Mononuclear Bis(pentalene) Sandwich Compounds of the First-Row Transition Metals: Variable Hapticity of the Pentalene Rings and Intramolecular Coupling Reactions

Huidong Li,^{a,b} Hao Feng,^{a,b*} Weiguo Sun,^{a,b} Yaoming Xie,^c R. Bruce King,^{c*} and Henry F. Schaefer III^c

 ^aSchool of Physics and Chemistry, Research Center for Advanced Computation, Xihua University, Chengdu, China 610039
^bInstitute of Atomic and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, China
^cDepartment of Chemistry and Center for Computational Chemistry University of Georgia, Athens, Georgia 30602, USA E-mail: Fenghao@mail.xhu.edu.cn; rbking@chem.uga.edu

Supporting Information

Table S1 to S11. Total energies (E in hartree), relative energies (Δ E in kcal/mol), HOMO-LUMO gaps, and spin expectation values for the (C₈H₆)₂M structures (M= Ti, V, Cr, Mn, Fe, Co, Ni).

Tables S12 to S64: Atomic coordinates of the optimized structures for the $(C_8H_6)_2M$ (M = Ti, V, Cr, Mn, Fe, Co, Ni) complexes.

Tables S65 to S115: Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses in km/mol) for the (C_8H_6)₂M (M= Ti, V, Cr, Mn, Fe, Co, Ni) complexes.

Tables S116 to S127: M-C(pentalene) distances in the $(C_8H_6)_2M$ (M = Ti, V, Cr, Mn, Fe, Co, Ni) sandwich complexes.

Table S128. The Wiberg bond index (WBI) values for all the M-C distances of the global (pentalene)₂M minima (M = Ti to Ni).

Complete Gaussian09 reference (Reference 44).

	Ti-1S (<i>C</i> ₁)		Ti-29	Ti-2S (C ₂)		$S(D_2)$
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
$-HOMO(\alpha)$	0.17809	0.15818	0.17804	0.15730	0.17273	0.15307
$-LUMO(\alpha)$	0.03985	0.06716	0.03830	0.06583	0.03932	0.06799
gap/eV	3.76	2.48	3.80	2.49	3.63	2.32
E+1466	-0.47364	-0.60604	-0.47312	-0.60562	-0.47081	-0.60357
ΔΕ	0.0	0.0	0.3	0.3	1.8	1.5
Nimg	none	none	1(60i)	1(53i)	1(189i)	1(186i)
$\langle S^2 \rangle$	0.00	0.00	0.00	0.00	0.00	0.00

Table S1. Total	energies (E in hart	ree), relative	energies (ΔE in	n kcal/mol),	HOMO-
LUMO gaps, ar	nd spin expectation	values for the	e (C ₈ H ₆) ₂ Ti stru	actures.	

	Ti-4S (D_{2d})		Ti-5 7	Ti-5T (<i>C</i> _s)		$\Gamma(C_2)$
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
$-HOMO(\alpha)$	0.14606	0.13051	0.10862	0.12146	0.13760	0.10688
$-LUMO(\alpha)$	0.05166	0.08196	0.02606	0.05015	0.04951	0.08759
gap/eV	2.57	1.32	2.25	1.94	2.40	0.52
E+1466	-0.45617	-0.59023	-0.45349	-0.57476	-0.43745	-0.55107
ΔΕ	11.0	9.9	12.6	19.6	22.7	34.5
Nimg	1(93i)	1(89i)	none	none	none	none
$\langle S^2 \rangle$	0.00	0.00	2.02	2.01	2.01	2.01

	V-1D (<i>C</i> ₁)		V	V-2D (C ₂)		$D(D_2)$
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-HOMO(a)	0.13791	0.13283	0.18729	0.09629	0.17640	0.11281
-LUMO(α)	0.06815	0.08206	0.06416	0.08906	0.06392	0.08195
gap/eV	1.90	1.38	3.35	0.20	3.06	0.84
E+1560	-0.97471	-1.13522	-0.96083	-1.11743	-0.94888	-1.10449
ΔΕ	0.0	0.0	8.7	11.2	16.2	19.3
Nimg	none	none	none	none	1(194i)	1(197i)
$\langle S^2 \rangle$	0.79	0.76	0.87	0.78	0.89	0.78

Table S2. Total energies (E in hartree), relation	tive energies (ΔE in kcal/mol), HOMO-
LUMO gaps, and spin expectation values (S	S^2 for the (C ₈ H ₆) ₂ V doublet structures.

	V-4D	(<i>C</i> ₂)	V-5D	(C_s)
	B3LYP	BP86	B3LYP	BP86
-HOMO(α)	0.14420	0.12373	0.16717	0.12052
-LUMO(α)	0.07323	0.09156	0.07052	0.09470
gap/eV	1.93	0.88	2.63	0.70
E+1560	-0.93841	-1.10022	-0.92257	-1.08631
ΔΕ	22.8	22.0	32.7	30.7
Nimg	none	none	none	none
$\langle S^2 \rangle$	0.77	1.64	0.77	1.54

Table S3. Total energies (E in hartree), relative energies (ΔE in kcal/mol), and HOMO-LUMO gaps, and spin expectation values $\langle S^2 \rangle$ for the $(C_8H_6)_2V$ quartet structures.

	V-6Q (C ₂)		V-7Q	V-7Q (C_s)		$Q(C_1)$
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
$-HOMO(\alpha)$	0.16506	0.12567	0.16831	0.12317	0.13268	0.12709
$-LUMO(\alpha)$	0.02572	0.05441	0.02001	0.05747	0.04074	0.08529
gap/eV	3.79	1.94	4.04	1.79	2.50	1.14
E+1560	-0.98472	-1.11893	-0.96649	-1.10303	-0.95552	-1.09904
ΔΕ	-6.3	10.2	5.2	20.2	12.0	22.7
Nimg	none	none	none	none	none	none
$\langle S^2 \rangle$	3.77	3.77	3.78	3.78	3.83	3.79

	$Cr-1S(C_s)$		Cr-27	$\Gamma(C_2)$	Cr-3	Γ (<i>C</i> ₂)
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-HOMO(a)	0.16826	0.13748	0.17312	0.13816	0.16619	0.15116
-LUMO(α)	0.08835	0.09251	0.02173	0.05915	0.12219	0.13335
gap/eV	2.17	1.22	4.12	2.15	1.20	0.48
E+1661	-0.39837	-0.59555	-0.42815	-0.59538	-0.42215	-0.58929
ΔΕ	0.0	0.0	-18.7	0.1	-14.9	3.9
Nimg	none	none	none	none	none	none
$\langle S^2 \rangle$	0.00	0.00	2.05	2.04	3.06	2.08

Table S4. Total energies (E in hartree), rel	lative energies (ΔE in kcal/mol), HOMO-
LUMO gaps, and spin expectation values ($\langle S^2 \rangle$ for the $(C_8H_6)_2Cr$ structures.

	Cr-4T (C ₂)		Cr	-5T (<i>C</i> _s)	Cr-6	$S(C_2)$
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-HOMO(α)	0.16328	0.15281	0.17721	0.13484	0.17327	0.11903
-LUMO(α)	0.11868	0.13628	0.02916	0.05943	0.12494	0.09398
gap/eV	1.21	0.45	4.03	2.05	1.32	0.68
E+1661	-0.41269	-0.58891	-0.41300	-0.58281	-0.37615	-0.56468
ΔΕ	-9.0	4.2	-9.2	8.0	13.7	19.4
Nimg	none	none	none	none	none	none
$\langle S^2 \rangle$	3.08	2.37	2.05	2.04	0.00	0.00

Lettie Sups, and spin expectation values (5 / 101 the (C8116)21011 structures.									
	Mn-1D (<i>C</i> ₂)		Mn-2D	$Mn-2D(C_{2\nu})$		$\mathbf{D}(C_s)$			
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86			
-HOMO(α)	0.18684	0.13705	0.16829	.0.14958	0.19252	0.14028			
-LUMO(α)	0.02388	0.06279	0.11348	0.13968	0.02325	0.05890			
gap/eV	4.43	2.02	1.49	0.27	4.60	2.21			
E+1767	-0.94620	-1.13414	-0.92480	-1.12439	-0.92950	-1.12120			
ΔΕ	0.0	0.0	13.4	6.1	10.5	6.4			
Nimg	none	none	none	none	none	none			
$\langle S^2 \rangle$	0.76	0.76	1.93	1.01	0.77	0.76			

Table S5. Total energies (E in hartree), relative energies (ΔE in kcal/mol), HOMO-LUMO gaps, and spin expectation values $\langle S^2 \rangle$ for the (C_8H_6)₂Mn structures.

	Mn-4Q ($C_{2\nu}$)		Mn-5Q (<i>C</i> ₁)			$\mathbf{Mn-6Q}(C_s)$	
	B3LYP	BP86	B3LYP	BP86		B3LYP	BP86
-HOMO(a)	0.17933	0.14324	0.17169	0.12238		0.13908	0.07598
-LUMO(α)	0.05966	0.08441	0.05804	0.09301		0.07598	0.05447
gap/eV	3.27	1.60	3.09	0.80		1.72	0.59
-Е	-0.92124	-1.11477	-0.94130	-1.11456		-0.92654	-1.09854
ΔΕ	15.7	12.2	3.1	12.3		12.3	22.3
Nimg	none	1(56i)	none	none		none	none
$\langle S^2 \rangle$	3.91	3.82	3.84	3.82		3.86	3.82

	Fe-1S (C ₂)		Fe-28	$S(C_s)$	Fe-38	$S(C_{2v})$
_	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-HOMO	0.15876	0.14795	0.18475	0.14390	0.17185	0.15803
-LUMO	0.05057	0.06314	0.02738	0.06557	0.11482	0.13283
gap/eV	2.94	2.31	4.28	2.13	1.55	0.69
E+1880	-0.68082	-0.90304	-0.66258	-0.88781	-0.63998	-0.87908
ΔΕ	0.0	0.0	11.4	9.6	25.6	15.0
Nimg	none	none	none	none	1(5i)	none

Table S6. Bond distances (in Å), total energies (E in hartree), relative energies (ΔE in kcal/mol), and HOMO-LUMO gaps for the (C_8H_6)₂Fe singlet structures.

Table S7. Bond distances (in Å), total energies (E in hartree), relative energies (ΔE in kcal/mol), HOMO-LUMO gaps, and spin expectation values $\langle S^2 \rangle$ for the (C_8H_6)₂Fe triplet structures.

	Fe-47	$C(C_{2h})$	Fe-5	$5T(C_{2v})$		Fe-6T (<i>C</i> ₁)]	Fe-7T (<i>C</i> _s)
	B3LYP	BP86	B3LYP	BP86	B3L	YP BP86	B3LY	P BP86
-HOMO(α)	0.18151	0.15891	0.17765	0.15031	0.14	762 0.11957	0.1491	0 0.08589
-LUMO(α)	0.05216	0.08326	0.05358	0.04833	0.05	0.08468	0.0491	7 0.06439
gap/eV	3.52	2.06	3.38	2.78	2.6	0.95	2.72	0.59
E+1880	-0.65773	-0.87618	-0.65263	-0.87378	-0.66	018 -0.85701	-0.6449	-0.84470
ΔΕ	14.5	16.9	17.7	18.4	13.	.0 28.9	22.5	36.6
Nimg	none	1(21i)	none	none	nor	ne none	none	none
$\langle S^2 \rangle$	2.08	2.03	2.10	2.03	2.0	2.04	2.09	2.05

Table S8. Bond distances ((in Å),	total	energ	gies (E in har	tree), re	elative	e ene	ergies	s (ΔE in
kcal/mol), HOMO-LUMO	gaps,	and	spin	expectation	values	$\langle S^2 \rangle$	for	the	doublet
$(C_8H_6)_2$ Co structures.									

