Supporting Information (SI)

General: All the chemicals were procured from either Sigma Aldrich Chemicals Pvt. Ltd. or Spectrochem, India. Silica gel [(60-120 mesh) was used for chromatographic separation. Silica gel G [E-Merck (India)] was used for TLC. Petroleum ether refers to the fraction boiling between $60^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$. IR spectra were recorded on a Perkin-Elmer L 120-000A spectrometer ($v_{\max }$ in cm^{-1}) on KBr disks. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ spectra were recorded on a Bruker DPX-300 and Bruker DPX-400 Bruker DPX-500 spectrometer in CDCl_{3} (chemical shift in δ) with TMS as internal standard. MS were recorded on a Q-TOF microTm instrument at the Indian Institute of Chemical Biology. CHN was recorded on 2400 series II CHN analyzer Perkin Elmer. Melting points were determined in open capillaries and are uncorrected. HRMS were recorded on a Q-tof Micro YA263 instrument.

General procedure for the preparation of compound $3 \mathrm{a}-\mathrm{h}$ and 1 c :

A mixture of the compounds $\mathbf{1 a}(500 \mathrm{mg}, 2.74 \mathrm{mmol})$, p-chloroiodobenzene ($786 \mathrm{mg}, 3.29$ $\mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.13 \mathrm{mmol})$ and $\mathrm{CuI}(0.27 \mathrm{mmol})$ in dry $\mathrm{DMF}(5 \mathrm{~mL})$ and dry $\mathrm{Et}_{3} \mathrm{~N}$ $(1.5 \mathrm{~mL})$ was stirred at room temperature for 1 h . After completion of the reaction (as monitored by TLC), the reaction mixture was poured in water. This was extracted with dichloromethane ($3 \times 15 \mathrm{~mL}$). The combined organic extract was washed with brine (1×15) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was distilled off. The resulting crude product was purified by column chromatography over silica gel (60-120 mesh) using petroleum etherethyl acetate mixture (4:1) as an eluent to give the product 3a. Similarly precursors 3b-h were prepared from the corresponding iodobenzene derivatives. The compound 1c was prepared by refluxing 1,3-diethyl-5-hydroxypyrimidine-2,4(1H,3H)-dione (1gm, 5.4 mmol) with 1-bromobut-2-yne ($0.85 \mathrm{gm}, 6.4 \mathrm{mmol}$) and anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(1.5 \mathrm{gm}, 10.8 \mathrm{mmol})$ in acetone (75 mL) for 5 h and purified by column chromatography using petroleum ether-ethyl acetate mixture (3:2) as an eluent.

Compound 3a:

Yield: 85%, solid; m.p. $158-160^{\circ} \mathrm{C}$; IR (KBr): $v_{\max }=1642,1657,1716,2232 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta_{\mathrm{H}}=3.38\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{NCH}_{3}\right), 4.91\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 7.09(\mathrm{~s}, 1 \mathrm{H}$, ArH), 7.29-7.30 (m, 2H, ArH), 7.33-7.35 (m, 2H, ArH).

MS: $\mathrm{m} / \mathrm{z}=305\left[\mathrm{M}^{+}+\mathrm{H}\right]$.
Anal. Calcd. For: $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C, 59.12; H, 4.30; N, 9.19; Found: C, 59.34; H, 4.26; N, 9.34 .

Compound 3b:

Yield: 89%, solid; m.p. $118-120^{\circ} \mathrm{C}$; IR (KBr): $v_{\max }=1635,1644,1704,2215 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}=3.38\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{NCH}_{3}\right), 4.91\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 7.12(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{ArH}), 7.27-7.35(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.40-7.42(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$
${ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta_{\mathrm{C}}=28.3,37.0,59.9,83.3,88.5,122.0,128.4,128.9,131.0$, 131.7, 132.2, 150.7, 160.2.

