Supporting Information

Luminescent Micro and Nanogel Formation from AB₃ Type Poly(aryl ether) Dendron Derivatives *without* Conventional Multi-Interactive Gelation Motifs

P. Rajamalli and Edamana Prasad* Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600 036, India Email: pre@iitm.ac.in

Contents			Page Number
1.	Synthetic	Procedure and Characterization of dendrons	01
	1.1.	Synthesis of poly(aryl ether) (AB) ₃ G ₁ -Cl dendrons	01
	1.2.	Synthesis of poly(aryl ether) (AB) ₃ G ₂ dendrons	02
	1.3.	Synthesis of poly(aryl ether) $(AB)_2 G_1$ dendrons	04
	1.4.	Synthesis of poly(aryl ether) $(AB)_2 G_2$ dendrons	06
2.	. Synthesis of anthracene cored dendrons		07
3.	SEM images of gel formed by the poly(aryl ether) dendron VI and photogragh		h
	of gel		09
4.	Powder X	-Ray Diffraction patterns	09

1. Synthetic procedure and characterization of dendrons

1.1 Synthesis of [(AB)₃G₁-Cl]

To a solution of $(AB)_3G_1$ -CH₂OH (5g, 0.0117moles)in dichloromethane (40 mL) was added a catalytic amount of DMF (3mL) followed by SOCl₂ (1.6mL, 0.014moles) with stirring. The reaction mixture was stirred at room temperature for 2 hours. The solvent and excess SOCl₂ were distilled out under reduced pressure. The resulting yellow solid was dissolved in diethyl ether and washed with water and the organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure and washed with methanol to get pure product. The yield (AB)₃G₁-Cl was 4.4g (84%). ¹H NMR (400 MHz, CDCl₃) δ : 4.20 (s, CH₂Cl, 2H), 4.91 (s, ArCH₂O, 2H), 5.01 (s, ArCH₂O, 4H), 6.52 (s, ArH, 2H), 7.12-7.34 (m, PhH, 15H). MS: *m/z* Calcd for C₂₈H₂₅O₅:444, found: 445 [M+H]⁺, 467 [M+Na]⁺.

1.2. Synthesis of poly(aryl ether) (AB)₃ G₂ dendrons

1.2.1. Synthesis of (AB)₃G₂-COOCH₃(VI)

Methyl-3, 4, 5- trihydroxy benzoate (0.61g, 0.0034moles) and K₂CO₃ (3.31g, 0.0204moles) in 35 mL dry acetone were taken in a 100 mL round bottom flask. (**AB**)₃G₁-CI (4.5g,0.010moles) was added followed by the addition of a catalytic amount of tertiary butyl ammonium iodide (0.365g, 0.001 moles). The solution was heated to reflux with stirring for 24 hours. After completion of reaction the reaction mixture was cooled to room temperature and filtered. The filtered salts were further washed twice with dichloromethane. The solvent was then removed under reduced pressure using a rotary evaporator to afford an oil that turned into a solid upon standing. The solid was recrystallized from hexane: toluene (70:30). The yield (**AB**)₃ G₂-COOCH₃ was 4.2g (89.3%) Spectral characterization: ¹H NMR (400 MHz, CDCl₃) δ :3.82 (s, COOCH3, 3H), 4.75-4.93 (s, ArCH2O, 24H), 6.66 (s, ArH, 2H) 6.68 (s, ArH, 4H), 7.10-7.29 (m, ArH & PhH, 47H). ¹³c NMR(100 MHz, CDCl₃) δ : 52.31,71.03, 71.25,71.49, 75.10, 75,21, 107.03, 107.65, 109.71, 125.44, 127.45, 127.49, 127.67, 127.77, 127.88, 128,10, 128.16, 128.40,128.49, 132.29, 133.06, 136.99, 137.03, 137.92, 138.30, 142.43, 152.51, 152.83, 153.11, 166.51. MS: m/z Calcd for C₉₂H₈₀O₁₄: 1408, Found : 1426 [M+NH₄]⁺.