_	Co-1E	$O(C_2)$)	Co-2D	(C_{2v})	Co-3D	(C_2)
	B3LYP	BI	P 86	B3LYP	BP86	B3LYP	BP86
-HOMO(α)	0.16446	0.14	4708	0.17650	0.16051	0.15073	0.11268
-LUMO(α)	0.02648	0.09	9315	0.05967	0.10398	0.07798	0.10924
gap/eV	3.75	1.	47	3.18	1.54	1.98	0.09
E+1999	-0.71869	-0.9	6446	-0.71626	-0.96422	-0.73111	-0.95894
ΔΕ	0.0	0	.0	1.5	0.2	-7.8	3.5
Nimg	none	nc	one	1(27i)	1(19i)	none	none
$\langle S^2 \rangle$	0.86	0.	76	0.94	0.76	0.77	0.76
			Co-4	$D(C_{2h})$	Co-5	$5\mathbf{D}(C_s)$	
			B3LYP	BP86	B3LYP	BP86	_
	-HOMO	D(α)	0.17789	0.15066	0.12881	0.09324	
	-LUMO)(α)	0.05593	0.09501	0.04164	0.07517	
	gap/e	V	3.32	1.51	2.37	0.49	
	E+19	99	-0.71692	-0.95866	-0.71592	-0.94682	
	ΔE		1.1	3.6	1.7	11.1	
	Nim	g	1(20i)	1(32i)	none	none	
	$\langle S^2 \rangle$,	0.94	0.77	0.78	0.72	_

Table S9. Bond distances (in Å), total energies (E in hartree), relative energies (ΔE in kcal/mol), and HOMO-LUMO gaps for the quartet (C_8H_6)₂Co structures.

	Co-6	$Q(C_2)$	Со-7	$Q(C_{2h})$	 Co-8	$SQ(C_{2v})$	 Co-9	$Q(C_s)$
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-HOMO(α)	0.16446	0.12639	0.13970	0.10516	0.14659	0.11246	0.13021	0.09425
-LUMO(α)	0.02648	0.05580	0.07131	0.09819	0.07744	0.09334	0.02690	0.05479
gap/eV	3.75	1.92	1.86	0.19	1.88	0.52	2.81	1.07
E+1999	-0.72800	-0.92939	-0.69953	-0.92430	-0.69238	-0.91985	-0.70767	-0.91073
ΔΕ	-5.8	22.1	12.0	25.3	16.5	28.0	6.9	33.7
Nimg	none	none	none	none	none	none	none	none
$\langle S^2 \rangle$	3.77	3.77	3.83	3.77	3.87	3.78	3.77	3.77

	Ni-1	Ni-1S (C _{2v})		Ni-2S (C_2)		S (C ₂)	Ni-48	Ni-4S (<i>C</i> ₁)		
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86		
-HOMO	0.15797	0.13974	0.18624	0.15674	0.16150	0.12701	0.15996	0.12867		
-LUMO	0.09604	0.12061	0.06550	0.11701	0.07537	0.11032	0.07006	0.10094		
gap/eV	1.69	0.52	3.29	1.08	2.34	0.45	2.45	0.75		
E+2125	-0.26123	-0.51787	-0.25532	-0.51443	-0.26034	-0.49859	-0.24596	-0.48998		
ΔΕ	0.0	0.0	3.7	2.2	0.6	12.1	9.6	17.5		
Nimg	1(22i)	1(23i)	none	none	none	1(74i)	none	none		

Table S10. Bond distances (in Å), total energies (E in hartree), relative energies (ΔE in kcal/mol), and HOMO-LUMO gaps for the (C_8H_6)₂Ni singlet structures.

Table S11. Bond distances (in Å), total energies (E in hartree), relative energies (ΔE in kcal/mol), HOMO-LUMO gaps, and spin expectation values $\langle S^2 \rangle$ for the triplet (C_8H_6)₂Ni structures.

	Ni-5T (C ₂)		Ni-6 7	Г (<i>C</i> ₂)	Ni-71	$C(C_{2h})$
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-HOMO(α)	0.15811	0.13549	0.14888	0.12187	0.15200	0.12137
-LUMO(α)	0.02283	0.05744	0.08308	0.11423	0.07872	0.11247
gap/eV	3.68	2.13	1.79	0.21	1.99	0.24
E+2125	-0.28188	-0.50810	-0.24905	-0.49379	-0.24892	-0.49365
ΔE	-13.0	6.1	7.6	15.1	7.7	15.2
Nimg	none	none	none	none	none	none
$\langle S^2 \rangle$	2.01	2.01	2.16	2.01	2.16	2.01
$\langle S \rangle$	2.01	2.01	2.10	2.01	2.10	2.01

	Ni-8T (C ₂)		Ν	Ni-9T ($C_{2\nu}$)			Ni-10T (C _s)		
	B3LYP	BP86	B3L	YP	BP86		B3LYP	BP86	
-HOMO(α)	0.13770	0.13015	0.14	757	0.11954		0.13620	0.10276	
-LUMO(α)	0.06787	0.11231	0.074	487	0.10439		0.02580	0.05429	
gap/eV	1.90	0.49	1.9	8	0.41		3.00	1.32	
E+2125	-0.24793	-0.49219	-0.24	573	-0.49203		-0.26171	-0.49026	
ΔΕ	8.3	16.1	9.	7	16.2		-0.3	17.3	
Nimg	none	none	2(86i	,25i)	1(14i)		none	none	
$\langle S^2 \rangle$	2.13	2.01	2.2	20	2.01		2.01	2.01	

		B3LYP			BP86	
	Х	У	Z	х	у	Z
С	-2.395941	1.272890	0.418132	-2.383114	1.271195	0.430154
С	-2.230337	1.536134	-0.933939	-2.221549	1.535874	-0.932845
С	-1.753960	0.347093	-1.625274	-1.752826	0.340385	-1.627629
С	-1.847282	-0.731043	-0.691176	-1.848566	-0.746210	-0.689543
С	-2.057328	-0.127615	0.616974	-2.051149	-0.136343	0.628470
С	-1.145515	-1.977784	-0.487473	-1.133507	-1.993293	-0.488824
С	-0.956005	-2.130602	0.918624	-0.924216	-2.141279	0.922832
С	-1.468554	-0.988534	1.602259	-1.440909	-0.995132	1.614751
Н	-2.380871	2.501920	-1.409645	-2.369611	2.510261	-1.410986
Н	-1.617218	0.261518	-2.699753	-1.613030	0.253735	-2.710107
Н	-0.472031	-2.975754	1.398883	-0.423524	-2.987810	1.402761
Н	-1.422632	-0.824680	2.674128	-1.384475	-0.827182	2.693896
Н	-2.666885	1.985960	1.189859	-2.646726	1.991061	1.209815
Н	-0.838667	-2.687133	-1.248398	-0.820752	-2.703654	-1.258264
С	1.395980	0.918485	1.668760	1.390456	0.931408	1.670649
С	0.858962	2.086237	1.031104	0.841505	2.099008	1.026994
С	1.145608	2.066907	-0.344889	1.128998	2.078344	-0.357832
С	1.928435	0.879785	-0.602164	1.921122	0.888964	-0.614622
С	2.143936	0.197318	0.671888	2.145925	0.207528	0.670194
С	1.847278	-0.121912	-1.637331	1.827703	-0.123158	-1.649128
С	2.038832	-1.384192	-1.015354	2.017797	-1.390623	-1.017338
С	2.173858	-1.220551	0.392743	2.169692	-1.218602	0.396386
Н	0.260023	2.842422	1.530761	0.232371	2.857832	1.528853
Н	0.789225	2.777313	-1.082535	0.763041	2.788198	-1.103564
Н	2.032884	-2.339032	-1.533480	2.000943	-2.355923	-1.533660
Н	2.292321	-2.022111	1.113988	2.286930	-2.022541	1.127637
Н	1.322551	0.682477	2.725284	1.317291	0.693490	2.735309
Н	1.664722	0.046668	-2.693332	1.633522	0.042334	-2.712050
Ti	0.134944	-0.181148	0.006224	0.131811	-0.176736	0.006106

Table S12. Optimized coordinates of the Ti-1S for the (C8H6)₂Ti structures

		B3LYP			BP86	
	X	У	Z	X	У	Z
С	-0.873839	-2.624854	-1.157822	0.798900	2.623859	1.164312
С	-0.572272	-3.377777	0.000000	1.482441	3.070186	0.000000
С	-0.873839	-2.624854	1.157822	0.798900	2.623859	-1.164312
С	-1.404599	-1.344695	0.718675	-0.377202	1.887046	-0.724576
С	-1.404599	-1.344695	-0.718675	-0.377202	1.887046	0.724576
С	-1.986768	-0.118736	1.165797	-1.558072	1.197823	-1.172548
С	-2.346273	0.636782	0.000000	-2.286988	0.771356	0.000000
С	-1.986768	-0.118736	-1.165797	-1.558072	1.197823	1.172548
Н	-0.148695	-4.378207	0.000000	2.413836	3.645523	0.000000
Н	-0.739158	-2.950535	2.185122	1.099026	2.811814	-2.199907
Н	-2.833080	1.606657	0.000000	-3.249164	0.252108	0.000000
Н	-2.145770	0.197197	-2.192062	-1.868419	1.023062	2.206770
Н	-0.739158	-2.950535	-2.185122	1.099026	2.811814	2.199907
Н	-2.145770	0.197197	2.192062	-1.868419	1.023062	-2.206770
С	0.902475	2.219681	-1.307697	-0.546994	-2.311365	1.308300
С	1.219817	1.072144	-2.087415	0.370287	-1.536404	2.089418
С	1.938378	0.123539	-1.306351	1.517031	-1.181453	1.307290
С	2.132626	0.706457	0.000000	1.348680	-1.789555	0.000000
С	1.481229	2.019586	0.000000	0.054557	-2.496038	0.000000
С	1.938378	0.123539	1.306351	1.517031	-1.181453	-1.307290
С	1.219817	1.072144	2.087415	0.370287	-1.536404	-2.089418
С	0.902475	2.219681	1.307697	-0.546994	-2.311365	-1.308300
Н	0.920839	0.923765	-3.122002	0.198537	-1.221618	3.124413
Н	2.265969	-0.856948	-1.635882	2.350921	-0.554820	1.634457
Н	0.920839	0.923765	3.122002	0.198537	-1.221618	-3.124413
Н	0.330527	3.079178	1.642129	-1.519752	-2.684240	-1.640297
Н	0.330527	3.079178	-1.642129	-1.519752	-2.684240	1.640297
Н	2.265969	-0.856948	1.635882	2.350921	-0.554820	-1.634457
Ti	0.000000	0.461450	0.000000	-0.260220	-0.369809	0.000000

Table S13. Optimized coordinates of the Ti-2T for the (C8H6)₂Ti structures

		B3LYP			BP86	
	х	у	Z	Х	у	Z
С	0.000000	2.135498	0.257579	0.000000	2.107344	0.268690
С	-0.742517	2.236269	1.479491	-0.746678	2.187315	1.502404
С	-1.928441	1.420299	1.382224	-1.925474	1.343916	1.407563
С	-1.906849	0.833719	0.086693	-1.904525	0.759309	0.099505
С	-0.718462	1.246766	-0.587114	-0.716076	1.206138	-0.584367
С	-2.652191	-0.065442	-0.803402	-2.640937	-0.139069	-0.798163
С	-1.942606	-0.237477	-1.947491	-1.941444	-0.270408	-1.968594
С	-0.607219	0.501656	-1.911488	-0.616042	0.492984	-1.932155
Н	-0.471020	2.860168	2.326419	-0.469869	2.800348	2.366531
Н	-2.706489	1.331182	2.133884	-2.694633	1.225125	2.176489
Н	-2.237602	-0.863908	-2.786803	-2.236157	-0.893791	-2.820968
Н	-0.507203	1.173040	-2.777183	-0.526674	1.187777	-2.792230
Н	0.938310	2.635099	0.043157	0.931764	2.633815	0.048219
Н	-3.616270	-0.515359	-0.579284	-3.598660	-0.618555	-0.567141
С	1.928441	-1.420299	1.382224	1.925474	-1.343916	1.407563
С	0.742517	-2.236269	1.479491	0.746678	-2.187315	1.502404
С	0.000000	-2.135498	0.257579	0.000000	-2.107344	0.268690
С	0.718462	-1.246766	-0.587114	0.716076	-1.206138	-0.584367
С	1.906849	-0.833719	0.086693	1.904525	-0.759309	0.099505
С	0.607219	-0.501656	-1.911488	0.616042	-0.492984	-1.932155
С	1.942606	0.237477	-1.947491	1.941444	0.270408	-1.968594
С	2.652191	0.065442	-0.803402	2.640937	0.139069	-0.798163
Н	0.471020	-2.860168	2.326419	0.469869	-2.800348	2.366531
Η	-0.938310	-2.635099	0.043157	-0.931764	-2.633815	0.048219
Н	2.237602	0.863908	-2.786803	2.236157	0.893791	-2.820968
Н	3.616270	0.515359	-0.579284	3.598660	0.618555	-0.567141
Н	2.706489	-1.331182	2.133884	2.694633	-1.225125	2.176489
Н	0.507203	-1.173040	-2.777183	0.526674	-1.187777	-2.792230
Ti	0.000000	0.000000	1.263714	0.000000	0.000000	1.238164