MS: $m / z=271\left[M^{+}+H\right]$.
Anal. Calcd. For: $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 66.66; H, 5.22; N, 10.36; Found: C, 66.82; H, 5.24; N, 10.61.

Compound 3c:

Yield: 86%, solid; m.p. $124-126^{\circ} \mathrm{C}$; IR (KBr): $v_{\max }=1648,1676,1708,2210 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}=1.22-1.42\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.76-3.81(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.01-4.12\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.91\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 7.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.29-7.33$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{ArH}), 7.34-7.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$.

MS: $\mathrm{m} / \mathrm{z}=299\left[\mathrm{M}^{+}+\mathrm{H}\right]$
Anal. Calcd. For $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 68.44; H, 6.08; N, 9.39; Found: C, 68.56; H, 6.04; N, 9.48.

Compound 3d:

Yield: 86%, solid; m.p. $122-124^{\circ} \mathrm{C}$; IR (KBr): $v_{\max }=1651,1667,1708,2224 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta_{\mathrm{H}}=1.22-1.29\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.76(\mathrm{q}, 2 \mathrm{H}, \quad J=7.2 \mathrm{~Hz}$, $\left.-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.01\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.90\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 7.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$, 7.28-7.30 (m, 2H, ArH), 7.32-7.34 (m, 2H, ArH).

MS: $\mathrm{m} / \mathrm{z}=333\left[\mathrm{M}^{+}+\mathrm{H}\right]$.
Anal. Calcd. For: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C, 61.36; H, 5.15; N, 8.42; Found: C, 61.62; H, 5.18; N, 8.63.

Compound 3e:

Yield: 88%, solid; m.p. $143-145^{\circ} \mathrm{C}$; IR (KBr): $v_{\max }=1644,1655,1716,2229 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta_{\mathrm{H}}=2.35\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.38\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{NCH}_{3}\right), 4.90(\mathrm{~s}, 2 \mathrm{H},-$ $\left.\mathrm{CH}_{2}\right), 7.10(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{ArH}), 7.29(\mathrm{~d}, 2 \mathrm{H}, J=6.4 \mathrm{~Hz}, \mathrm{ArH})$,

MS: $\mathrm{m} / \mathrm{z}=285\left[\mathrm{M}^{+}+\mathrm{H}\right]$.
Anal. Calcd. For: $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 67.59; H, 5.67; N, 9.85; Found; C, 67.74; H, 5.71; N, 9.72.

Compound 3f:

Yield: 88%, solid; m.p. $92-94{ }^{\circ} \mathrm{C}$; IR (KBr): $v_{\max }=1644,1672,1703,2215 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta_{\mathrm{H}}=1.21-1.27\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.77$ $\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right.$) , $4.05\left(\mathrm{q}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.90\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right)$, $7.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.28-7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.31-7.33(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$,

MS: $\mathrm{m} / \mathrm{z}=313\left[\mathrm{M}^{+}+\mathrm{H}\right]$.
Anal. Calcd. For $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 69.21; H, 6.45; N, 8.97; Found: C, 69.01; H, 6.50; N, 9.11.

Compound 3g:

Yield: 80%, solid; m.p. $158-160^{\circ} \mathrm{C}$; IR (KBr): $v_{\max }=1714,1672,1652 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=2.61\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 3.39\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 3.40$ ($\mathrm{s}, 3 \mathrm{H},-\mathrm{NCH}_{3}$), $4.95\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 7.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH}), 7.50(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.91$ (d, 2H, $J=8.4 \mathrm{~Hz}, \mathrm{ArH}$).

MS: $\mathrm{m} / \mathrm{z}=341\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Anal. Calcd. For $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 65.38; H, 5.16; N, 8.97; Found: C, 67.55; H, 5.20; N, 8.62.

