Supporting Information (SI)

General: All the chemicals were procured from either Sigma Aldrich Chemicals Pvt. Ltd. or Spectrochem, India. Silica gel [(60-120 mesh) was used for chromatographic separation. Silica gel G [E-Merck (India)] was used for TLC. Petroleum ether refers to the fraction boiling between 60° C and 80° C. IR spectra were recorded on a Perkin-Elmer L 120-000A spectrometer (v_{max} in cm⁻¹) on KBr disks. ¹H NMR and ¹³C spectra were recorded on a Bruker DPX-300 and Bruker DPX-400 Bruker DPX-500 spectrometer in CDCl₃ (chemical shift in δ) with TMS as internal standard. MS were recorded on a Q-TOF microTm instrument at the Indian Institute of Chemical Biology. CHN was recorded on 2400 series II CHN analyzer Perkin Elmer. Melting points were determined in open capillaries and are uncorrected. HRMS were recorded on a Q-tof Micro YA263 instrument.

General procedure for the preparation of compound 3a-h and 1c:

A mixture of the compounds **1a** (500 mg, 2.74 mmol), *p*-chloroiodobenzene (786 mg, 3.29 mmol), Pd(PPh₃)₂Cl₂ (0.13 mmol) and CuI (0.27 mmol) in dry DMF (5 mL) and dry Et₃N (1.5 mL) was stirred at room temperature for 1h. After completion of the reaction (as monitored by TLC), the reaction mixture was poured in water. This was extracted with dichloromethane (3 x 15 mL). The combined organic extract was washed with brine (1 x 15) and dried over Na₂SO₄. The solvent was distilled off. The resulting crude product was purified by column chromatography over silica gel (60-120 mesh) using petroleum etherethyl acetate mixture (4:1) as an eluent to give the product **3a**. Similarly precursors **3b-h** were prepared from the corresponding iodobenzene derivatives. The compound **1c** was prepared by refluxing 1,3-diethyl-5-hydroxypyrimidine-2,4(1*H*,3*H*)-dione (1gm, 5.4 mmol) with 1-bromobut-2-yne (0.85 gm, 6.4 mmol) and anhydrous K₂CO₃ (1.5 gm, 10.8 mmol) in acetone (75 mL) for 5h and purified by column chromatography using petroleum ether-ethyl acetate mixture (3:2) as an eluent.

Compound 3a:

Yield: 85%, solid; m.p. 158-160 °C; IR (KBr): $v_{max} = 1642$, 1657, 1716, 2232 cm⁻¹;

¹H-NMR (CDCl₃, 500 MHz): $\delta_H = 3.38$ (s, 6H, -NC**H**₃), 4.91 (s, 2H, -C**H**₂), 7.09 (s, 1H,

Ar**H**), 7.29-7.30 (m, 2H, Ar**H**), 7.33-7.35 (m, 2H, Ar**H**).

MS: $m/z = 305 [M^+ + H]$.

Anal. Calcd. For: $C_{15}H_{13}ClN_2O_3$: C, 59.12; H, 4.30; N, 9.19; Found: C, 59.34; H, 4.26; N, 9.34.

Compound 3b:

Yield: 89%, solid; m.p. 118-120 °C; IR (KBr): $v_{max} = 1635$, 1644, 1704, 2215 cm⁻¹;

¹H-NMR (CDCl₃, 400 MHz): $\delta_H = 3.38$ (s, 6H, -NC**H**₃), 4.91 (s, 2H, -C**H**₂), 7.12 (s, 1H, Ar**H**), 7.27-7.35 (m, 3H, Ar**H**), 7.40-7.42 (m, 2H, Ar**H**).

¹³C-NMR (CDCl₃, 100 MHz): δ_C = 28.3, 37.0, 59.9, 83.3, 88.5, 122.0, 128.4, 128.9, 131.0, 131.7, 132.2, 150.7, 160.2.

MS: $m/z = 271 [M^+ + H]$.

