1	
14	10	$C_{56}H_{76}N_2O_6Pd$	68	979.6	68.7	7.8	2.9	68.2	7.6	2.9	
16	11	$C_{60}H_{84}N_2O_6Pd$	72	1035.7	69.6	8.2	2.7	69.6	8.2	2.5	
18	12	$C_{64}H_{92}N_2O_6Pd$	70	1091.9	70.4	8.5	2.6	70.0	8.3	2.6	

Table S5. Analytical data of the organometallic compounds $[Pd(\eta^3-C_3H_5)(HL^{R(n)py})][PF_6]$ (13-16).

COMPOUND				MOLECULAR	ELEMENTAL ANALISYS						
		FORMULA	YIELD (%)	WEIGHT	REQUIRED (%)			FOUND (%)			
n				(gmol)	С	Н	Ν	С	Н	Ν	
12	13	C ₂₉ H ₃₉ NO ₃ PdPF ₆	65	701.0	49.7	5.6	2.0	49.5	5.4	2.0	
14	14	$C_{31}H_{43}NO_3PdPF_6$	66	729.1	51.1	6.0	1.9	51.5	5.9	2.1	
16	15	C ₃₃ H ₄₇ NO ₃ PdPF ₆	60	757.1	52.4	6.3	1.9	52.5	6.2	2.1	
18	16	$C_{35}H_{51}NO_3PdPF_6$	60	785.2	53.5	6.6	1.8	53.7	6.8	1.8	

This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2011

Table S6. NMR data of **14** at 323 K. Chemical shifts (δ in ppm) and coupling constants (*J* in Hz)

Atom	$^{1}\mathrm{H}$	¹³ C	¹³ C	¹⁵ N
Phase	CDCl ₃	CDCl ₃	CPMAS	CPMAS
Concentration	0.042 M	0.042 M		
7		185.3	189.8	
8	7.23	94.1 ¹ J= 167.2	92.1	
9		185.3	180.7	
ОН	14.80			
2		152.8	149.6	
3	8.58 $^{3}J=7.9$	126.6 ¹ J= 173.6	127.1	
4	8.11	141.3	139.0	
5	7.64 ${}^{3}J={}^{3}J=5.8$	129.7	131.7	
6	8.70 $^{3}J=4.2$	151.9	151.6	
0	8.16	131.6	131.7	
т	7.01	115.5 ¹ J= 162.7	119.7	
р		165.8	163.0	

ipso		123.7	122.0	
CH ₂ -allyl (H _s)	4.38 ^s J= 6.5	61.0	66.6 / 68.3	
CH ₂ -allyl (H _a)	3.39 ^a J= 12.2	61.0	66.6 / 68.3	
CH2-allyl (H _{meso})	5.80 ^s J= 6.5 ^a J= 12.2	115.8	113.1 / 116.3	
N1				-130.0
CH ₃	0.89 $^{3}J= ^{3}J= 6.9$	14.0	15.2	
CH ₂	1.29-1.85	22.7-31.9	25.6-34.6	
OCH ₂	4.07 $^{3}J= ^{3}J= 6.5$	68.9	56.1	

Table S7. Analytical data of the organometallic compounds $[Pd(\eta^3-C_3H_5)(L^{R(n)pyH})][PF_6]$ (17-20).

COMPOUND				MOLECULAR	ELEMENTAL ANALISYS						
COMP	UUND	MOLECULAR FORMULA	YIELD (%)	WEIGHT	REQUIRED (%)			FO	FOUND (%)		
n			(gmol ⁻¹)		С	Н	Ν	С	Н	Ν	
12	17	$C_{29}H_{39}NO_3PdPF_6$	65	701.0	49.7	5.6	2.0	49.6	5.5	2.0	
14	18	$C_{31}H_{43}NO_3PdPF_6$	68	729.1	51.1	6.0	1.9	51.0	5.9	2.0	
16	19	$C_{33}H_{47}NO_3PdPF_6$	70	757.1	52.4	6.3	1.9	52.4	6.3	2.1	
18	20	$C_{35}H_{51}NO_3PdPF_6$	70	785.2	53.5	6.6	1.8	53.7	6.6	1.9	

Atom	$^{1}\mathrm{H}$	¹³ C	¹⁵ N
Phase	CDCl ₃	CDCl ₃	CPMAS
Concentration	0.042 M	0.042 M	
7		185.4	
8	7.53	94.6	
		$^{1}J = 167.2$	
9		185.4	
NH	14.60		
2		152.7	
3	8.52	126.0	
	$^{3}J=7.9$	$^{1}J = 173.6$	
4	8.16	140.7	
5	7.67	128.9	
	${}^{3}J = {}^{3}J = 5.8$		
6	8.78	152.2	
	$^{3}J = 4.2$		

Table S8. NMR data of **18** at 323 K. Chemical shifts (δ in ppm) and coupling constants (*J* in Hz)

0	8.20	131.3	
т	7.02	115.2 $^{1}J=162.7$	
р		165.2	
ipso		124.2	
CH ₂ -allyl (H _s)	4.23 ^s J= 6.5	61.0	
CH ₂ -allyl (H _a)	3.19 ^a J= 12.2	61.0	
CH ₂ -allyl (H _{meso})	5.68 ^s J= 6.5 ^a J= 12.2	115.2	
N1			-185.6
CH ₃	0.88 $^{3}J= ^{3}J= 6.9$	14.1	
(CH ₂) _X	1.29-1.85	22.7-31.9	
OCH ₂	4.08 $^{3}J=^{3}J=6.5$	68.7	

Fig. S1 IR spectrum of the complex $[Pd(\kappa^2-L^{R(12)py})_2]$ (9).

Fig. S2 IR spectrum of the complex $[Pd(\eta^3-C_3H_5)(L^{R(14)pyH})][PF_6]$ (18).

Fig. S3 X-Ray diffraction pattern of $[Pd(\eta^3-C_3H_5)(HL^{R(16)py})][PF_6]$ (15) at 160 °C on heating