Table S14. Optimized coordinates of the Ti-3T for the (C8H6)₂Ti structures

		B3LYP			BP86	
	х	у	Z	х	у	Z
С	0.000000	2.135498	0.257579	0.000000	2.107344	0.268690
С	-0.742517	2.236269	1.479491	-0.746678	2.187315	1.502404
С	-1.928441	1.420299	1.382224	-1.925474	1.343916	1.407563
С	-1.906849	0.833719	0.086693	-1.904525	0.759309	0.099505
С	-0.718462	1.246766	-0.587114	-0.716076	1.206138	-0.584367
С	-2.652191	-0.065442	-0.803402	-2.640937	-0.139069	-0.798163
С	-1.942606	-0.237477	-1.947491	-1.941444	-0.270408	-1.968594
С	-0.607219	0.501656	-1.911488	-0.616042	0.492984	-1.932155
Н	-0.471020	2.860168	2.326419	-0.469869	2.800348	2.366531
Н	-2.706489	1.331182	2.133884	-2.694633	1.225125	2.176489
Н	-2.237602	-0.863908	-2.786803	-2.236157	-0.893791	-2.820968
Н	-0.507203	1.173040	-2.777183	-0.526674	1.187777	-2.792230
Н	0.938310	2.635099	0.043157	0.931764	2.633815	0.048219
Н	-3.616270	-0.515359	-0.579284	-3.598660	-0.618555	-0.567141
С	1.928441	-1.420299	1.382224	1.925474	-1.343916	1.407563
С	0.742517	-2.236269	1.479491	0.746678	-2.187315	1.502404
С	0.000000	-2.135498	0.257579	0.000000	-2.107344	0.268690
С	0.718462	-1.246766	-0.587114	0.716076	-1.206138	-0.584367
С	1.906849	-0.833719	0.086693	1.904525	-0.759309	0.099505
С	0.607219	-0.501656	-1.911488	0.616042	-0.492984	-1.932155
С	1.942606	0.237477	-1.947491	1.941444	0.270408	-1.968594
С	2.652191	0.065442	-0.803402	2.640937	0.139069	-0.798163
Н	0.471020	-2.860168	2.326419	0.469869	-2.800348	2.366531
Н	-0.938310	-2.635099	0.043157	-0.931764	-2.633815	0.048219
Н	2.237602	0.863908	-2.786803	2.236157	0.893791	-2.820968
Н	3.616270	0.515359	-0.579284	3.598660	0.618555	-0.567141
Н	2.706489	-1.331182	2.133884	2.694633	-1.225125	2.176489
Н	0.507203	-1.173040	-2.777183	0.526674	-1.187777	-2.792230
Ti	0.000000	0.000000	1.263714	0.000000	0.000000	1.238164

Table \$15. Optimized coordinates of the Ti-3T for the (C8H6) ₂ Ti structure	es
---	----

		B3LYP			BP86	
	X	У	Z	x	у	Z
С	1.712990	1.192700	0.351366	1.717673	1.152540	0.356756
С	1.326901	1.930715	1.532071	1.332200	1.903021	1.541261
С	0.000000	2.435009	1.373185	0.000000	2.415906	1.384585
С	-0.463403	2.022628	0.097905	-0.476761	2.002621	0.104876
С	0.569776	1.231623	-0.528178	0.562241	1.196867	-0.528875
С	-1.575640	2.156733	-0.846720	-1.583120	2.151694	-0.844185
С	-1.271437	1.485609	-1.986392	-1.270359	1.493414	-2.003851
С	0.081247	0.775987	-1.902618	0.083290	0.776522	-1.922497
Н	1.948904	2.082668	2.410282	1.954689	2.044015	2.431912
Н	-0.546367	3.006154	2.119104	-0.547472	2.986344	2.142914
Н	-1.913080	1.405878	-2.861508	-1.911248	1.431138	-2.891330
Н	0.739138	1.088617	-2.728690	0.757630	1.099677	-2.744507
Н	2.692424	0.771499	0.154267	2.705737	0.733641	0.150983
Н	-2.491515	2.713428	-0.663605	-2.505213	2.713413	-0.657338
С	0.000000	-2.435009	1.373185	0.000000	-2.415906	1.384585
С	-1.326901	-1.930715	1.532071	-1.332200	-1.903021	1.541261
С	-1.712990	-1.192700	0.351366	-1.717673	-1.152540	0.356756
С	-0.569776	-1.231623	-0.528178	-0.562241	-1.196867	-0.528875
С	0.463403	-2.022628	0.097905	0.476761	-2.002621	0.104876
С	-0.081247	-0.775987	-1.902618	-0.083290	-0.776522	-1.922497
С	1.271437	-1.485609	-1.986392	1.270359	-1.493414	-2.003851
С	1.575640	-2.156733	-0.846720	1.583120	-2.151694	-0.844185
Н	-1.948904	-2.082668	2.410282	-1.954689	-2.044015	2.431912
Н	-2.692424	-0.771499	0.154267	-2.705737	-0.733641	0.150983
Н	1.913080	-1.405878	-2.861508	1.911248	-1.431138	-2.891330
Н	2.491515	-2.713428	-0.663605	2.505213	-2.713413	-0.657338
Н	0.546367	-3.006154	2.119104	0.547472	-2.986344	2.142914
Н	-0.739138	-1.088617	-2.728690	-0.757630	-1.099677	-2.744507
Ti	0.000000	0.000000	1.184222	0.000000	0.000000	1.185359

Table S16.	Optimized	coordinates	of the	Ti-4S	for the	(C8H6) ₂ Ti	structures

		B3LYP			BP86	
	х	у	Z	х	у	Z
С	-1.047476	-0.942335	2.397568	-1.076367	-0.953643	2.324181
С	-1.921248	0.174475	2.157713	-1.948543	0.179553	2.090272
С	-1.153778	1.230810	1.560776	-1.163137	1.245728	1.514077
С	0.176908	0.748542	1.409675	0.179487	0.755929	1.377207
С	0.251702	-0.559718	1.973218	0.246148	-0.571980	1.928497
С	1.527813	1.119524	0.807279	1.545362	1.135408	0.805998
С	2.396008	-0.019919	1.358144	2.408278	-0.021015	1.342033
С	1.655248	-0.985590	1.956961	1.646568	-1.005029	1.916709
Н	-2.968790	0.233646	2.435584	-3.008871	0.238145	2.351947
Н	-1.539643	2.205275	1.281707	-1.542446	2.235341	1.248738
Н	3.473102	-0.054031	1.219005	3.495887	-0.052878	1.221022
Н	2.039393	-1.913041	2.373413	2.022866	-1.952333	2.317188
Н	-1.334104	-1.880571	2.864470	-1.383599	-1.910778	2.759295
Н	1.886830	2.098527	1.153580	1.903151	2.119323	1.169709
С	-1.047476	-0.942335	-2.397568	-1.076367	-0.953643	-2.324181
С	-1.921248	0.174475	-2.157713	-1.948543	0.179553	-2.090272
С	-1.153778	1.230810	-1.560776	-1.163137	1.245728	-1.514077
С	0.176908	0.748542	-1.409675	0.179487	0.755929	-1.377207
С	0.251702	-0.559718	-1.973218	0.246148	-0.571980	-1.928497
С	1.527813	1.119524	-0.807279	1.545362	1.135408	-0.805998
С	2.396008	-0.019919	-1.358144	2.408278	-0.021015	-1.342033
С	1.655248	-0.985590	-1.956961	1.646568	-1.005029	-1.916709
Н	-2.968790	0.233646	-2.435584	-3.008871	0.238145	-2.351947
Н	-1.539643	2.205275	-1.281707	-1.542446	2.235341	-1.248738
Н	3.473102	-0.054031	-1.219005	3.495887	-0.052878	-1.221022
Н	2.039393	-1.913041	-2.373413	2.022866	-1.952333	-2.317188
Н	-1.334104	-1.880571	-2.864470	-1.383599	-1.910778	-2.759295
Н	1.886830	2.098527	-1.153580	1.903151	2.119323	-1.169709
Ti	-1.169805	-0.480413	0.000000	-1.137615	-0.478775	0.000000

Table S17. Optimized coordinates of the Ti-5T for the (C8H6)₂Ti structures

		B3LYP			BP86	
	X	У	Z	X	у	Z
С	-1.012638	-0.987320	2.384367	-1.021106	-0.994103	2.364455
С	-1.917832	0.101530	2.134545	-1.929016	0.101564	2.116704
С	-1.184278	1.196313	1.521124	-1.196795	1.204527	1.492531
С	0.164964	0.714842	1.348355	0.166498	0.715291	1.319195
С	0.267563	-0.585847	1.947482	0.270407	-0.594613	1.928639
С	1.527338	1.131258	0.798532	1.539987	1.144615	0.797140
С	2.404457	-0.002156	1.351250	2.416571	-0.001341	1.337197
С	1.674574	-0.986115	1.937437	1.674862	-0.999211	1.917415
Н	-2.960505	0.127888	2.437414	-2.983008	0.121224	2.412528
Н	-1.566882	2.195017	1.343836	-1.574840	2.218270	1.341285
Н	3.485835	-0.010518	1.240870	3.508286	-0.002261	1.245849
Н	2.073003	-1.907540	2.353982	2.073038	-1.933859	2.326579
Н	-1.282030	-1.936957	2.838327	-1.298157	-1.955006	2.811104
Н	1.860022	2.111872	1.170355	1.870062	2.130453	1.186552
С	-1.012638	-0.987320	-2.384367	-1.021106	-0.994103	-2.364455
С	-1.917832	0.101530	-2.134545	-1.929016	0.101564	-2.116704
С	-1.184278	1.196313	-1.521124	-1.196795	1.204527	-1.492531
С	0.164964	0.714842	-1.348355	0.166498	0.715291	-1.319195
С	0.267563	-0.585847	-1.947482	0.270407	-0.594613	-1.928639
С	1.527338	1.131258	-0.798532	1.539987	1.144615	-0.797140
С	2.404457	-0.002156	-1.351250	2.416571	-0.001341	-1.337197
С	1.674574	-0.986115	-1.937437	1.674862	-0.999211	-1.917415
Н	-2.960505	0.127888	-2.437414	-2.983008	0.121224	-2.412528
Н	-1.566882	2.195017	-1.343836	-1.574840	2.218270	-1.341285
Н	3.485835	-0.010518	-1.240870	3.508286	-0.002261	-1.245849
Н	2.073003	-1.907540	-2.353982	2.073038	-1.933859	-2.326579
Н	-1.282030	-1.936957	-2.838327	-1.298157	-1.955006	-2.811104
Н	1.860022	2.111872	-1.170355	1.870062	2.130453	-1.186552
Ti	-1.195848	-0.370436	0.000000	-1.193076	-0.367200	0.000000