1.2.2. Synthesis of (AB)₃G₂-COOH(V)

A solution of KOH (5mL, 10N) was added to the compound **2** (5g, 0.0035 moles) in 60 mL ethanol. The mixture was refluxed for 3 hours and then acidified with concentrated HCl. After refluxing the acidified reaction mixture for 15 minute the precipitate was filtered and washed

with water for several times to get the product $(AB)_3G_2$ -COOH with an yield of 4.3g(89.5%) Spectral characterization: ¹H NMR (400 MHz, CDCl₃) δ :4.89-5.06 (s, ArCH2O, 24H), 6.80 (s, ArH, 6H), 7.23-7.47 (m, ArH& PhH, 47H), ¹³C NMR(100 MHz, CDCl₃) δ : 71.06, 71.27, 71.52, 75.13, 75.23, 107.09, 107.67, 110.22, 127.49, 127.72, 127.81, 27.91, 128.14, 128.19, 128.44, 128.52, 132.25, 137.00, 137.92, 138.31, 143.02, 152.53, 152.86, 153.13, 170.23. MS : m/z Calcd for C₉₁H₇₈O₁₄: 1394, found: 1414 [M+NH4]⁺.

1.2.3. Synthesis of (AB)₃G₂-CH₂OH(VII)

Lithium aluminum hydride (0.114 g, 0.0213 moles) was suspended into 10 mL of freshly distilled THF in a dry three-neck round-bottom flask under nitrogen atm. (AB)₃G₂-COOCH₃ (4 g, 0.0028 moles) was dissolved in 15 mL of freshly distilled THF and added dropwise to the lithium aluminum hydride solution. The reaction mixture was refluxed with stirring for 2 h. The THF solution was cooled to room temperature and transferred to a beaker. Water was added very slowly drop wise to the vigorously stirred THF solution until the gray color of the lithium aluminum hydride disappeared and a white solid was formed which is filtered and washed with THF. Excess solvent was removed under reduced pressure and the crude product was recrystallized from 95% methanol/water mixture to get the alcohol (AB)₃ G₂-CH₂OH with 90% ¹H NMR (400 MHz, yield (7.6g). Spectral characterization: **CDCl₃**) δ: 4.60 (s,CH₂OH,2H),4.93-5.07 (s, ArCH₂O, 24H), 6.69-6.89 (s,ArH,8H), 7.32-7.42(m, PhH, 45H). ¹³C NMR(100MHz, CDCl₃) δ : 65.20, 71.03, 71.20, 71.40, 75.24, 106.82, 107.61, 127.49, 127.55, 127.68, 127.79, 127.89, 128.19, 128.41, 128.45, 128.52, 132.83, 137.03, 137.09, 138.12, 152.90, 153.07. MS : m/z Calcdfor C₉₁H₈₀O₁₃:1380, found: 1398 (M+NH4)⁺.

1.3. Synthesis of poly(aryl ether) (AB)₂ G₁ dendrons

1.3.1. Synthesis of (AB)₂G₁-COOCH₃(X)

Methyl-3, 5-dihydroxybenzoate (8g, 0.0476 moles) and potassium carbonate (13.2 g, 0.0952 moles)in 130 ml of 1-4 dioxane were taken in a 250ml round bottom flask. Benzyl chloride (10.95ml, 0.0952 moles) was added followed by the addition of a catalytic amount of tertiary butyl ammonium iodide (1.5 g, 0.0047 moles). The solution was heated to reflux with stirring for 24 hours. The solvent was then removed under reduced pressure using a rotary evaporator to afford an oil that turned into a solid upon standing. The solid was crystallized from methanol. (AB)₂G₁-COOCH₃ yield was 15 g (90.9%). Spectral characterization: ¹H NMR (400 MHz, CDCl₃) δ : 3.80 (s, COOCH3, 3H), 4.97 (s, ArCH2O, 4H), 6.71 (s, ArH, 1H), 7.23-7.34 (m, ArH &PhH, 12H). ¹³C NMR (100 MHz, CDCl₃) δ : 52.29, 70.34, 107.32, 108.46, 127.60, 128.15, 128.50, 128.67, 132.12, 136.54, 159.86, 166.80, MS : m/z Calcd for C₂₂H₂₁O₄: 348, found: 349 [M+H]⁺.

