Supporting Information for

Encapsulation and Controlled Release of L-Leuprolide from Poly(β-

hydroxyalkanoate)s: Impact of Microstructure and Chemical Functionalities

Noureddine Ajellal, Christophe M. Thomas,* Thierry Aubry, Yves Grohens and Jean-François Carpentier*

Figure S1-S5. ¹³C $\{^{1}H\}$ NMR and ¹H NMR spectra of *i*-PHB and *i*-P(-HB-*co*-HB^{allyl}, 11 mol%)

Figure S6. Example of RI detector responses during Gel Permation Chromotography (GPC) of *i*-PHB and *i*-P(-HB-*co*-HB^{allyl}, 11 mol%)

Figure S7. SEM images of microparticles based on syndiotactic PHAs, prepared by "solvent evaporation" mode

Figure S8. Gaussian distributions of microparticles size. A: *s*-P(HB-*co*-HB^{allyl}), **B**: *s*-P(HB-*co*-HB^{diOH}), **C**: *s*-P(HB-*co*-HB^{allyl})/LeA, **D**: *s*-P(HB-*co*-HB^{diOH})/LeA.

Figure S9. SEM images of polymer microparticles based on isotactic PHAs, prepared by the "solvent evaporation" method.

Figures S10-S11. DSC traces of *i*-PHB and of *i*-PHB/LeA microparticles

Figures S12-S15. Viscoelastic properties of (co)polymers and (co)polymers encapsulated with LeA: storage modulus G' and loss modulus G" as a function of frequency

Figure S16. Effect of the molecular weight on the release profiles of LeA from LeA-loaded *s*-P(-HB^{diOH}, 11 mol% diOH) prepared by "co-precipitation" method

Entry	[BL ^R]	(co)polymer [BL ^R] ^b in copolymer (mol%)	$M_{n exp}^{c}$ (× 10 ³ g/mol)	$M_{ m w}/M_{ m n}^{ m c}$	P_r/P_m^d
1	rac	s-P(HB-co-HB ^{allyl})	9.2	1.24	84/16
2	rac	$s-P(HB-co-HB^{diOH})$	11.2	1.28	82/18
3	rac	$s-P(HB-co-HB^{allyl})$	33.5	1.50	84/16
4	rac	$s-P(HB-co-HB^{diOH})$	38.4	1.68	nd
5	rac	$s-P(HB-co-HB^{allyl})$	61.2	1.62	82/18
6	rac	$s-P(HB-co-HB^{diOH})$	69.6	1.76	nd
7	rac	$a-P(HB-co-HB^{allyl})$	25.4	1.45	55/45
8	rac	a-P(HB- co -HB ^{diOH})	21.0	1.52	53/47
9	R	i-P(HB- co -HB ^{allyl})	30.1	1.30	nd
10	R	i-P(HB- co -HB ^{diOH})	35.1	1.41	nd
11	R	<i>i</i> -P(HB)	4.2	1.06	03/97
12	R	0 <i>i</i> -P(HB)	8.5	1.13	04/96
13	R	0 <i>i</i> -P(HB)	15.9	1.11	04/96
14	R	0 <i>i</i> -P(HB)	28.0	1.13	05/95

Table S1. Homo- and copolymerization of β-butyrolactone and *rac*-allyl-butyrolactone.^a

^[a] $[BL^R] = 2.44 \text{ mol/L}$; polymerization carried out at 20 °C; the results shown for each entry are representative of at least two reproducible (± 5%) runs. ^[b] Comonomer content determined by ¹H NMR in CDCl₃. ^[c] Average-number molecular weight in g.mol⁻¹ (uncorrected) determined by GPC vs. PS standards. ^[d] P_r is the probability of racemic linkages between monomer units and is determined by ¹³C{¹H} NMR spectroscopy.

Figure S1. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 40 °C) of a highly isotactic PHB ($P_m = 0.95$) sample prepared by ROP of *R*-BL^{Me} with complex **1**.

Figure S2. Methyl, Methylene, and carbonyl regions of the ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 40 °C) of a highly isotactic PHB ($P_m = 0.95$) sample prepared by ROP of *R*-BL^{Me} with complex **1**.

Figure S3. ¹H NMR spectrum (500 MHz, CDCl₃, 20 °C) of an isotactic-rich ($P_m = 0.85$) *i*-P(HB*co*-HB^{allyl}, 11 mol%) sample prepared by ROP of *R*-BL^{Me} and *rac*-BL^{allyl} with complex **1** (Table S1, entry 9).