Anal. Calcd. For: $C_{15}H_{14}N_2O_3$: C, 66.66; H, 5.22; N, 10.36; Found: C, 66.82; H, 5.24; N, 10.61.

Compound 3c:

Yield: 86%, solid; m.p. 124-126 °C; IR (KBr): $v_{max} = 1648$, 1676, 1708, 2210 cm⁻¹;

¹H-NMR (CDCl₃, 400 MHz): $\delta_{H} = 1.22-1.42$ (m, 6H, -NCH₂C**H**₃), 3.76-3.81 (m, 2H, -

 NCH_2CH_3), 4.01-4.12 (m, 2H, -NC H_2CH_3), 4.91 (s, 2H, -C H_2), 7.11 (s, 1H, ArH), 7.29-7.33

(m, 3H, Ar**H**), 7.34-7.40 (m, 2H, Ar**H**).

MS: $m/z = 299 [M^+ + H]$

Anal. Calcd. For C₁₇H₁₈N₂O₃: C, 68.44; H, 6.08; N, 9.39; Found: C, 68.56; H, 6.04; N, 9.48.

Compound 3d:

Yield: 86%, solid; m.p. 122-124 °C; IR (KBr): $v_{max} = 1651$, 1667, 1708, 2224 cm⁻¹.

¹H-NMR (CDCl₃, 500 MHz): $\delta_H = 1.22-1.29$ (m, 6H, -NCH₂CH₃), 3.76 (q, 2H, J = 7.2 Hz, -NCH₂CH₃), 4.01 (q, 2H, J = 7.1 Hz, -NCH₂CH₃), 4.90 (s, 2H, -CH₂), 7.08 (s, 1H, Ar**H**), 7.28-7.30 (m, 2H, Ar**H**), 7.32-7.34 (m, 2H, Ar**H**).

MS: $m/z = 333 [M^+ + H]$.

Anal. Calcd. For: C₁₇H₁₇ClN₂O₃: C, 61.36; H, 5.15; N, 8.42; Found: C, 61.62; H, 5.18; N, 8.63.

Compound 3e:

Yield: 88%, solid; m.p. 143-145 °C; IR (KBr): $v_{max} = 1644$, 1655, 1716, 2229 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): $δ_H = 2.35$ (s, 3H, -C**H**₃), 3.38 (s, 6H, -NC**H**₃), 4.90 (s, 2H, -CH₂), 7.10 (s, 1H, Ar**H**), 7.11 (d, 2H, J = 6.4 Hz, Ar**H**), 7.29 (d, 2H, J = 6.4 Hz, Ar**H**), MS: m/z = 285 [M⁺+H].

Anal. Calcd. For: C₁₆H₁₆N₂O₃: C, 67.59; H, 5.67; N, 9.85; Found; C, 67.74; H, 5.71; N, 9.72.

Compound 3f:

Yield: 88%, solid; m.p. 92-94 °C; IR (KBr): $v_{max} = 1644$, 1672, 1703, 2215 cm⁻¹; ¹H-NMR (CDCl₃, 500 MHz): $\delta_{H} = 1.21-1.27$ (m, 6H, -NCH₂CH₃), 2.35 (s, 3H, -CH₃), 3.77 (q, 2H, J = 7.2 Hz, -NCH₂CH₃), 4.05 (q, 2H, J = 7.1 Hz, -NCH₂CH₃), 4.90 (s, 2H, -CH₂), 7.06 (s, 1H, ArH), 7.28-7.34 (m, 2H, ArH), 7.31-7.33 (m, 2H, ArH),

MS: $m/z = 313 [M^+ + H]$.

Anal. Calcd. For C₁₈H₂₀N₂O₃: C, 69.21; H, 6.45; N, 8.97; Found: C, 69.01; H, 6.50; N, 9.11.