Compound 3h:

Yield: 82%, solid; m.p. $116-118{ }^{\circ} \mathrm{C}$; IR (KBr): $v_{\max }=1648,1676,2212 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}=1.22\left(\mathrm{~m}, 6 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.60\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 3.77(\mathrm{q}, 2 \mathrm{H}, J=$ $\left.7.2 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.01\left(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.94\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right), 7.11(\mathrm{~s}, 1 \mathrm{H}$, ArH), $7.48(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.90(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$, MS: $\mathrm{m} / \mathrm{z}=341\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Anal. Calcd. For $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 67.05, H, 5.92, N, 8.23; Found: C, 67.31; H, 5.94; N, 8.39.

Compound 1c:

Yield: 85%, solid, m.p. $94{ }^{\circ} \mathrm{C}$; IR (KBr): $v_{\max }=1646,1698,2242 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}=1.23\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3} J=7.2 \mathrm{~Hz}\right), 1.32(\mathrm{t}, 3 \mathrm{H}$, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{3} J=7.2 \mathrm{~Hz}\right), 1.86\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{3}, J=2.4 \mathrm{~Hz}\right), 3.81\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3} J=7.2 \mathrm{~Hz}\right)$, $4.03\left(\mathrm{q}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3} J=7.2 \mathrm{~Hz}\right), 4.64\left(\mathrm{t}, 2 \mathrm{H},-\mathrm{CH}_{2}, J=2.4 \mathrm{~Hz}\right), 7.01(\mathrm{~s}, 1 \mathrm{H}, \mathrm{ArH})$. MS: $\mathrm{m} / \mathrm{z}=237\left[\mathrm{M}^{+}+\mathrm{H}\right]$.

Anal. Calcd. For $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C, 61.00; H, 6.83; N, 11.86; Found: C, 61.17; H, 6.80; N, 11.97.

General procedure for the preparation of compounds 4a-j:

To a stirred solution of $\mathrm{AgSbF}_{6}(9 \mathrm{mg}, 0.026 \mathrm{mmol})$ in $\mathrm{HOAc}(5 \mathrm{~mL}), 5-(3-(4-$ chlorophenyl) prop-2-ynyloxy)-1,3-dimethylpyrimidine-2,4($1 H, 3 H$)-dione 3a, ($100 \mathrm{mg}, 0.26 \mathrm{mmol}$) was added at room temperature and stirred at $80^{\circ} \mathrm{C}$ for 4 h . After completion of the reaction (as monitored by TLC), the reaction mixture was cooled and neutralized with saturated NaHCO_{3} solution. This was extracted with dichloromethane (3 x 10 mL). The combined organic extract was washed with brine (1×10) and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was distilled off. The resulting crude product was purified by column chromatography over silica gel (60-120 mesh) using petroleum ether-ethyl acetate mixture (2:3) as eluent to give the product $\mathbf{4 a}$.

Similarly compounds $\mathbf{4 b} \mathbf{- j}$ were obtained from the corresponding precursors.
4-(4-chlorophenyl)-10-hydroxy-7,9-dimethyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8dione (4a) :

Yield 87%, yellow, solid, m.p. $170-172{ }^{\circ} \mathrm{C}$; IR (KBr): $v_{\text {max }}=3345,1709,1673 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=2.81\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 3.20\left(\mathrm{~s}, 4 \mathrm{H},-\mathrm{NCH}_{3} \&-\mathrm{OH}\right)$ [But in $\mathrm{D}_{2} \mathrm{O}$ exchange NMR, peak for -OH is vanished then it appears as $3.20(\mathrm{~s}, 3 \mathrm{H}$, $\left.\left.\mathrm{NCH}_{3}\right)\right], 4.76(\mathrm{~d}, 1 \mathrm{H}, J=3.6 \mathrm{~Hz} ;-\mathrm{CHOH}), 4.90\left(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, 14 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 5.11$ $\left(\mathrm{dd}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz}, 13.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}}\right), 6.19(\mathrm{~d}, 1 \mathrm{H}, J=1.6 \mathrm{~Hz},=\mathrm{CH}), 6.95(\mathrm{dd}, 2 \mathrm{H}, J=1.2$ $\mathrm{Hz}, 8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.36$ (dd, $2 \mathrm{H}, J=1.6 \mathrm{~Hz}, 8.4 \mathrm{~Hz}, \mathrm{ArH}$),
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}) \delta_{\mathrm{C}}(\mathrm{ppm})=27.9,33.8,76.1,82.5,89.8,128.4,128.7,130.0,130.7$, $134.6,137.9,151.5,168.6$