1.3.2. Synthesis of (AB)₂ G₁-CH₂-OH (XI)

Lithium aluminum hydride (1.54 g, 0.0405 moles) was suspended into 50 mL of freshly distilled THF in a dry three-neck round-bottom flask under nitrogen atm. $(AB)_2G_1$ -COOCH₃ (13.1 g, 0.0376 moles) was dissolved in 60 ml of freshly distilled THF and added drop wise to the lithium aluminum hydride solution. The reaction mixture was heated to reflux with stirring for 2 h. The THF solution was cooled to room temperature and transferred to a beaker. Water was added very slowly drop wise to the vigorously stirred THF solution until the gray color of the lithium aluminum hydride disappeared and a white solid was formed which is filtered and washed with THF, Excess solvent was removed under reduced pressure and the crude product

was recrystallized from 95% methanol/water mixture to get the alcohol (**AB**)₂**G**₁-**CH**₂-**OH** with yield 10.9 g (90.6%). Spectral characterization: ¹**H NMR** (**400 MHz**, **CDCl**₃) δ :4.54 (s, CH2OH, 2H), 4.95 (s, ArCH2O, 4H), 6.47-6.54 (s, ArH, 3H), 7.17-7.34 (m, PhH, 10H). ¹³**CNMR** (**100MHz**, **CDCl**₃) δ : 65.34, 70.13, 101.39, 105.82, 127.54, 128.03, 128.62, 136.89, 143.47, 160.22, MS: m/z Calcd for C₂₁H₂₀O₃: 320, found: 321 [M+H]⁺.

1.3.3. Synthesis of (AB)₂G₁-COOH(IX)

A solution of KOH (5mL, 10N) was added to the $(AB)_2G_1$ -COOCH₃ (5g, 0.0144 moles) in 95 mL ethanol. The mixture was refluxed for three hours and then acidified with concentrated HCl. After refluxing for the acidified reaction mixture for 15 minute the precipitate was filtered and washed with water for several times to get the product $(AB)_2G_1$ -COOH with an yield of 4.3g(89.7%), Spectral characterization: ¹H NMR (400 MHz, CDCl₃) δ : 5.13(s, ArCH2O, 4H), 6.90 (s, ArH, 1H), 7.30-7.49 (m, ArH & PhH, 12H). ¹³C NMR(100 MHz, CDCl₃) δ : 70.38, 108.25, 108.96, 127.60, 128.18, 128.68, 131.09, 136.41, 159.89, MS : m/z Calcd for C₂₁H₁₉O₄: 334, found: 335 [M+H]⁺.

1.3.4. Synthesis of (AB)₂G₁-CH₂Cl

To a solution of $(AB)_2 G_1$ -CH₂-OH (7g, 0.0218 moles)in dichloromethane (40mL) was added a catalytic amount of DMF (3mL) followed by SOCl₂ (1.95mL, 0.026 moles) with stirring. It was stirred at room temperature for 2hours. The solvent and excess SOCl₂ were distilled out under reduced pressure. The resulting yellow solid was dissolved in diethyl ether and washed with water and the organic layer was dried over Na₂SO₄. The solvent was removed under reduced pressure and washed with methanol to get pure product. the (AB)₂G₁-CH₂Cl yield was obtained 6.5g (88.3%). Spectral characterization: ¹H NMR (400 MHz, CDCl3) δ : 4.93 (s, ArCH2O, 4H), 6.43-6.52 (s, ArH, 3H), 7.15-7.30 (m, ArH&PhH,10H) MS : m/z Calcd for $C_{21}H_{19}O_2Cl$: 338, found : 339 [M+H]⁺.