Compound 3g:

Yield: 80%, solid; m.p. 158-160 °C; IR (KBr): $v_{max} = 1714$, 1672, 1652 cm⁻¹; ¹H NMR (CDCl₃, 400 MHz): δ_{H} (ppm) = 2.61 (s, 3H, -COC**H**₃), 3.39 (s, 3H, -NC**H**₃), 3.40 (s, 3H, -NC**H**₃), 4.95 (s, 2H, -C**H**₂), 7.13 (s, 1H, Ar**H**), 7.50 (d, 2H, J = 8.0 Hz, Ar**H**), 7.91 (d, 2H, J = 8.4 Hz, Ar**H**).

MS: $m/z = 341 [M^+ + H]$.

Anal. Calcd. For C₁₇H₁₆N₂O₄: C, 65.38; H, 5.16; N, 8.97; Found: C, 67.55; H, 5.20; N, 8.62.

Compound 3h:

Yield: 82%, solid; m.p. 116-118 °C; IR (KBr): $v_{\text{max}} = 1648$, 1676, 2212 cm⁻¹; ¹H-NMR (CDCl₃, 400 MHz): $\delta_{\text{H}} = 1.22$ (m, 6H, -NCH₂CH₃), 2.60 (s, 3H, -COCH₃), 3.77 (q, 2H, J = 7.2 Hz, -NCH₂CH₃), 4.01 (q, 2H, J = 6.8 Hz, -NCH₂CH₃), 4.94 (s, 2H, -CH₂), 7.11 (s, 1H, Ar**H**), 7.48 (d, 2H, J = 8.0 Hz, Ar**H**), 7.90 (d, 2H, J = 8.0 Hz, Ar**H**),

MS: $m/z = 341 [M^+ + H]$.

Anal. Calcd. For C₁₉H₂₀N₂O₄: C, 67.05, H, 5.92, N, 8.23; Found: C, 67.31; H, 5.94; N, 8.39.

Compound 1c:

Yield: 85%, solid, m.p. 94 °C; IR (KBr): $v_{max} = 1646$, 1698, 2242 cm⁻¹;

¹H-NMR (CDCl₃, 400 MHz): $\delta_{\rm H} = 1.23$ (t, 3H, -NCH₂C**H**₃ J = 7.2 Hz), 1.32 (t, 3H, -NCH₂C**H**₃ J = 7.2 Hz), 1.86 (t, 3H, -C**H**₃, J = 2.4 Hz), 3.81 (q, 2H, -NC**H**₂CH₃ J = 7.2 Hz), 4.03 (q, 2H, -NC**H**₂CH₃ J = 7.2 Hz), 4.64 (t, 2H, -C**H**₂, J = 2.4 Hz), 7.01 (s, 1H, Ar**H**). MS: m/z = 237 [M⁺+H].

Anal. Calcd. For $C_{12}H_{16}N_2O_3$: C, 61.00; H, 6.83; N, 11.86; Found: C, 61.17; H, 6.80; N, 11.97.

General procedure for the preparation of compounds 4a-j:

To a stirred solution of AgSbF₆ (9 mg, 0.026 mmol) in HOAc (5 mL), 5-(3-(4-chlorophenyl) prop-2-ynyloxy)-1,3-dimethylpyrimidine-2,4(1*H*, 3*H*)-dione **3a**, (100 mg, 0.26 mmol) was added at room temperature and stirred at 80 °C for 4h. After completion of the reaction (as monitored by TLC), the reaction mixture was cooled and neutralized with saturated NaHCO₃ solution. This was extracted with dichloromethane (3 x 10 mL). The combined organic extract was washed with brine (1 x10) and dried over Na₂SO₄. The solvent was distilled off. The resulting crude product was purified by column chromatography over silica gel (60-120 mesh) using petroleum ether-ethyl acetate mixture (2:3) as eluent to give the product **4a**.

Similarly compounds **4b-j** were obtained from the corresponding precursors.