Table S18. Optimized coordinates of the Ti-6S for the (C8H6)₂Ti structures

		B3LYP			BP86	
	X	У	Z	x	у	Z
С	2.790393	0.908322	-0.530199	2.781235	0.909385	-0.490192
С	3.124711	0.849302	0.853807	3.109440	0.824275	0.896569
С	2.449567	-0.207133	1.503536	2.417427	-0.248468	1.527305
С	1.677791	-0.868551	0.496659	1.642226	-0.890773	0.502312
С	1.889751	-0.154816	-0.768600	1.864410	-0.152753	-0.755738
С	0.810428	-1.983582	0.227841	0.763620	-2.001561	0.203542
С	0.481611	-1.960148	-1.176965	0.442013	-1.949041	-1.209496
С	1.060604	-0.799478	-1.767247	1.048819	-0.780403	-1.779416
Н	3.812035	1.533938	1.347802	3.801803	1.501245	1.411758
Н	2.549786	-0.493708	2.545181	2.503368	-0.550388	2.574694
Н	-0.149074	-2.680212	-1.689308	-0.196921	-2.657438	-1.745295
Н	0.961489	-0.521649	-2.812252	0.956334	-0.476864	-2.826554
Н	3.160656	1.630847	-1.250406	3.164789	1.644048	-1.203814
Н	0.498018	-2.753680	0.925890	0.431422	-2.782357	0.893467
С	-1.503364	1.406003	-1.346863	-1.502132	1.382716	-1.371081
С	-0.481652	2.135563	-0.675411	-0.453625	2.114464	-0.721599
С	-0.540317	1.894557	0.721802	-0.500397	1.904262	0.690858
С	-1.674086	1.032817	0.965170	-1.652064	1.062301	0.965658
С	-2.275439	0.718534	-0.337232	-2.278323	0.729083	-0.330878
С	-1.699619	-0.172534	1.758059	-1.644201	-0.144011	1.771997
С	-2.316784	-1.185682	0.974464	-2.262806	-1.178529	0.998984
С	-2.644307	-0.678999	-0.316079	-2.629407	-0.681507	-0.295375
Н	0.296955	2.712598	-1.164406	0.340981	2.663479	-1.235757
Н	0.186632	2.233003	1.451887	0.248707	2.242160	1.411209
Н	-2.462971	-2.213890	1.292698	-2.379022	-2.217100	1.324627
Н	-3.085336	-1.246667	-1.128423	-3.081822	-1.262592	-1.102753
Н	-1.655954	1.364894	-2.419796	-1.671527	1.318563	-2.448594
Н	-1.278428	-0.301042	2.749393	-1.192648	-0.259654	2.760398
V	-0.423024	-0.211717	-0.145422	-0.426212	-0.198250	-0.149308

Table S19. Optimized coordinates of the V-1D for the (C8H6)₂V structures

		B3LYP			BP86	
	Х	У	Z	х	у	Z
С	0.000000	2.841639	0.484168	-1.392256	2.469214	0.489357
С	0.345877	2.839490	-0.854509	-1.100494	2.643794	-0.861697
С	-0.430178	1.827466	-1.570992	-1.267539	1.372788	-1.575798
С	-1.448929	1.380086	-0.673306	-1.939470	0.472737	-0.673891
С	-1.054173	1.843136	0.650043	-1.811486	1.074497	0.657802
С	-2.176022	0.133726	-0.509379	-1.939470	-0.976231	-0.514137
С	-2.189629	-0.161672	0.872942	-1.784216	-1.246367	0.874254
С	-1.455352	0.845554	1.592389	-1.640103	-0.002501	1.599861
Н	1.117486	3.455440	-1.308918	-0.739842	3.569980	-1.321452
Н	-0.398677	1.661415	-2.644376	-1.158858	1.240082	-2.657449
Н	-2.637955	-1.041537	1.323672	-1.721318	-2.242245	1.322510
Н	-1.274056	0.843492	2.662378	-1.468893	0.083636	2.676428
Н	0.453166	3.434672	1.272014	-1.289541	3.213764	1.283804
Н	-2.607239	-0.476894	-1.294342	-2.006022	-1.723157	-1.308604
С	1.455352	-0.845554	1.592389	1.640103	0.002501	1.599861
С	2.189629	0.161672	0.872942	1.784216	1.246367	0.874254
С	2.176022	-0.133726	-0.509379	1.939470	0.976231	-0.514137
С	1.448929	-1.380086	-0.673306	1.939470	-0.472737	-0.673891
С	1.054173	-1.843136	0.650043	1.811486	-1.074497	0.657802
С	0.430178	-1.827466	-1.570992	1.267539	-1.372788	-1.575798
С	-0.345877	-2.839490	-0.854509	1.100494	-2.643794	-0.861697
С	0.000000	-2.841639	0.484168	1.392256	-2.469214	0.489357
Н	2.637955	1.041537	1.323672	1.721318	2.242245	1.322510
Н	2.607239	0.476894	-1.294342	2.006022	1.723157	-1.308604
Н	-1.117486	-3.455440	-1.308918	0.739842	-3.569980	-1.321452
Н	-0.453166	-3.434672	1.272014	1.289541	-3.213764	1.283804
Н	1.274056	-0.843492	2.662378	1.468893	-0.083636	2.676428
Н	0.398677	-1.661415	-2.644376	1.158858	-1.240082	-2.657449
V	0.000000	0.000000	0.003603	0.000000	0.000000	0.002651

Table S20. Optimized coordinates of the V-2D for the (C8H6)₂V structures

		B3LYP			BP86	
	X	У	Z	X	у	Z
С	-1.775263	1.718654	0.522854	-1.751101	1.728258	0.515324
С	-1.555017	1.969645	-0.832449	-1.530178	1.973909	-0.851160
С	-1.588115	0.726189	-1.572637	-1.557551	0.717723	-1.583022
С	-2.027632	-0.292775	-0.664209	-2.016089	-0.300231	-0.666520
С	-2.027632	0.292775	0.664209	-2.016089	0.300231	0.666520
С	-1.775263	-1.718654	-0.522854	-1.751101	-1.728258	-0.515324
С	-1.555017	-1.969645	0.832449	-1.530178	-1.973909	0.851160
С	-1.588115	-0.726189	1.572637	-1.557551	-0.717723	1.583022
Н	-1.312611	2.936722	-1.263579	-1.278874	2.944362	-1.290509
Н	-1.458080	0.629388	-2.646277	-1.421742	0.610057	-2.663418
Н	-1.312611	-2.936722	1.263579	-1.278874	-2.944362	1.290509
Н	-1.458080	-0.629388	2.646277	-1.421742	-0.610057	2.663418
Н	-1.725282	2.445600	1.327006	-1.695358	2.463843	1.322668
Н	-1.725282	-2.445600	-1.327006	-1.695358	-2.463843	-1.322668
С	1.588115	0.726189	1.572637	1.557551	0.717723	1.583022
С	1.555017	1.969645	0.832449	1.530178	1.973909	0.851160
С	1.775263	1.718654	-0.522854	1.751101	1.728258	-0.515324
С	2.027632	0.292775	-0.664209	2.016089	0.300231	-0.666520
С	2.027632	-0.292775	0.664209	2.016089	-0.300231	0.666520
С	1.588115	-0.726189	-1.572637	1.557551	-0.717723	-1.583022
С	1.555017	-1.969645	-0.832449	1.530178	-1.973909	-0.851160
С	1.775263	-1.718654	0.522854	1.751101	-1.728258	0.515324
Н	1.312611	2.936722	1.263579	1.278874	2.944362	1.290509
Н	1.725282	2.445600	-1.327006	1.695358	2.463843	-1.322668
Н	1.312611	-2.936722	-1.263579	1.278874	-2.944362	-1.290509
Н	1.725282	-2.445600	1.327006	1.695358	-2.463843	1.322668
Н	1.458080	0.629388	2.646277	1.421742	0.610057	2.663418
Н	1.458080	-0.629388	-2.646277	1.421742	-0.610057	-2.663418
V	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

Table S21. Optimized coordinates of the V-3D for the (C8H6)₂V structures

		B3LYP			BP86	
	Х	У	Z	х	у	Z
С	1.721177	1.093976	0.338387	0.000000	2.074222	0.309996
С	1.328606	1.765083	1.551852	-0.737230	2.100438	1.555334
С	0.000000	2.299206	1.407474	-1.905962	1.252757	1.439201
С	-0.444996	1.969202	0.103306	-1.901586	0.718470	0.109438
С	0.588736	1.197874	-0.545593	-0.712867	1.185479	-0.570896
С	-1.548494	2.146791	-0.844141	-2.638131	-0.160612	-0.807578
С	-1.243023	1.508443	-2.001793	-1.942121	-0.263638	-1.982376
С	0.097117	0.774861	-1.928677	-0.614364	0.496313	-1.935436
Н	1.935855	1.839893	2.449868	-0.454390	2.670575	2.445503
Н	-0.553100	2.826876	2.178870	-2.649793	1.079173	2.221965
Н	-1.881940	1.459082	-2.881252	-2.242932	-0.863538	-2.849393
Н	0.763164	1.079339	-2.750406	-0.521217	1.200684	-2.787469
Н	2.688515	0.648628	0.138023	0.926580	2.614279	0.100978
Н	-2.461210	2.703749	-0.647510	-3.594298	-0.647196	-0.585336
С	0.000000	-2.299206	1.407474	1.905962	-1.252757	1.439201
С	-1.328606	-1.765083	1.551852	0.737230	-2.100438	1.555334
С	-1.721177	-1.093976	0.338387	0.000000	-2.074222	0.309996
С	-0.588736	-1.197874	-0.545593	0.712867	-1.185479	-0.570896
С	0.444996	-1.969202	0.103306	1.901586	-0.718470	0.109438
С	-0.097117	-0.774861	-1.928677	0.614364	-0.496313	-1.935436
С	1.243023	-1.508443	-2.001793	1.942121	0.263638	-1.982376
С	1.548494	-2.146791	-0.844141	2.638131	0.160612	-0.807578
Н	-1.935855	-1.839893	2.449868	0.454390	-2.670575	2.445503
Н	-2.688515	-0.648628	0.138023	-0.926580	-2.614279	0.100978
Н	1.881940	-1.459082	-2.881252	2.242932	0.863538	-2.849393
Н	2.461210	-2.703749	-0.647510	3.594298	0.647196	-0.585336
Н	0.553100	-2.826876	2.178870	2.649793	-1.079173	2.221965
Н	-0.763164	-1.079339	-2.750406	0.521217	-1.200684	-2.787469
V	0.000000	0.000000	1.132827	0.000000	0.000000	1.108491

Table S22. Optimized coordinates of the V-4D for the (C8H6)₂V structures

		B3LYP			BP86	
	X	У	Z	X	У	Z
С	-1.027074	-1.043754	2.239920	-1.070457	-1.011616	2.237405
С	-1.906969	0.080102	2.061275	-1.950053	0.119701	2.028846
С	-1.167968	1.210113	1.539398	-1.174077	1.227004	1.507449
С	0.171445	0.723421	1.327857	0.177565	0.746698	1.352266
С	0.261023	-0.624207	1.832288	0.249326	-0.599785	1.872421
С	1.539944	1.150294	0.799749	1.549876	1.149457	0.804351
С	2.410855	0.000136	1.329567	2.412561	-0.013327	1.329750
С	1.668474	-1.017236	1.837629	1.652181	-1.018021	1.869180
Н	-2.968808	0.079990	2.293946	-3.019142	0.145939	2.259289
Н	-1.551023	2.215397	1.407549	-1.561488	2.224893	1.289117
Н	3.494438	-0.000359	1.244004	3.503271	-0.030116	1.233106
Н	2.057990	-1.962266	2.206765	2.031829	-1.973416	2.246406
Н	-1.315105	-2.016407	2.625144	-1.373546	-1.988530	2.626075
Н	1.870704	2.127594	1.178890	1.901125	2.131243	1.180382
С	-1.027074	-1.043754	-2.239920	-1.070457	-1.011616	-2.237405
С	-1.906969	0.080102	-2.061275	-1.950053	0.119701	-2.028846
С	-1.167968	1.210113	-1.539398	-1.174077	1.227004	-1.507449
С	0.171445	0.723421	-1.327857	0.177565	0.746698	-1.352266
С	0.261023	-0.624207	-1.832288	0.249326	-0.599785	-1.872421
С	1.539944	1.150294	-0.799749	1.549876	1.149457	-0.804351
С	2.410855	0.000136	-1.329567	2.412561	-0.013327	-1.329750
С	1.668474	-1.017236	-1.837629	1.652181	-1.018021	-1.869180
Н	-2.968808	0.079990	-2.293946	-3.019142	0.145939	-2.259289
Η	-1.551023	2.215397	-1.407549	-1.561488	2.224893	-1.289117
Η	3.494438	-0.000359	-1.244004	3.503271	-0.030116	-1.233106
Η	2.057990	-1.962266	-2.206765	2.031829	-1.973416	-2.246406
Η	-1.315105	-2.016407	-2.625144	-1.373546	-1.988530	-2.626075
Н	1.870704	2.127594	-1.178890	1.901125	2.131243	-1.180382
V	-1.155354	-0.288449	0.000000	-1.092485	-0.357451	0.000000