1.4. Synthesis of poly(aryl ether) (AB)₂ G₂ dendrons

1.4.1. Synthesis of (AB)₂-G₂-COOCH₃(XIV)

Methyl-3, 5-dihydroxy benzoate (1.9g, 0.0118 moles) and K₂CO₃ (3.9g, 0.0283 moles) in 35 mL dry acetone were taken in a 250 mL round bottom flask. (**AB**)₂G₁-CH₂Cl (8g, 0.0236 moles)was added followed by the addition of a catalytic amount of tertiary butyl ammonium iodide (0.358g, 0.001 moles).The solution was heated to reflux for 24 hours. After completion of reaction the reaction mixture was cooled to room temperature and filtered. The filtered salts were further washed twice with dichloromethane. The solvent was then removed under reduced pressure to afford an oil that turned into a solid upon standing. The solid was recrystallized from hexane : toluene(70:30) with an yield of 7.9g(89.4%). Spectral characterization: ¹H NMR (400 MHz, CDCl₃) δ : 3.96 (s, COOCH3, 3H), 5.06-5.09 (s, ArCH2O,12H), 6.63-6.82 (s, ArH, 7H), 7.30-7.47(m, ArH & PhH, 22H). ¹³C NMR (100 MHz, CDCl₃) δ : 52.39, 70.27, 101.85, 106.54, 07.33, 108.54, 127.67, 128.14, 128.72, 132.21, 136.90, 139.02, 159.83, 160.33, 166.85. MS : m/z Calcd for C₅₀H₄₄O₈:772, found:790 [M+NH₄]⁺.

1.4.2. Synthesis of (AB)₂ G₂-CH₂-OH(XV)

Lithium aluminum hydride (0.265g, 0.0069 moles) was suspended into 15 mL of freshly distilled THF in a dry three-neck round-bottom flask under nitrogen atm. $(AB)_2$ -G₂-COOCH₃ (5 g, 0.0065 moles) was dissolved in 20 mL of freshly distilled THF and added drop wise to the lithium aluminum hydride solution. The reaction mixture was heated to reflux with stirring for 2 h. The THF solution was cooled to room temperature and transferred to a beaker. Water was added drop wise and very slowly to the vigorously stirred THF solution until the gray color of

the lithium aluminum hydride disappeared and a white solid was formed which is filtered and washed with THF, Excess solvent was removed under reduced pressure and the crude product was recrystallized from 95% methanol/water mixture to get the alcohol (**AB**)₂ **G**₂-**CH**₂-**OH** with yield 4.4 g (91.6%) Spectral characterization- ¹**H NMR** (400 MHz, CDCl₃) δ : 4.47(s, CH2OH, 2H), 4.84-4.90(s, ArCH2O, 12H), 6.46-6.57(s, ArH, 9H), 7.18-7.30(m, PhH, 20H). ¹³C NMR (100 MHz, CDCl₃) δ : 65.28, 70.00, 70.18, 101.40, 101.65, 105.81, 106.45, 127.41, 127.64, 127.83, 128.08, 128.52, 128.66, 138.86, 139.39, 143.58, 160.58, 160.24 MS: m/z Calcd for C₄₉H₄₄O₇:744, found: 762 [M+NH₄]⁺.

1.4.3. Synthesis of (AB)₂G₂-COOH(XIII)

A solution of KOH (5mL, 10N) was added to the compound (5g, 0.0065 moles) in 70mL ethanol. The mixture was refluxed for three hours and then acidified with concentrated HCl. After refluxing for the acidified reaction mixture for 15 minute the precipitate was filtered and washed with water for several times to get the product $(AB)_2G_2$ -COOH with an yield of 4.5g(91.4%) spectral characterization: ¹H NMR (400 MHz, CDCl₃) δ : 5.07-5.09(s, ArCH2O, 12H), 6.65-6.88 (s, ArH, 7H), 7.30-7.49 (m, ArH &PhH, 22H). ¹³C NMR(100 MHz, CDCl₃) δ : 69.44, 69.82, 70.20, 72.92, 76.39, 101.47, 101.85, 106.11, 106.49, 108.66, 126.84, 127.22, 127.60, 127.69, 127.88, 128.06, 128.26, 128.64, 128.83, 129.42, 130.31, 130.78, 131.36, 136.44, 136.84, 159.43, 159.89, 160.27, 162.98. MS: m/z Calcd for C₄₉H₄₂O₈: 758, found: 759 [M+H]⁺, 776 [M+NH4]⁺.