DEPT (in 135 mode): 27.9, 33.8, 76.1(-ve), 82.5, 128.4, 128.7, 130.0
HRMS $\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ calculated: 345.0618, observed: 345.0623
10-hydroxy-7,9-dimethyl-4-phenyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione(4b):
Yield 78%, solid, m.p. $146-148{ }^{\circ} \mathrm{C}$ IR (KBr): $v_{\max }=3427,1716,1674 \mathrm{~cm}^{-1}$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=2.75\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 3.19\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 3.44(\mathrm{~s}$, $1 \mathrm{H},-\mathrm{OH}), 4.77(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHOH}), 4.90\left(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}}\right), 5.12(\mathrm{~d}, 1 \mathrm{H}, J=13.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}}\right), 6.15(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.99(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.31(\mathrm{~d}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{ArH})$,
${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}): \delta_{\mathrm{C}}(\mathrm{ppm})=27.9,33.9,76.3,82.9,90.0,127.2,128.5,128,7,129.0$, 132.3, 139.2, 151.5, 168.8

HRMS $\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ calculated: 311.1008, observed: 311.3597
7,9-diethyl-10-hydroxy-4-phenyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione (4c):
Yield 75%, solid, m.p. $126-128^{\circ} \mathrm{C}$ IR (KBr): $v_{\max }=3391,1712,1674: \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=0.84\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.20(\mathrm{t}, 3 \mathrm{H}, J$ $\left.=7.2 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.16\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.29(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 3.81-3.94$
(m, 2H, -NCH2 CH_{3}), $4.78(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHOH}), 4.89\left(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz},-\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 5.13(\mathrm{~d}, 1 \mathrm{H}$, $\left.J=13.2 \mathrm{~Hz},-\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 6.15(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.04-7.05(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.27-7.30(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH})$; ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}): \delta_{\mathrm{C}}(\mathrm{ppm})=13.0,13.2,36.7,42.6,76.0,82.1,89.4,127.4,128.3,128.4$, 128.6, 129.3, 132.4, 139.5, 151.0, 168.5.

HRMS [$\mathrm{M}^{+}+\mathrm{Na}$] calculated: 339.1321, observed: 339.1324

4-(4-chlorophenyl)-7,9-diethyl-10-hydroxy-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-

 dione(4d):Yield 84%, solid, m.p. $164-166^{\circ} \mathrm{C}$ IR (KBr) : $v_{\max }=3493,1709,1675 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=0.89\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.19(\mathrm{t}, 3 \mathrm{H}, J$ $\left.=7.2 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.21\left(\mathrm{q}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.41(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 3.80-3.95$ $\left(\mathrm{m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.78(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHOH}), 4.87\left(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 5.11(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=13.6 \mathrm{~Hz},-\mathrm{CH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}}\right), 6.17(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 6.99(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.4$ $\mathrm{Hz}, \mathrm{Ar} \mathbf{H})$;
${ }^{13} \mathrm{C}$ NMR (100 MHz): $\delta_{\mathrm{C}}(\mathrm{ppm})=13.1,13.3,36.8,42.5,75.9,81.8,89.4,128.7,130.2$, 130.9, 134.7, 138.3, 151.0, 168.3.