Table S23. Optimized coordinates of the V-5D for the (C8H6)₂V structures

		B3LYP			BP86	
	Х	у	Z	х	у	Z
С	0.000000	2.121846	0.290235	0.000000	2.103813	0.295552
С	-0.724655	2.178505	1.530417	-0.716780	2.134314	1.551828
С	-1.902765	1.363289	1.421332	-1.891486	1.297105	1.446174
С	-1.905392	0.823692	0.101765	-1.904398	0.771649	0.110233
С	-0.726942	1.259298	-0.580152	-0.727530	1.234326	-0.583374
С	-2.649614	-0.072934	-0.794532	-2.640805	-0.130087	-0.788671
С	-1.943487	-0.233062	-1.942160	-1.943107	-0.259574	-1.959391
С	-0.608579	0.506719	-1.904384	-0.617297	0.501197	-1.924001
Н	-0.442352	2.766927	2.397803	-0.426226	2.713786	2.432833
Н	-2.656227	1.228902	2.190593	-2.637417	1.137964	2.229549
Н	-2.241015	-0.851218	-2.786593	-2.241097	-0.878714	-2.813684
Н	-0.502271	1.170469	-2.774897	-0.518882	1.179358	-2.795704
Н	0.938628	2.624247	0.082645	0.939346	2.620885	0.083100
Н	-3.611063	-0.528894	-0.571214	-3.596891	-0.612326	-0.556644
С	1.902765	-1.363289	1.421332	1.891486	-1.297105	1.446174
С	0.724655	-2.178505	1.530417	0.716780	-2.134314	1.551828
С	0.000000	-2.121846	0.290235	0.000000	-2.103813	0.295552
С	0.726942	-1.259298	-0.580152	0.727530	-1.234326	-0.583374
С	1.905392	-0.823692	0.101765	1.904398	-0.771649	0.110233
С	0.608579	-0.506719	-1.904384	0.617297	-0.501197	-1.924001
С	1.943487	0.233062	-1.942160	1.943107	0.259574	-1.959391
С	2.649614	0.072934	-0.794532	2.640805	0.130087	-0.788671
Н	0.442352	-2.766927	2.397803	0.426226	-2.713786	2.432833
Н	-0.938628	-2.624247	0.082645	-0.939346	-2.620885	0.083100
Н	2.241015	0.851218	-2.786593	2.241097	0.878714	-2.813684
Н	3.611063	0.528894	-0.571214	3.596891	0.612326	-0.556644
Н	2.656227	-1.228902	2.190593	2.637417	-1.137964	2.229549
Н	0.502271	-1.170469	-2.774897	0.518882	-1.179358	-2.795704
V	0.000000	0.000000	1.106654	0.000000	0.000000	1.089604

Table S24. Optimized coordinates of the V-6Q for the $(C8H6)_2V$ structur	es
---	----

		B3LYP			BP86	
	X	У	Z	Х	у	Z
С	-1.058773	-1.003944	2.307958	-1.078667	-1.019133	2.253066
С	-1.927999	0.122296	2.108996	-1.947730	0.119677	2.057080
С	-1.159258	1.220733	1.590777	-1.166265	1.231059	1.560341
С	0.174914	0.754158	1.424419	0.178706	0.760434	1.404566
С	0.245097	-0.585628	1.917601	0.242840	-0.595395	1.890443
С	1.522303	1.135552	0.813374	1.537734	1.146118	0.813960
С	2.393268	-0.012785	1.341883	2.404597	-0.015753	1.329160
С	1.651883	-1.002841	1.898047	1.647160	-1.019598	1.870529
Н	-2.986047	0.154454	2.350396	-3.018626	0.149147	2.278853
Н	-1.553305	2.200859	1.343364	-1.557681	2.223323	1.320845
Н	3.471845	-0.035820	1.213347	3.493163	-0.037416	1.213865
Н	2.036578	-1.944028	2.281726	2.026837	-1.978041	2.239792
Н	-1.345752	-1.960670	2.731677	-1.377237	-1.989347	2.658848
Н	1.885423	2.113624	1.155778	1.903824	2.129271	1.167949
С	-1.058773	-1.003944	-2.307958	-1.078667	-1.019133	-2.253066
С	-1.927999	0.122296	-2.108996	-1.947730	0.119677	-2.057080
С	-1.159258	1.220733	-1.590777	-1.166265	1.231059	-1.560341
С	0.174914	0.754158	-1.424419	0.178706	0.760434	-1.404566
С	0.245097	-0.585628	-1.917601	0.242840	-0.595395	-1.890443
С	1.522303	1.135552	-0.813374	1.537734	1.146118	-0.813960
С	2.393268	-0.012785	-1.341883	2.404597	-0.015753	-1.329160
С	1.651883	-1.002841	-1.898047	1.647160	-1.019598	-1.870529
Н	-2.986047	0.154454	-2.350396	-3.018626	0.149147	-2.278853
Н	-1.553305	2.200859	-1.343364	-1.557681	2.223323	-1.320845
Н	3.471845	-0.035820	-1.213347	3.493163	-0.037416	-1.213865
Н	2.036578	-1.944028	-2.281726	2.026837	-1.978041	-2.239792
Н	-1.345752	-1.960670	-2.731677	-1.377237	-1.989347	-2.658848
Н	1.885423	2.113624	-1.155778	1.903824	2.129271	-1.167949
V	-1.091944	-0.373362	0.000000	-1.076567	-0.360122	0.000000

Table S25. Optimized coordinates of the V-7Q for the (C8H6)₂V structures

		B3LYP			BP86	
	Х	У	Z	х	у	Z
С	-2.520655	1.533960	-0.292134	-2.447878	1.599616	-0.192360
С	-3.159203	0.731283	-1.266490	-3.137340	0.852546	-1.189953
С	-2.881592	-0.634194	-1.032488	-2.908031	-0.537926	-1.009756
С	-2.039033	-0.706866	0.147640	-2.054800	-0.685351	0.156304
С	-1.817674	0.642367	0.610772	-1.776799	0.648126	0.673252
С	-1.402069	-1.599348	1.060555	-1.384923	-1.636001	0.999428
С	-0.782362	-0.797359	2.077035	-0.702214	-0.890774	2.033312
С	-1.048753	0.588675	1.814148	-0.948917	0.520982	1.846154
Н	-3.757160	1.111703	-2.090180	-3.734572	1.289384	-1.997219
Н	-3.239061	-1.470738	-1.625347	-3.305278	-1.344431	-1.633251
Н	-0.214575	-1.180615	2.919217	-0.103602	-1.328719	2.837264
Н	-0.712201	1.422630	2.420584	-0.564406	1.324418	2.479816
Н	-2.553364	2.617665	-0.233790	-2.432653	2.689283	-0.096268
Н	-1.370655	-2.683091	1.008516	-1.374720	-2.724438	0.892324
С	2.526199	1.134498	0.919281	2.570818	1.043163	0.942196
С	1.853166	2.178556	0.286360	1.954608	2.153024	0.340340
С	1.275727	1.710937	-0.957153	1.336529	1.752997	-0.912993
С	1.785713	0.393887	-1.192535	1.762937	0.406024	-1.191496
С	2.437914	-0.023902	0.046372	2.402403	-0.087319	0.036886
С	1.243375	-0.789411	-1.831091	1.168486	-0.727511	-1.882234
С	1.570424	-1.896880	-0.997794	1.437398	-1.887067	-1.080799
С	2.263456	-1.443817	0.169882	2.159237	-1.508104	0.108287
Н	1.727997	3.181153	0.686370	1.893072	3.156859	0.773008
Н	0.715606	2.320331	-1.660793	0.794774	2.414302	-1.596595
Н	1.306088	-2.931331	-1.198043	1.117458	-2.906423	-1.318001
Н	2.586002	-2.075711	0.991574	2.452130	-2.189107	0.912547
Н	2.999486	1.170030	1.895783	3.058185	1.021396	1.921436
Н	0.693362	-0.835997	-2.765406	0.611130	-0.710632	-2.822691
V	0.260465	-0.294798	0.099015	0.217365	-0.295237	0.069053

Table S26. Optimized coordinates of the V-8Q for the (C8H6)₂V structures

		B3LYP			BP86	
	Х	у	Z	х	у	Z
С	1.501583	0.762721	1.183721	-1.514589	0.664452	1.192647
С	1.452120	1.592667	0.000000	-2.144213	0.110408	0.000000
С	1.501583	0.762721	-1.183721	-1.514589	0.664452	-1.192647
С	1.749504	-0.578834	-0.743177	-0.635440	1.719603	-0.746401
С	1.749504	-0.578834	0.743177	-0.635440	1.719603	0.746401
С	2.011302	-1.899041	-1.179844	0.223003	2.762371	-1.185691
С	2.195121	-2.668566	0.000000	0.704859	3.398985	0.000000
С	2.011302	-1.899041	1.179844	0.223003	2.762371	1.185691
Н	1.406673	2.676835	0.000000	-2.970585	-0.605768	0.000000
Н	1.511539	1.128493	-2.204988	-1.815482	0.450223	-2.221878
Н	2.454536	-3.727070	0.000000	1.360734	4.279742	0.000000
Н	2.107600	-2.250150	2.201212	0.435212	3.060617	2.215332
Н	1.511539	1.128493	2.204988	-1.815482	0.450223	2.221878
Н	2.107600	-2.250150	-2.201212	0.435212	3.060617	-2.215332
С	-1.755812	1.621732	1.170768	-0.168452	-2.369937	1.180227
С	-1.538499	2.404642	0.000000	-0.926437	-2.680562	0.000000
С	-1.755812	1.621732	-1.170768	-0.168452	-2.369937	-1.180227
С	-2.168211	0.308937	-0.735868	1.130907	-1.889233	-0.739281
С	-2.168211	0.308937	0.735868	1.130907	-1.889233	0.739281
С	-1.538499	-0.912641	-1.171622	1.660131	-0.611172	-1.180803
С	-1.168468	-1.635405	0.000000	1.970887	0.146031	0.000000
С	-1.538499	-0.912641	1.171622	1.660131	-0.611172	1.180803
Н	-1.183036	3.430991	0.000000	-1.965942	-3.022949	0.000000
Н	-1.601595	1.944434	-2.194000	-0.514263	-2.452213	-2.212983
Н	-0.572751	-2.542996	0.000000	2.261514	1.202252	0.000000
Н	-1.301969	-1.192466	2.191339	1.724620	-0.252897	2.210136
Н	-1.601595	1.944434	2.194000	-0.514263	-2.452213	2.212983
Н	-1.301969	-1.192466	-2.191339	1.724620	-0.252897	-2.210136
Cr	-0.282360	0.462797	0.000000	-0.180133	-0.526122	0.000000

Table S27. Optimized coordinates of the Cr-1S for the (C8H6)₂Cr structures

		B3LYP			BP86	
	Х	у	Z	Х	у	Z
С	1.722473	1.096387	0.351730	1.730071	1.050152	0.355824
С	1.321707	1.725103	1.588042	1.326999	1.676831	1.604338
С	0.000000	2.258872	1.444448	0.000000	2.222264	1.463927
С	-0.425430	1.978327	0.115328	-0.430587	1.957588	0.121982
С	0.613423	1.238692	-0.553464	0.614615	1.209211	-0.557948
С	-1.541936	2.147725	-0.823077	-1.542079	2.143662	-0.819988
С	-1.244824	1.509492	-1.982813	-1.237515	1.521216	-2.000460
С	0.098101	0.780825	-1.921329	0.103562	0.781923	-1.942445
Н	1.924880	1.779612	2.488926	1.929101	1.711293	2.517177
Н	-0.565406	2.761230	2.222892	-0.570228	2.716989	2.255415
Н	-1.891266	1.457859	-2.856523	-1.885037	1.487115	-2.884669
Н	0.745312	1.070899	-2.762655	0.765146	1.076812	-2.783237
Н	2.680546	0.628040	0.157549	2.692841	0.573912	0.155803
Н	-2.456447	2.698787	-0.618047	-2.463195	2.698250	-0.609195
С	0.000000	-2.258872	1.444448	0.000000	-2.222264	1.463927
С	-1.321707	-1.725103	1.588042	-1.326999	-1.676831	1.604338
С	-1.722473	-1.096387	0.351730	-1.730071	-1.050152	0.355824
С	-0.613423	-1.238692	-0.553464	-0.614615	-1.209211	-0.557948
С	0.425430	-1.978327	0.115328	0.430587	-1.957588	0.121982
С	-0.098101	-0.780825	-1.921329	-0.103562	-0.781923	-1.942445
С	1.244824	-1.509492	-1.982813	1.237515	-1.521216	-2.000460
С	1.541936	-2.147725	-0.823077	1.542079	-2.143662	-0.819988
Н	-1.924880	-1.779612	2.488926	-1.929101	-1.711293	2.517177
Н	-2.680546	-0.628040	0.157549	-2.692841	-0.573912	0.155803
Н	1.891266	-1.457859	-2.856523	1.885037	-1.487115	-2.884669
Н	2.456447	-2.698787	-0.618047	2.463195	-2.698250	-0.609195
Н	0.565406	-2.761230	2.222892	0.570228	-2.716989	2.255415
Н	-0.745312	-1.070899	-2.762655	-0.765146	-1.076812	-2.783237
Cr	0.000000	0.000000	1.004555	0.000000	0.000000	0.999777