2. Synthesis of anthracene cored dendrons

2.1. Synthesis of An-G₁(AB)₂(XII)

We follow the same procedure described in $An-G_1-(AB)_3$ for synthesizing $An-G_1(AB)_2$ with the appropriate starting material. Spectral characterization: ¹H NMR (400 MHz, CDCl₃)

δ:4.70(s,ArCH2O,2H), 5.04-5.09 (S, ArCH2O, 4H), 5.54 (s, AnCH2O, 2H) 6.63-6.71 (s, ArH, 3H), 7.30-8.52 (m, AnH & PhH, 19H). ¹³C NMR(100 MHz, CDCl₃) δ: 64.06, 70.09, 72.30, 101.75, 106.80, 124.48, 125.00, 126.19, 127.58, 128.00, 128.50, 128.60, 129.06, 131.13, 131.51, 136.94, 141.01, 160.13. MS: m/z Calcd for C₃₆H₃₀O₃: 510, found: 511 [M+H]⁺.

2.2. Synthesis of An-G₂(AB)₂(XVI)

We follow the same procedure described above for synthesizing $An-G_2(AB)_2$ with the appropriate starting material. Spectral characterization: ¹H NMR (400 MHz, CDCl₃) δ : 4.55(s, ArCH2O, 2H), 4.83-4.94 (s, ArCH2O, 12H), 5.40 (s, AnCH2O, 2H) 6.47-6.55(s, ArH, 3H), 7.22-8.36 (m, AnH&PhH, 19H). ¹³C NMR(100 MHz, CDCl₃) δ : 64.06, 69.97, 70.16, 72.27, 101.62, 101.77, 106.45, 106.84, 124.46, 125.01, 126.21, 127.59, 128.03, 128.51, 128.62, 129.05, 131.12, 131.50, 136.84, 139.37, 141.01, 160.02, 160.21. MS : m/z Calcd for C₆₄H₅₄O₇:935 ,found: 954 [M+NH₄]⁺.

2.3. Synthesis of An-G₂(AB)₃(VIII)

We follow the same procedure described above for synthesizing **An-G₂(AB)**₃ with the appropriate starting material. Spectral characterization: ¹H NMR (400 MHz, CDCl3) δ: 4.50 (s, ArCH2O, 2H), 4.76-4.94 (s, ArCH2O, 24H), 5.42 (s, AnCH2O, 2H) 6.64-6.66 (s, ArH, 8H), 7.16-8.26 (m, AnH & PhH,54H). ¹³C NMR (100MHz,CDCl₃) δ:57.43, 65.23, 71.03, 71.20, 75.13, 75.21, 106.84, 106.92, 107.64, 123.96, 125.13, 126.48, 127.46, 127.52, 127.65, 125.76, 127.86, 128.10, 128.16, 128.39, 128.42, 128.49, 129.18, 132.79, 137.02, 137.09, 152.85, 152.91, 153.06.

3. SEM images of gel formed by the poly(aryl ether) dendrons and photograph of gel

Fig. S1 SEM image of compound **VI** on silicon wafer (left), Photographs of V in dichloromethane: hexane mixture (1:3 % v/v), below and above the critical gel concentration (a and b respectively)(right).

4. Powder X-Ray Diffraction patterns

Fig. S2 Powder XRD pattern of III (left) and I (right)

Fig. S3. Powder XRD pattern of II (left) and VI (right)