HRMS [$\mathrm{M}^{+}+\mathrm{Na}$] calculated: 373.0931, observed: 373.0931

10-hydroxy-7,9-dimethyl-4-p-tolyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione (4e):

Yield 80%, solid, m.p. $174-176^{\circ} \mathrm{C}$ IR (KBr): $v_{\max }=3433,1717,1673 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=2.32\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.78\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 3.21(\mathrm{~s}$, $\left.3 \mathrm{H},-\mathrm{NCH}_{3}\right), 3.22(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 4.76(\mathrm{~d}, 1 \mathrm{H}, J=2.8 \mathrm{~Hz} ; \mathrm{CHOH}), 4.89(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 5.11\left(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}}\right), 6.12(\mathrm{~s}, 1 \mathrm{H},=\mathbf{C H}), 6.88(\mathrm{~d}, 2 \mathrm{H}, J=7.8 \mathrm{~Hz}$, $\mathrm{ArH}), 7.11(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$,
${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}): \delta_{\mathrm{C}}(\mathrm{ppm})=21.2,28.0,34.0,76.2,82.9,89,8,127.0,128.7,129.2$, 138.5, 139.1, 151.6, 168.9.

HRMS $\left[\mathrm{M}^{+}+\mathrm{Na}\right.$] calculated: 325.1165 , observed: 325.1186

7,9-diethyl-10-hydroxy-4-p-tolyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione (4f):

Yield 82%, solid, m.p. $122-124^{\circ} \mathrm{C}$ IR (KBr): $v_{\max }=3497,1719,1675 ; \mathrm{cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=0.86\left(\mathrm{t}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.21(\mathrm{t}, 3 \mathrm{H}, J$ $\left.=6.4 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.31\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right), 3.17-3.21\left(\mathrm{~m}, 3 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3} \&-\mathrm{OH}\right), 3.83-3.92$ (m, 2H, $-\mathrm{NCH}_{2} \mathrm{CH}_{3}$), $4.77(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHOH}), 4.87\left(\mathrm{~d}, 1 \mathrm{H}, J=13.2 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 5.12(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=13.2 \mathrm{~Hz},-\mathrm{CH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}}\right), 6.11(\mathrm{~s}, 1 \mathrm{H},=\mathbf{C H}), 6.93(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{ArH}), 7.09(\mathrm{~d}, 2 \mathrm{H}, J=6.8$ $\mathrm{Hz}, \mathrm{ArH})$
${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}) \delta_{\mathrm{C}}(\mathrm{ppm})=13.1,13.2,21.1,36.7,42.6,75.9,82.0,89.3,127.2,128.8$, 129.1, 129.4, 138.5, 139.5, 151.1, 168.5

HRMS [$\mathrm{M}^{+}+\mathrm{Na}$] calculated: 353.1478, observed: 353.1503

4-(4-acetylphenyl)-10-hydroxy-7,9-dimethyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8dione (4g):

Yield 69%, solid, m.p. $170-172{ }^{\circ} \mathrm{C}$ IR (KBr): $v_{\max }=3345,1715,1670,1603 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=2.59\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 2.78\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{NCH}_{3}\right), 3.22$ ($\mathrm{s}, 3 \mathrm{H},-\mathrm{NCH}_{3}$), $3.27(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 4.79(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHOH}), 4.93(\mathrm{dd}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}, 14.0 \mathrm{~Hz}$, $-\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}$), $5.14\left(\mathrm{dd}, 1 \mathrm{H}, \quad J=0.8 \mathrm{~Hz}, 14.0 \mathrm{~Hz}, \mathrm{CH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}}\right), 6.26(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.12(\mathrm{~d}, 2 \mathrm{H}, J=$ $8.0 \mathrm{~Hz}, \mathrm{ArH}), 7.91(\mathrm{~d}, 2 \mathrm{H}, J=8.4 \mathrm{~Hz}, \mathrm{ArH})$,
${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}) \delta_{\mathrm{C}}(\mathrm{ppm})=26.6,28.1,33.8,76.4,82.6,90.0,127.5,128.5,130.6$, 136.8, 137.1, 138.2, 151.6, 168.5, 197.3