Table S28. Optimized coordinates of the Cr-2T for the (C8H6)₂Cr structures

		B3LYP			BP86	
	X	У	Z	x	У	Z
С	-0.088405	2.083197	1.553646	0.131676	1.985357	1.497312
С	-1.312402	1.395098	1.848238	-1.071446	1.341317	1.969064
С	-1.965253	1.043418	0.613700	-1.916248	1.027773	0.841216
С	-1.153185	1.536835	-0.456974	-1.271667	1.542878	-0.346535
С	0.000000	2.218961	0.122792	0.000000	2.160995	0.064381
С	-1.026755	1.611515	-1.894489	-1.353801	1.627625	-1.783000
С	0.150111	2.333351	-2.158804	-0.179627	2.289654	-2.223859
С	0.804110	2.704364	-0.947311	0.670493	2.607431	-1.117727
Н	-1.678558	1.157676	2.842457	-1.279718	1.069847	3.008019
Н	-2.898359	0.494258	0.532631	-2.869171	0.492839	0.897335
Н	0.525227	2.559818	-3.153934	0.059673	2.500885	-3.271877
Н	1.735423	3.255638	-0.866188	1.645867	3.098869	-1.173552
Н	0.608897	2.461812	2.294673	0.962689	2.308036	2.130975
Н	-1.709415	1.196097	-2.627702	-2.157780	1.242798	-2.415861
С	1.965253	-1.043418	0.613700	1.916248	-1.027773	0.841216
С	1.312402	-1.395098	1.848238	1.071446	-1.341317	1.969064
С	0.088405	-2.083197	1.553646	-0.131676	-1.985357	1.497312
С	0.000000	-2.218961	0.122792	0.000000	-2.160995	0.064381
С	1.153185	-1.536835	-0.456974	1.271667	-1.542878	-0.346535
С	-0.804110	-2.704364	-0.947311	-0.670493	-2.607431	-1.117727
С	-0.150111	-2.333351	-2.158804	0.179627	-2.289654	-2.223859
С	1.026755	-1.611515	-1.894489	1.353801	-1.627625	-1.783000
Н	1.678558	-1.157676	2.842457	1.279718	-1.069847	3.008019
Н	-0.608897	-2.461812	2.294673	-0.962689	-2.308036	2.130975
Н	-0.525227	-2.559818	-3.153934	-0.059673	-2.500885	-3.271877
Н	1.709415	-1.196097	-2.627702	2.157780	-1.242798	-2.415861
Н	2.898359	-0.494258	0.532631	2.869171	-0.492839	0.897335
Н	-1.735423	-3.255638	-0.866188	-1.645867	-3.098869	-1.173552
Cr	0.000000	0.000000	0.741107	0.000000	0.000000	0.618321

Table S29. Optimized coordinates of the Cr-3T for the (C8H6)₂Cr structures

		B3LYP			BP86	
	Х	У	Z	Х	У	Z
С	0.000000	3.261361	0.528532	0.000000	3.161941	0.359038
С	-0.175219	3.542379	-0.838143	-0.044473	3.356763	-1.039840
С	0.502852	2.581039	-1.645689	0.717040	2.344669	-1.717828
С	1.151971	1.676471	-0.755124	1.301619	1.516553	-0.709279
С	0.835721	2.088085	0.608875	0.836373	2.003811	0.597250
С	1.956823	0.484322	-0.675659	2.056646	0.295303	-0.480459
С	2.169124	0.195937	0.709140	2.086263	0.063266	0.934329
С	1.465294	1.167713	1.510223	1.296690	1.079481	1.609696
Н	-0.761397	4.370256	-1.229799	-0.603470	4.153226	-1.543256
Н	0.522745	2.556026	-2.730461	0.827155	2.235964	-2.800447
Н	2.737818	-0.644251	1.095556	2.559511	-0.793969	1.422554
Н	1.448246	1.190412	2.595454	1.140625	1.143289	2.689777
Н	-0.400456	3.831023	1.360776	-0.491604	3.778047	1.117068
Н	2.344539	-0.104780	-1.500975	2.509571	-0.354091	-1.235297
С	-1.465294	-1.167713	1.510223	-1.296690	-1.079481	1.609696
С	-2.169124	-0.195937	0.709140	-2.086263	-0.063266	0.934329
С	-1.956823	-0.484322	-0.675659	-2.056646	-0.295303	-0.480459
С	-1.151971	-1.676471	-0.755124	-1.301619	-1.516553	-0.709279
С	-0.835721	-2.088085	0.608875	-0.836373	-2.003811	0.597250
С	-0.502852	-2.581039	-1.645689	-0.717040	-2.344669	-1.717828
С	0.175219	-3.542379	-0.838143	0.044473	-3.356763	-1.039840
С	0.000000	-3.261361	0.528532	0.000000	-3.161941	0.359038
Н	-2.737818	0.644251	1.095556	-2.559511	0.793969	1.422554
Н	-2.344539	0.104780	-1.500975	-2.509571	0.354091	-1.235297
Н	0.761397	-4.370256	-1.229799	0.603470	-4.153226	-1.543256
Н	0.400456	-3.831023	1.360776	0.491604	-3.778047	1.117068
Н	-1.448246	-1.190412	2.595454	-1.140625	-1.143289	2.689777
Н	-0.522745	-2.556026	-2.730461	-0.827155	-2.235964	-2.800447
Cr	0.000000	0.000000	0.313043	0.000000	0.000000	0.252680

Table S30. Optimized coordinates of the Cr-4T for the $(C8H6)_2$ Cr structures
--

		B3LYP			BP86	
	Х	у	Z	х	у	Z
С	-1.054822	-1.048244	2.202229	1.059140	-1.069896	2.160010
С	-1.942244	0.061735	2.001145	-0.062315	-1.957645	1.965829
С	-1.184798	1.195090	1.512306	-1.206708	-1.192343	1.484927
С	0.171055	0.736506	1.361987	-0.742169	0.175629	1.337292
С	0.248823	-0.612930	1.850205	0.622268	0.249498	1.823683
С	1.536588	1.148902	0.804811	-1.161385	1.553101	0.803554
С	2.401965	-0.005255	1.334813	0.009067	2.414556	1.317190
С	1.656644	-1.014199	1.853725	1.030672	1.653824	1.824799
Н	-3.005957	0.061587	2.217243	-0.059787	-3.032235	2.171025
Н	-1.579401	2.188934	1.334861	-2.212873	-1.585420	1.321900
Н	3.484867	-0.013796	1.242309	0.014705	3.507399	1.243447
Н	2.042433	-1.959939	2.224997	1.992938	2.036244	2.181381
Н	-1.343641	-2.030127	2.563220	2.052902	-1.368061	2.506100
Н	1.884735	2.124129	1.173044	-2.139874	1.903841	1.188645
С	-1.054822	-1.048244	-2.202229	1.059140	-1.069896	-2.160010
С	-1.942244	0.061735	-2.001145	-0.062315	-1.957645	-1.965829
С	-1.184798	1.195090	-1.512306	-1.206708	-1.192343	-1.484927
С	0.171055	0.736506	-1.361987	-0.742169	0.175629	-1.337292
С	0.248823	-0.612930	-1.850205	0.622268	0.249498	-1.823683
С	1.536588	1.148902	-0.804811	-1.161385	1.553101	-0.803554
С	2.401965	-0.005255	-1.334813	0.009067	2.414556	-1.317190
С	1.656644	-1.014199	-1.853725	1.030672	1.653824	-1.824799
Н	-3.005957	0.061587	-2.217243	-0.059787	-3.032235	-2.171025
Н	-1.579401	2.188934	-1.334861	-2.212873	-1.585420	-1.321900
Н	3.484867	-0.013796	-1.242309	0.014705	3.507399	-1.243447
Н	2.042433	-1.959939	-2.224997	1.992938	2.036244	-2.181381
Н	-1.343641	-2.030127	-2.563220	2.052902	-1.368061	-2.506100
Н	1.884735	2.124129	-1.173044	-2.139874	1.903841	-1.188645
Cr	-1.040193	-0.261702	0.000000	0.255048	-1.035176	0.000000

Table S31. Optimized coordinates of the Cr-5T for the (C8H6)₂Cr structures

		B3LYP			BP86	
	х	У	Z	х	у	Z
С	0.000000	2.933328	0.474973	0.000000	2.936719	0.485473
С	-0.342619	2.945233	-0.855313	-0.346816	2.956996	-0.852955
С	0.359014	1.853961	-1.557274	0.332226	1.838916	-1.550612
С	1.364588	1.373712	-0.676035	1.365021	1.360631	-0.676883
С	0.965856	1.838747	0.647803	0.948885	1.818273	0.656506
С	2.090022	0.123815	-0.522562	2.077962	0.098896	-0.535428
С	2.087600	-0.189797	0.853459	2.057984	-0.242483	0.845590
С	1.351665	0.826288	1.575790	1.324771	0.778810	1.581205
Н	-1.055047	3.617729	-1.325296	-1.050134	3.648437	-1.327833
Н	0.300797	1.665265	-2.626396	0.265184	1.643196	-2.627007
Н	2.524439	-1.077440	1.299095	2.488484	-1.148035	1.282377
Н	1.159015	0.810048	2.643633	1.122806	0.749632	2.655347
Н	-0.384076	3.580946	1.256486	-0.366758	3.599549	1.274310
Н	2.513579	-0.487895	-1.310737	2.492054	-0.518525	-1.336179
С	-1.351665	-0.826288	1.575790	-1.324771	-0.778810	1.581205
С	-2.087600	0.189797	0.853459	-2.057984	0.242483	0.845590
С	-2.090022	-0.123815	-0.522562	-2.077962	-0.098896	-0.535428
С	-1.364588	-1.373712	-0.676035	-1.365021	-1.360631	-0.676883
С	-0.965856	-1.838747	0.647803	-0.948885	-1.818273	0.656506
С	-0.359014	-1.853961	-1.557274	-0.332226	-1.838916	-1.550612
С	0.342619	-2.945233	-0.855313	0.346816	-2.956996	-0.852955
С	0.000000	-2.933328	0.474973	0.000000	-2.936719	0.485473
Н	-2.524439	1.077440	1.299095	-2.488484	1.148035	1.282377
Н	-2.513579	0.487895	-1.310737	-2.492054	0.518525	-1.336179
Η	1.055047	-3.617729	-1.325296	1.050134	-3.648437	-1.327833
Η	0.384076	-3.580946	1.256486	0.366758	-3.599549	1.274310
Η	-1.159015	-0.810048	2.643633	-1.122806	-0.749632	2.655347
Н	-0.300797	-1.665265	-2.626396	-0.265184	-1.643196	-2.627007
Cr	0.000000	0.000000	0.034847	0.000000	0.000000	0.030134