Figure S4. ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 40 °C) of an isotactic-rich ($P_m = 0.85$) *i*-P(HB-*co*-HB^{allyl}, 11 mol%) sample prepared by ROP of *R*-BL^{Me} and *rac*-BL^{allyl} with complex **1** (Table S1, entry 9).

Figure S5. Methyl, Methylene, and carbonyl regions of the ¹³C{¹H} NMR spectrum (125 MHz, CDCl₃, 40 °C) of an isotactic-rich ($P_{\rm m} = 0.85$) *i*-P(HB-*co*-HB^{allyl}, 11 mol%) sample prepared by ROP of *R*-BL^{Me} and *rac*-BL^{allyl} with complex **1**(Table S1, entry 9).

Figure S6. RI detector responses during Gel Permeation Chromotography (GPC) (THF, 25 °C) of an isotactic-rich ($P_{\rm m} = 0.85$) *i*-P(HB-*co*-HB^{allyl}, 11 mol%) sample prepared by ROP of *R*-BL^{Me} and *rac*-BL^{allyl} with complex **1**(Table S1, entry 9).

Figure S7. SEM images of microparticles prepared by the "solvent evaporation" method, the size of the bar is 10-100 μ m. A: *s*-P(HB-*co*-HB^{allyl}, 11 mol% allyl) (Table S1, entry 3). B: *s*-P(HB-*co*-HB^{allyl}, 11 mol% allyl) (Table S1, entry 3) containing 7 wt% of LeA. C: *s*-P(HB-*co*-HB^{diOH}, 11 mol% diOH) (Table S1, entry 4). D: *s*-P(HB-*co*-HB^{diOH}, 11 mol% diOH) (Table S1, entry 4). D: *s*-P(HB-*co*-HB^{diOH}, 11 mol% diOH) (Table S1, entry 4).

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2011

Figure S8. Gaussian distributions of microparticles size. A: *s*-P(HB-*co*-HB^{allyl}), **B**: *s*-P(HB-*co*-HB^{diOH}), **C**: *s*-P(HB-*co*-HB^{allyl})/LeA, **D**: *s*-P(HB-*co*-HB^{diOH})/LeA.

Figure S9. SEM images of polymer microparticles prepared by the "solvent evaporation" method, the size of the bar is 50-100 μ m. A: *i*-PHB (Table S1, entry 14). B: *i*-PHB (Table S1, entry 14) containing 7 wt% of LeA. C: *i*-P(HB-*co*-HB^{allyl}, 11 mol% allyl) (Table S1, entry 9). D: *i*-P(HB-*co*-HB^{diOH}, 11 mol% diOH) (Table S1, entry 10).

Figure S10. DSC trace (run from 23 °C to 200 °C at 10 °C/min) of *i*-PHB prepared by ROP of R-BL^{Me} with complex **1** (Table S1, entry 14).

Figure S11. DSC trace (run from 23 °C to 200 °C at 10 °C/min) of *i*-PHB (Table S1, entry 14)/LeA microparticles.

Figure S12. Storage modulus G' as a function of frequency of s-P(HB-co-HB^{allyl} (11 mol% allyl) and s-P(HB-co-HB^{diOH} (11 mol% diOH) in 10 wt% chloroform solutions

Figure S13. Loss modulus G" as a function of frequency of *s*-P(HB-*co*-HB^{allyl} (11 mol% allyl) and *s*-P(HB-*co*-HB^{diOH} (11 mol% diOH) in 10 wt% chloroform solutions.

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2011

Figure S14. Storage modulus G' as a function of frequency of s-P(HB-co-HB^{diOH} (11 mol% diOH) and s-P(HB-co-HB^{diOH} (11 mol% diOH) encapsulated with LeA (7 wt%), in 10wt% chloroform solutions.

Figure S15. Loss modulus G'' as a function of frequency of s-P(HB-co-HB^{diOH} (11 mol% diOH) and s-P(HB-co-HB^{diOH} (11 mol% diOH) encapsulated with LeA (7 wt%) in 10 wt% chloroform solutions.

Figure S16. Effect of the molecular weight on the release profiles of LeA from LeA-loaded *s*-P(HB-*co*-HB^{diOH}, 11 mol% diOH) prepared by "co-precipitation" method,. $\Delta M_n = 11\ 200\ \text{g.mol}^{-1}$, (Table S1, entry 2); $\blacksquare M_n = 38\ 400\ \text{g.mol}^{-1}$, (Table S1, entry 4); $\Box M_n = 69\ 600\ \text{g.mol}^{-1}$, (Table S1, entry 6).