4-(4-chlorophenyl)-10-hydroxy-7,9-dimethyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione (4a) :

Yield 87%, yellow, solid, m.p. 170-172 °C; IR (KBr): $v_{max} = 3345$, 1709, 1673 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ (ppm) = 2.81 (s, 3H, -NCH₃), 3.20 (s, 4H, -NCH₃ & -OH)

[But in D₂O exchange NMR, peak for -OH is vanished then it appears as 3.20(s, 3H, -

 NCH_3)], 4.76 (d, 1H, J = 3.6 Hz; -CHOH), 4.90 (dd, 1H, J = 1.6 Hz, 14 Hz, CH_aH_b), 5.11

 $(dd, 1H, J = 1.6 Hz, 13.6 Hz, CH_a\mathbf{H}_b), 6.19 (d, 1H, J = 1.6 Hz, =C\mathbf{H}), 6.95 (dd, 2H, J = 1.2)$

Hz, 8.4 Hz, Ar**H**), 7.36 (dd, 2H, J = 1.6 Hz, 8.4 Hz, Ar**H**),

¹³C NMR (75 MHz) $\delta_{\rm C}$ (ppm) = 27.9, 33.8, 76.1, 82.5, 89.8, 128.4, 128.7, 130.0, 130.7, 134.6, 137.9, 151.5, 168.6

DEPT (in 135 mode): 27.9, 33.8, 76.1(-ve), 82.5, 128.4, 128.7, 130.0

HRMS [M⁺+Na] calculated: 345.0618, observed: 345.0623

10-hydroxy-7,9-dimethyl-4-phenyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione(4b):

Yield 78%, solid, m.p. 146-148 °C IR (KBr): $v_{max} = 3427$, 1716, 1674 cm⁻¹.

¹H NMR (CDCl₃, 400 MHz): δ_H (ppm) = 2.75 (s, 3H, -NC**H**₃), 3.19 (s, 3H, -NC**H**₃), 3.44 (s,

1H, -OH), 4.77 (s, 1H, -CHOH), 4.90 (d, 1H, J = 13.6 Hz, CH_aH_b), 5.12 (d, 1H, J = 13.6

Hz, $CH_a\mathbf{H}_b$), 6.15 (s, 1H, = $C\mathbf{H}$), 6.99 (m, 2H, Ar \mathbf{H}), 7.31 (d, 3H, J = 2.4 Hz, Ar \mathbf{H}),

¹³C NMR (100MHz): δ_{C} (ppm) = 27.9, 33.9, 76.3, 82.9, 90.0, 127.2, 128.5, 128,7, 129.0, 132.3, 139.2, 151.5, 168.8

HRMS [M⁺+Na] calculated: 311.1008, observed: 311.3597

7,9-diethyl-10-hydroxy-4-phenyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione (4c):

Yield 75%, solid, m.p. 126-128 °C IR (KBr): $v_{max} = 3391$, 1712, 1674: cm⁻¹

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ (ppm) = 0.84 (t, 3H, J = 7.2 Hz, -NCH₂C**H**₃), 1.20 (t, 3H, J

= 7.2 Hz, $-NCH_2CH_3$), 3.16 (q, 2H, J = 7.2 Hz, $-NCH_2CH_3$), 3.29 (s, 1H, -OH), 3.81-3.94

(m, 2H, -NCH₂CH₃), 4.78 (s, 1H, -CHOH), 4.89 (d, 1H, J = 13.6 Hz, -CH_aH_b), 5.13 (d, 1H, J = 13.2 Hz, -CH_aH_b), 6.15 (s, 1H, =CH), 7.04-7.05 (m, 2H, ArH), 7.27-7.30 (m, 3H, ArH); ¹³C NMR (100 MHz): δ_{C} (ppm) = 13.0, 13.2, 36.7, 42.6, 76.0, 82.1, 89.4, 127.4, 128.3, 128.4, 128.6, 129.3, 132.4, 139.5, 151.0, 168.5.