Table S32. Optimized coordinates of the Cr-6S for the (C8H6)₂Cr structures

		B3LYP			BP86	
	X	У	Z	X	У	Z
С	0.7825970	-0.3611090	-1.8653000	0.690322	-0.372740	-1.881259
С	1.4181070	-1.6163160	-1.5468080	1.326598	-1.640837	-1.566448
С	2.1625400	-1.4717850	-0.3332090	2.113143	-1.493907	-0.369623
С	2.0044180	-0.1222250	0.0963020	1.987452	-0.128963	0.055913
С	1.1347660	0.5593310	-0.8212050	1.087106	0.561588	-0.847949
С	2.3597290	0.8149180	1.1722800	2.384737	0.814346	1.112527
С	1.6926830	1.9799930	0.9787890	1.727766	1.999474	0.921946
С	0.7585350	1.9229950	-0.2290020	0.752415	1.943223	-0.256432
Н	1.3508780	-2.5242140	-2.1379470	1.229382	-2.561701	-2.149587
Н	2.7275790	-2.2555940	0.1606880	2.685018	-2.287313	0.120028
Н	1.7497120	2.8531150	1.6256820	1.818250	2.884357	1.563316
Н	0.9296380	2.7727830	-0.9054460	0.905055	2.793132	-0.951850
Н	0.1570710	-0.1670800	-2.7294160	0.039066	-0.173817	-2.736719
Н	3.0450650	0.6036930	1.9894380	3.094290	0.599674	1.919323
С	-2.1625570	-1.4717550	0.3332880	-2.113147	-1.493901	0.369617
С	-1.4181460	-1.6162180	1.5469020	-1.326612	-1.640830	1.566447
С	-0.7826210	-0.3610000	1.8653270	-0.690332	-0.372736	1.881262
С	-1.1347470	0.5593770	0.8211610	-1.087106	0.561592	0.847949
С	-2.0043890	-0.1222300	-0.0963190	-1.987449	-0.128956	-0.055917
С	-0.7585260	1.9230110	0.2288890	-0.752408	1.943227	0.256433
С	-1.6926840	1.9799500	-0.9788970	-1.727756	1.999482	-0.921947
С	-2.3597230	0.8148620	-1.1723320	-2.384728	0.814355	-1.112532
Н	-1.3509330	-2.5240780	2.1381070	-1.229400	-2.561696	2.149585
Н	-0.1571180	-0.1669070	2.7294450	-0.039083	-0.173814	2.736728
Н	-1.7497280	2.8530440	-1.6258270	-1.818236	2.884366	-1.563317
Н	-3.0450650	0.6035990	-1.9894750	-3.094280	0.599686	-1.919331
Н	-2.7275930	-2.2555800	-0.1605870	-2.685025	-2.287303	-0.120036
Н	-0.9296180	2.7728340	0.9052910	-0.905044	2.793136	0.951850
Mn	0.0000090	-0.9214560	0.0000340	0.000000	-0.907809	0.000004

Table S33. Optimized coordinates of the Mn-1D for the (C8H6)₂Mn structures

		B3LYP			BP86	
	х	У	Z	х	у	Z
С	1.165491	2.171919	-1.526470	-1.173138	-2.152070	-1.492646
С	0.000000	2.302753	-2.319724	0.000000	-2.294018	-2.289841
С	-1.165491	2.171919	-1.526470	1.173138	-2.152070	-1.492646
С	-0.728923	1.967728	-0.179235	0.734790	-1.946328	-0.144804
С	0.728923	1.967728	-0.179235	-0.734790	-1.946328	-0.144804
С	-1.176438	1.759764	1.166100	1.185385	-1.630754	1.194086
С	0.000000	1.661794	2.005002	0.000000	-1.517879	2.028172
С	1.176438	1.759764	1.166100	-1.185385	-1.630754	1.194086
Н	0.000000	2.463470	-3.395120	0.000000	-2.463241	-3.372477
Н	-2.190536	2.212602	-1.880180	2.205912	-2.180853	-1.850353
Н	0.000000	1.566850	3.085808	0.000000	-1.334216	3.105748
Н	2.201604	1.724392	1.520620	-2.217720	-1.570662	1.549040
Н	2.190536	2.212602	-1.880180	-2.205912	-2.180853	-1.850353
Н	-2.201604	1.724392	1.520620	2.217720	-1.570662	1.549040
С	1.165491	-2.171919	-1.526470	-1.173138	2.152070	-1.492646
С	0.000000	-2.302753	-2.319724	0.000000	2.294018	-2.289841
С	-1.165491	-2.171919	-1.526470	1.173138	2.152070	-1.492646
С	-0.728923	-1.967728	-0.179235	0.734790	1.946328	-0.144804
С	0.728923	-1.967728	-0.179235	-0.734790	1.946328	-0.144804
С	-1.176438	-1.759764	1.166100	1.185385	1.630754	1.194086
С	0.000000	-1.661794	2.005002	0.000000	1.517879	2.028172
С	1.176438	-1.759764	1.166100	-1.185385	1.630754	1.194086
Н	0.000000	-2.463470	-3.395120	0.000000	2.463241	-3.372477
Н	-2.190536	-2.212602	-1.880180	2.205912	2.180853	-1.850353
Н	0.000000	-1.566850	3.085808	0.000000	1.334216	3.105748
Н	2.201604	-1.724392	1.520620	-2.217720	1.570662	1.549040
Н	2.190536	-2.212602	-1.880180	-2.205912	2.180853	-1.850353
Н	-2.201604	-1.724392	1.520620	2.217720	1.570662	1.549040
Mn	0.000000	0.000000	0.751361	0.000000	0.000000	0.620779

Table S34. Optimized coordinates of the Mn-2D for the (C8H6)₂Mn structures

		B3LYP			BP86	
	Х	у	Z	х	у	Z
С	1.074970	-1.070340	2.116572	1.071073	-1.096270	2.040023
С	-0.038298	-1.955274	1.931654	-0.053910	-1.987315	1.841967
С	-1.185683	-1.182851	1.509658	-1.206427	-1.185854	1.450607
С	-0.741285	0.175089	1.378843	-0.750520	0.183218	1.351290
С	0.622498	0.242110	1.816561	0.629453	0.241281	1.781790
С	-1.151324	1.539021	0.810795	-1.160694	1.561437	0.807297
С	0.008698	2.400921	1.331684	0.014998	2.416499	1.318439
С	1.026032	1.651502	1.825709	1.039932	1.647551	1.803469
Н	-0.034025	-3.022505	2.128977	-0.064811	-3.063108	2.038651
Н	-2.179677	-1.576377	1.326144	-2.212436	-1.572012	1.265486
Н	0.018765	3.483968	1.240594	0.028584	3.508983	1.240599
Н	1.979556	2.033243	2.180811	2.009832	2.022062	2.147457
Н	2.069300	-1.362189	2.439010	2.083401	-1.405668	2.318550
Н	-2.125300	1.896417	1.170832	-2.138060	1.919576	1.185738
С	1.074970	-1.070340	-2.116572	1.071073	-1.096270	-2.040023
С	-0.038298	-1.955274	-1.931654	-0.053910	-1.987315	-1.841967
С	-1.185683	-1.182851	-1.509658	-1.206427	-1.185854	-1.450607
С	-0.741285	0.175089	-1.378843	-0.750520	0.183218	-1.351290
С	0.622498	0.242110	-1.816561	0.629453	0.241281	-1.781790
С	-1.151324	1.539021	-0.810795	-1.160694	1.561437	-0.807297
С	0.008698	2.400921	-1.331684	0.014998	2.416499	-1.318439
С	1.026032	1.651502	-1.825709	1.039932	1.647551	-1.803469
Н	-0.034025	-3.022505	-2.128977	-0.064811	-3.063108	-2.038651
Н	-2.179677	-1.576377	-1.326144	-2.212436	-1.572012	-1.265486
Н	0.018765	3.483968	-1.240594	0.028584	3.508983	-1.240599
Н	1.979556	2.033243	-2.180811	2.009832	2.022062	-2.147457
Н	2.069300	-1.362189	-2.439010	2.083401	-1.405668	-2.318550
Н	-2.125300	1.896417	-1.170832	-2.138060	1.919576	-1.185738
Mn	0.206219	-0.980290	0.000000	0.223205	-0.967449	0.000000

Table S35. Optimized coordinates of the Mn-3D for the (C8H6)₂Mn structures

		B3LYP			BP86	
	х	у	Z	х	у	Z
С	1.165396	1.686443	-1.585047	1.170330	1.704509	-1.583910
С	0.000000	1.664928	-2.385840	0.000000	1.694340	-2.391160
С	-1.165396	1.686443	-1.585047	-1.170330	1.704509	-1.583910
С	-0.727840	1.767498	-0.214993	-0.731668	1.762606	-0.204781
С	0.727840	1.767498	-0.214993	0.731668	1.762606	-0.204781
С	-1.180909	1.775720	1.146663	-1.189290	1.727535	1.166265
С	0.000000	1.803838	1.984606	0.000000	1.735444	2.011231
С	1.180909	1.775720	1.146663	1.189290	1.727535	1.166265
Н	0.000000	1.614308	-3.471870	0.000000	1.660301	-3.486094
Н	-2.190551	1.673797	-1.938999	-2.204047	1.690765	-1.939372
Н	0.000000	1.849778	3.069142	0.000000	1.745476	3.105033
Н	2.205808	1.792197	1.500778	2.222271	1.730536	1.522804
Н	2.190551	1.673797	-1.938999	2.204047	1.690765	-1.939372
Н	-2.205808	1.792197	1.500778	-2.222271	1.730536	1.522804
С	1.165396	-1.686443	-1.585047	1.170330	-1.704509	-1.583910
С	0.000000	-1.664928	-2.385840	0.000000	-1.694340	-2.391160
С	-1.165396	-1.686443	-1.585047	-1.170330	-1.704509	-1.583910
С	-0.727840	-1.767498	-0.214993	-0.731668	-1.762606	-0.204781
С	0.727840	-1.767498	-0.214993	0.731668	-1.762606	-0.204781
С	-1.180909	-1.775720	1.146663	-1.189290	-1.727535	1.166265
С	0.000000	-1.803838	1.984606	0.000000	-1.735444	2.011231
С	1.180909	-1.775720	1.146663	1.189290	-1.727535	1.166265
Н	0.000000	-1.614308	-3.471870	0.000000	-1.660301	-3.486094
Н	-2.190551	-1.673797	-1.938999	-2.204047	-1.690765	-1.939372
Н	0.000000	-1.849778	3.069142	0.000000	-1.745476	3.105033
Н	2.205808	-1.792197	1.500778	2.222271	-1.730536	1.522804
Н	2.190551	-1.673797	-1.938999	2.204047	-1.690765	-1.939372
Н	-2.205808	-1.792197	1.500778	-2.222271	-1.730536	1.522804
Mn	0.000000	0.000000	0.922168	0.000000	0.000000	0.877031

Table S36. Optimized coordinates of the Mn-4Q for the (C8H6)₂Mn structures

		DALVD			220	
		B3LYP			BP86	
	Х	У	Z	Х	У	Z
С	-0.878841	-0.112616	1.877807	-0.769840	-0.092683	1.903659
С	-1.641863	-1.320887	1.649758	-1.580061	-1.282614	1.688603
С	-2.365331	-1.190990	0.422280	-2.358390	-1.115491	0.486778
С	-1.989752	0.072182	-0.139143	-1.960263	0.149381	-0.086821
С	-1.094770	0.733279	0.776164	-0.998054	0.774228	0.811558
С	-2.229590	0.977398	-1.270582	-2.214467	1.084610	-1.191218
С	-1.452544	2.080825	-1.122496	-1.393620	2.172951	-1.052328
С	-0.575075	2.006669	0.124164	-0.467298	2.047388	0.157338
Н	-1.704222	-2.158298	2.337826	-1.633016	-2.136901	2.370000
Н	-3.048961	-1.922345	0.003312	-3.083892	-1.829074	0.086679
Н	-1.400260	2.913180	-1.821339	-1.339001	3.019150	-1.747457
Н	-0.704774	2.900145	0.751297	-0.531426	2.939837	0.811110
Н	-0.222736	0.058482	2.723849	-0.065959	0.047341	2.727677
Н	-2.909944	0.786956	-2.097004	-2.935082	0.928721	-2.001751
С	2.075588	-1.591152	-0.185962	1.918786	-1.703414	-0.220210
С	1.419233	-1.700884	-1.461463	1.215572	-1.774297	-1.490173
С	0.858681	-0.415836	-1.805612	0.733874	-0.441654	-1.827770
С	1.292057	0.506684	-0.788262	1.270135	0.453355	-0.820686
С	2.050933	-0.198371	0.167367	2.029146	-0.299826	0.115566
С	0.962856	1.885642	-0.242901	1.054589	1.856804	-0.271822
С	1.810643	1.915543	1.025563	1.949994	1.841469	0.967161
С	2.394674	0.712576	1.262882	2.469302	0.591679	1.190330
Н	1.348586	-2.602308	-2.062923	1.066984	-2.677436	-2.089886
Н	0.319322	-0.178688	-2.716325	0.184685	-0.160835	-2.730546
Н	1.885936	2.797420	1.658108	2.106000	2.726143	1.595209
Н	3.016221	0.463871	2.119715	3.107478	0.304053	2.033411
Н	2.604853	-2.387590	0.326960	2.407811	-2.541239	0.284755
Н	1.223409	2.711163	-0.920685	1.331554	2.669948	-0.971653
Mn	-0.169153	-1.181695	-0.081607	-0.240503	-1.154441	-0.101094