HRMS [$\mathrm{M}^{+}+\mathrm{Na}$] calculated: 353.1114, observed: 353.1136

4-(4-acetylphenyl)-7,9-diethyl-10-hydroxy-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione

 (4h):Yield 62%, solid, m.p. $144-146^{\circ} \mathrm{C}$ IR $(\mathrm{KBr}) v_{\max }=3308,1704,1680,1668 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=0.84\left(\mathrm{t}, 3 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3}, J=7.2 \mathrm{~Hz}\right), 1.23(\mathrm{t}, 3 \mathrm{H}, J$ $\left.=7.2 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 2.59\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{COCH}_{3}\right), 3.18\left(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.32(\mathrm{~s}$,
$1 \mathrm{H},-\mathrm{OH}), 3.83-3.95\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 4.80(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHOH}), 4.92(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 5.16\left(\mathrm{~d}, 1 \mathrm{H}, J=13.6 \mathrm{~Hz},-\mathrm{CH}_{\mathrm{a}} \mathrm{CH}_{\mathrm{b}}\right), 6.26(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 7.17(\mathrm{~d}, 2 \mathrm{H}, J=7.6 \mathrm{~Hz}$, $\mathrm{ArH}), 7.89(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}, \mathrm{ArH})$;
${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}): \delta_{\mathrm{C}}(\mathrm{ppm})=13.1,13.3,26.6,36.8,42.5,76.1,81.8,89.5,127.7,128.5$, 131.0, 136.8, 137.3, 138.5, 151.0, 168.2, 197.3

HRMS $\left[\mathrm{M}^{+}+\mathrm{Na}\right.$] calculated: 381.1427, observed: 381.1465

7,9-diethyl-10-hydroxy-4-methyl-1-oxa-7,9-diazaspiro[4.5]dec-3-ene-6,8-dione (4i):

Yield 59%, solid, m.p. $118-120^{\circ} \mathrm{C}$ IR (KBr): $v_{\max }=3443,1713,1675 \mathrm{~cm}^{-1}$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta_{\mathrm{H}}(\mathrm{ppm})=1.17\left(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.28(\mathrm{t}, 3 \mathrm{H}, J$ $\left.=7.2 \mathrm{~Hz},-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 1.72\left(\mathrm{~d}, 3 \mathrm{H}, J=2.0 \mathrm{~Hz},-\mathrm{CH}_{3}\right), 3.13(\mathrm{~s}, 1 \mathrm{H},-\mathrm{OH}), 3.55-3.65(\mathrm{~m}, 2 \mathrm{H}$, $\left.-\mathrm{NCH}_{2} \mathrm{CH}_{3}\right), 3.78-3.86\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{NCH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}} \mathrm{CH}_{3}\right), 3.89-3.98\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{NCH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}} \mathrm{CH}_{3}\right), 4.70(\mathrm{~d}$, $\left.1 \mathrm{H}, \quad J=10.8 \mathrm{~Hz},-\mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}}\right) 4.73(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHOH}), 4.94(\mathrm{dd}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}, J=10.8 \mathrm{~Hz},-$ $\left.\mathrm{CH}_{\mathrm{a}} \mathbf{H}_{\mathrm{b}}\right), 5.84(\mathrm{~s}, 1 \mathrm{H},=\mathbf{C H})$
${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}): \delta_{\mathrm{C}}(\mathrm{ppm})=12.5,13.5,13.7,36.6,43.1,75.3,82.0,89.5,126.7,133.8$, 151.7, 168.7

HRMS $\left[\mathrm{M}^{+}+\mathrm{Na}\right]$ calculated: 277.1165, observed: 277.1174
1,3,7-trimethylfuro[3,2-d]pyrimidine-2,4(1H,3H)-dione (4j): Yield 85%, Reference No.