HRMS [M⁺+Na] calculated: 339.1321, observed: 339.1324

4-(4-chlorophenyl)-7,9-diethyl-10-hydroxy-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione(4d):

Yield 84%, solid, m.p. 164-166 °C IR (KBr): $v_{max} = 3493$, 1709, 1675 cm⁻¹

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ (ppm) = 0.89 (t, 3H, J = 7.2 Hz, -NCH₂CH₃), 1.19 (t, 3H, J = 7.2 Hz, -NCH₂CH₃), 3.21 (q, 2H, J = 6.8 Hz, -NCH₂CH₃), 3.41 (s, 1H, -OH), 3.80-3.95 (m, 2H, -NCH₂CH₃), 4.78 (s, 1H, -CHOH), 4.87 (d, 1H, J = 13.6 Hz, CH_aH_b), 5.11 (d, 1H, J = 13.6 Hz, -CH_aH_b), 6.17 (s, 1H, =CH), 6.99 (d, 2H, J = 8.4 Hz, ArH), 7.27 (d, 2H, J = 8.4 Hz, ArH);

¹³C NMR (100 MHz): δ_{C} (ppm) = 13.1, 13.3, 36.8, 42.5, 75.9, 81.8, 89.4, 128.7, 130.2, 130.9, 134.7, 138.3, 151.0, 168.3.

HRMS [M⁺+Na] calculated: 373.0931, observed: 373.0931

10-hydroxy-7,9-dimethyl-4-p-tolyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione (4e):

Yield 80%, solid, m.p. 174-176 °C IR (KBr): $v_{max} = 3433$, 1717, 1673 cm⁻¹

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ (ppm) = 2.32 (s, 3H, -CH₃), 2.78 (s, 3H, -NCH₃), 3.21 (s, 3H, -NCH₃), 3.22 (s, 1H, -OH), 4.76 (d, 1H, J = 2.8 Hz; CHOH), 4.89 (d, 1H, J = 13.2 Hz, CH_aH_b), 5.11 (d, 1H, J = 13.2 Hz, CH_aH_b), 6.12 (s, 1H, =CH), 6.88 (d, 2H, J = 7.8 Hz, ArH), 7.11 (d, 2H, J = 8.0 Hz, ArH),

¹³C NMR (100MHz): δ_C (ppm) = 21.2, 28.0, 34.0, 76.2, 82.9, 89, 8, 127.0, 128.7, 129.2, 138.5, 139.1, 151.6, 168.9.

HRMS [M⁺+Na] calculated: 325.1165, observed: 325.1186

7,9-diethyl-10-hydroxy-4-p-tolyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione (4f):

Yield 82%, solid, m.p. 122-124 °C IR (KBr): $v_{max} = 3497, 1719, 1675$; cm⁻¹

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ (ppm) = 0.86 (t, 3H, J = 6.4 Hz, -NCH₂CH₃), 1.21 (t, 3H, J = 6.4 Hz, -NCH₂CH₃), 2.31 (s, 3H, -CH₃), 3.17-3.21 (m, 3H, -NCH₂CH₃ & -OH), 3.83-3.92 (m, 2H, -NCH₂CH₃), 4.77 (s, 1H, -CHOH), 4.87 (d, 1H, J = 13.2 Hz, CH_aH_b), 5.12 (d, 1H, J = 13.2 Hz, -CH_aH_b), 6.11 (s, 1H, =CH), 6.93 (d, 2H, J = 6.8 Hz, ArH), 7.09 (d, 2H, J = 6.8

¹³C NMR (100 MHz) δ_{C} (ppm) = 13.1, 13.2, 21.1, 36.7, 42.6, 75.9, 82.0, 89.3, 127.2, 128.8,

HRMS [M⁺+Na] calculated: 353.1478, observed: 353.1503

129.1, 129.4, 138.5, 139.5, 151.1, 168.5

Hz, Ar**H**)

4-(4-acetylphenyl)-10-hydroxy-7,9-dimethyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione (4g):

Yield 69%, solid, m.p. 170-172 °C IR (KBr): v_{max} = 3345, 1715, 1670, 1603 cm⁻¹

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ (ppm) = 2.59 (s, 3H, -COCH₃), 2.78 (s, 3H, -NCH₃), 3.22 (s, 3H, -NCH₃), 3.27 (s, 1H, -OH), 4.79 (s, 1H, - CHOH), 4.93 (dd, 1H, J = 1.4 Hz, 14.0 Hz, -CH_aH_b), 5.14 (dd, 1H, J = 0.8 Hz, 14.0 Hz, CH_aH_b), 6.26 (s, 1H, =CH), 7.12 (d, 2H, J = 8.0 Hz, ArH), 7.91 (d, 2H, J = 8.4 Hz, ArH),

¹³C NMR (100MHz) $\delta_{\rm C}$ (ppm) = 26.6, 28.1, 33.8, 76.4, 82.6, 90.0, 127.5, 128.5, 130.6, 136.8, 137.1, 138.2, 151.6, 168.5, 197.3

HRMS [M⁺+Na] calculated: 353.1114, observed: 353.1136

4-(4-acetylphenyl)-7,9-diethyl-10-hydroxy-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione (4h):

Yield 62%, solid, m.p. 144-146 °C IR (KBr) $v_{max} = 3308, 1704, 1680, 1668 \text{ cm}^{-1}$

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ (ppm) = 0.84 (t, 3H, -NCH₂C**H**₃, J = 7.2 Hz), 1.23 (t, 3H, J = 7.2 Hz, -NCH₂C**H**₃), 2.59 (s, 3H, -COC**H**₃), 3.18 (q, 2H, J = 7.2 Hz, -NC**H**₂CH₃), 3.32 (s,

1H, -OH), 3.83-3.95 (m, 2H, -NCH₂CH₃), 4.80 (s, 1H, -CHOH), 4.92 (d, 1H, J = 13.6 Hz, CH_aH_b), 5.16 (d, 1H, J = 13.6 Hz, -CH_aCH_b), 6.26 (s, 1H, =CH), 7.17 (d, 2H, J = 7.6 Hz, ArH), 7.89 (d, 2H, J = 8.0 Hz, ArH);

¹³C NMR (100 MHz): δ_C (ppm) = 13.1, 13.3, 26.6, 36.8, 42.5, 76.1, 81.8, 89.5, 127.7, 128.5, 131.0, 136.8, 137.3, 138.5, 151.0, 168.2, 197.3

HRMS [M⁺+Na] calculated: 381.1427, observed: 381.1465

7,9-diethyl-10-hydroxy-4-methyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione (4i):

Yield 59%, solid, m.p. 118-120 °C IR (KBr): $v_{\text{max}} = 3443$, 1713, 1675 cm⁻¹

¹H NMR (CDCl₃, 400 MHz): $\delta_{\rm H}$ (ppm) = 1.17 (t, 3H, J = 7.2 Hz, -NCH₂CH₃), 1.28 (t, 3H, J = 7.2 Hz, -NCH₂CH₃), 1.72 (d, 3H, J = 2.0 Hz, -CH₃), 3.13 (s, 1H, -OH), 3.55-3.65 (m, 2H, -NCH₂CH₃), 3.78-3.86 (m, 1H, -NCH_aH_bCH₃), 3.89-3.98 (m, 1H, -NCH_aH_bCH₃), 4.70 (d, 1H, J = 10.8 Hz, -CH_aH_b) 4.73 (s, 1H, -CHOH), 4.94 (dd, 1H, J = 2.0 Hz, J = 10.8 Hz, -CH_aH_b), 5.84 (s, 1H, =CH)

¹³C NMR (100 MHz): δ_C (ppm) = 12.5, 13.5, 13.7, 36.6, 43.1, 75.3, 82.0, 89.5, 126.7, 133.8, 151.7, 168.7

HRMS [M⁺+Na] calculated: 277.1165, observed: 277.1174

1,3,7-trimethylfuro[3,2-d]pyrimidine-2,4(1H,3H)-dione (4j): Yield 85%, Reference No.