Table S37.	Optimized	coordinates	of the Mn	-5Q for th	e (C8H6) ₂ Mn	structures

		B3LYP			BP86	
	X	У	Z	X	У	Z
С	-1.012568	-1.039671	2.317546	-1.014941	-1.090983	2.213717
С	-1.913739	0.068884	2.083283	-1.924320	0.033447	2.007705
С	-1.159921	1.200696	1.605911	-1.159230	1.193702	1.574023
С	0.169257	0.726547	1.382519	0.186498	0.712863	1.364504
С	0.267767	-0.618029	1.919118	0.288205	-0.649829	1.890645
С	1.523515	1.141124	0.811566	1.549586	1.141734	0.821810
С	2.403431	0.010100	1.352128	2.430678	0.018742	1.367200
С	1.676678	-0.997718	1.904926	1.693076	-1.020744	1.889193
Н	-2.968202	0.078557	2.342209	-2.989151	0.032307	2.259422
Н	-1.564127	2.182906	1.388465	-1.549056	2.203002	1.421275
Н	3.484413	0.005805	1.237591	3.521913	0.023997	1.268704
Н	2.083545	-1.928184	2.292548	2.104414	-1.965070	2.261678
Н	-1.295755	-2.004046	2.726946	-1.312566	-2.079638	2.575652
Н	1.860242	2.126355	1.161046	1.872871	2.143223	1.164748
С	-1.012568	-1.039671	-2.317546	-1.014941	-1.090983	-2.213717
С	-1.913739	0.068884	-2.083283	-1.924320	0.033447	-2.007705
С	-1.159921	1.200696	-1.605911	-1.159230	1.193702	-1.574023
С	0.169257	0.726547	-1.382519	0.186498	0.712863	-1.364504
С	0.267767	-0.618029	-1.919118	0.288205	-0.649829	-1.890645
С	1.523515	1.141124	-0.811566	1.549586	1.141734	-0.821810
С	2.403431	0.010100	-1.352128	2.430678	0.018742	-1.367200
С	1.676678	-0.997718	-1.904926	1.693076	-1.020744	-1.889193
Н	-2.968202	0.078557	-2.342209	-2.989151	0.032307	-2.259422
Н	-1.564127	2.182906	-1.388465	-1.549056	2.203002	-1.421275
Н	3.484413	0.005805	-1.237591	3.521913	0.023997	-1.268704
Н	2.083545	-1.928184	-2.292548	2.104414	-1.965070	-2.261678
Н	-1.295755	-2.004046	-2.726946	-1.312566	-2.079638	-2.575652
Н	1.860242	2.126355	-1.161046	1.872871	2.143223	-1.164748
Mn	-1.066131	-0.273040	0.000000	-1.115659	-0.191313	0.000000

Table S38. Optimized coordinates of the Mn-6Q for the (C8H6)₂Mn structures

		B3LYP			BP86	
	X	У	Z	X	У	Z
С	0.597225	-0.350533	-1.892746	1.890242	0.561971	0.358815
С	1.164413	-1.639238	-1.573880	1.555046	1.115239	1.662516
С	1.987340	-1.510431	-0.397935	0.370900	1.947040	1.532968
С	1.946243	-0.132407	-0.012877	0.000000	1.932494	0.137334
С	1.061029	0.571234	-0.898454	0.897459	1.041852	-0.574196
С	2.398093	0.808500	1.023989	-1.026282	2.395787	-0.810438
С	1.757608	1.991646	0.854028	-0.841480	1.767401	-2.011766
С	0.742089	1.942244	-0.285279	0.292898	0.743150	-1.960733
Н	1.001181	-2.553861	-2.134018	2.111585	0.937562	2.587175
Н	2.535174	-2.311812	0.085467	-0.122550	2.491133	2.342476
Н	1.879719	2.870444	1.483889	-1.469106	1.901434	-2.900852
Н	0.862935	2.791210	-0.972530	0.993712	0.859331	-2.810811
Н	-0.098154	-0.146818	-2.698881	2.701697	-0.139881	0.149977
Н	3.125362	0.585488	1.800764	-1.811670	3.125990	-0.585657
С	-1.987302	-1.510454	0.397916	-0.370900	-1.947040	1.532968
С	-1.164402	-1.639240	1.573883	-1.555046	-1.115239	1.662516
С	-0.597238	-0.350525	1.892754	-1.890242	-0.561971	0.358815
С	-1.061028	0.571236	0.898453	-0.897459	-1.041852	-0.574196
С	-1.946216	-0.132421	0.012858	0.000000	-1.932494	0.137334
С	-0.742097	1.942242	0.285275	-0.292898	-0.743150	-1.960733
С	-1.757624	1.991642	-0.854031	0.841480	-1.767401	-2.011766
С	-2.398091	0.808486	-1.023997	1.026282	-2.395787	-0.810438
Н	-1.001143	-2.553850	2.134033	-2.111585	-0.937562	2.587175
Н	0.098150	-0.146809	2.698882	-2.701697	0.139881	0.149977
Н	-1.879752	2.870447	-1.483881	1.469106	-1.901434	-2.900852
Н	-3.125363	0.585463	-1.800767	1.811670	-3.125990	-0.585657
Н	-2.535129	-2.311843	-0.085479	0.122550	-2.491133	2.342476
Н	-0.862949	2.791213	0.972521	-0.993712	-0.859331	-2.810811
Fe	-0.000011	-0.870814	0.000010	0.000000	0.000000	0.862360

Table S39. Optimized coordinates of the Fe-1S for the (C8H6)₂Fe structures
		B3LYP			BP86	
	х	У	Z	х	у	Z
С	1.105247	-1.102044	1.937211	1.121400	-1.117969	1.879789
С	-0.038949	-1.966697	1.807182	-0.036983	-1.984948	1.762865
С	-1.199637	-1.167210	1.489284	-1.210679	-1.174180	1.470422
С	-0.750022	0.185815	1.365473	-0.755933	0.190205	1.349920
С	0.641284	0.231551	1.718963	0.652051	0.233378	1.694063
С	-1.157807	1.557722	0.812598	-1.168711	1.572721	0.811614
С	0.019610	2.406103	1.317937	0.024051	2.419168	1.298254
С	1.051458	1.638552	1.749968	1.066729	1.637449	1.721912
Н	-0.037532	-3.042779	1.946671	-0.037646	-3.070868	1.895837
Н	-2.199113	-1.551434	1.317856	-2.223166	-1.555932	1.312897
Н	0.031387	3.490818	1.251294	0.034214	3.513189	1.246839
Н	2.022776	2.005468	2.070786	2.053380	2.003152	2.025492
Н	2.112854	-1.414174	2.188931	2.139734	-1.436297	2.117689
Н	-2.126784	1.922827	1.176947	-2.140635	1.942865	1.190349
С	1.105247	-1.102044	-1.937211	1.121400	-1.117969	-1.879789
С	-0.038949	-1.966697	-1.807182	-0.036983	-1.984948	-1.762865
С	-1.199637	-1.167210	-1.489284	-1.210679	-1.174180	-1.470422
С	-0.750022	0.185815	-1.365473	-0.755933	0.190205	-1.349920
С	0.641284	0.231551	-1.718963	0.652051	0.233378	-1.694063
С	-1.157807	1.557722	-0.812598	-1.168711	1.572721	-0.811614
С	0.019610	2.406103	-1.317937	0.024051	2.419168	-1.298254
С	1.051458	1.638552	-1.749968	1.066729	1.637449	-1.721912
Н	-0.037532	-3.042779	-1.946671	-0.037646	-3.070868	-1.895837
Н	-2.199113	-1.551434	-1.317856	-2.223166	-1.555932	-1.312897
Н	0.031387	3.490818	-1.251294	0.034214	3.513189	-1.246839
Н	2.022776	2.005468	-2.070786	2.053380	2.003152	-2.025492
Н	2.112854	-1.414174	-2.188931	2.139734	-1.436297	-2.117689
Н	-2.126784	1.922827	-1.176947	-2.140635	1.942865	-1.190349
Fe	0.166870	-0.931806	0.000000	0.155582	-0.927004	0.000000

Table S40. Optimized coordinates of the Fe-2S for the (C8H6)₂Fe structures

		B3LYP			BP86	
	Х	v	Z	х	V	Z
С	1.168291	1.639387	1.176412	1.177869	1.621280	1.178428
С	0.000000	1.598162	2.010146	0.000000	1.571595	2.020186
С	-1.168291	1.639387	1.176412	-1.177869	1.621280	1.178428
С	-0.728039	1.836511	-0.182036	-0.732579	1.832119	-0.183960
С	0.728039	1.836511	-0.182036	0.732579	1.832119	-0.183960
С	-1.163533	2.047928	-1.524537	-1.169774	2.058114	-1.531044
С	0.000000	2.181110	-2.320076	0.000000	2.201784	-2.329996
С	1.163533	2.047928	-1.524537	1.169774	2.058114	-1.531044
Н	0.000000	1.462934	3.087130	0.000000	1.440839	3.106806
Н	-2.192405	1.589351	1.532688	-2.211195	1.574028	1.535098
Н	0.000000	2.333681	-3.396515	0.000000	2.366723	-3.413138
Н	2.188281	2.075712	-1.881347	2.202636	2.086954	-1.890060
Н	2.192405	1.589351	1.532688	2.211195	1.574028	1.535098
Н	-2.188281	2.075712	-1.881347	-2.202636	2.086954	-1.890060
С	1.168291	-1.639387	1.176412	1.177869	-1.621280	1.178428
С	0.000000	-1.598162	2.010146	0.000000	-1.571595	2.020186
С	-1.168291	-1.639387	1.176412	-1.177869	-1.621280	1.178428
С	-0.728039	-1.836511	-0.182036	-0.732579	-1.832119	-0.183960
С	0.728039	-1.836511	-0.182036	0.732579	-1.832119	-0.183960
С	-1.163533	-2.047928	-1.524537	-1.169774	-2.058114	-1.531044
С	0.000000	-2.181110	-2.320076	0.000000	-2.201784	-2.329996
С	1.163533	-2.047928	-1.524537	1.169774	-2.058114	-1.531044
Н	0.000000	-1.462934	3.087130	0.000000	-1.440839	3.106806
Н	-2.192405	-1.589351	1.532688	-2.211195	-1.574028	1.535098
Н	0.000000	-2.333681	-3.396515	0.000000	-2.366723	-3.413138
Н	2.188281	-2.075712	-1.881347	2.202636	-2.086954	-1.890060
Н	2.192405	-1.589351	1.532688	2.211195	-1.574028	1.535098
Н	-2.188281	-2.075712	-1.881347	-2.202636	-2.086954	-1.890060
Fe	0.000000	0.000000	0.709862	0.000000	0.000000	0.716463

Table S41. Optimized coordinates of the Fe-3S for the (C8H6)₂Fe structures

		B3LYP			BP86	
	Х	У	Z	х	у	Z
С	0.000000	3.003033	1.163972	0.000000	2.999398	1.169514
С	-0.448340	3.671699	0.000000	-0.440491	3.679477	0.000000
С	0.000000	3.003033	-1.163972	0.000000	2.999398	-1.169514
С	0.786457	1.879421	-0.726712	0.776373	1.860172	-0.730688
С	0.786457	1.879421	0.726712	0.776373	1.860172	0.730688
С	1.560073	0.754761	-1.171374	1.544383	0.721527	-1.180444
С	2.062447	0.084931	0.000000	2.044658	0.041262	0.000000
С	1.560073	0.754761	1.171374	1.544383	0.721527	1.180444
Н	-1.072391	4.562062	0.000000	-1.059592	4.583444	0.000000
Н	-0.206382	3.292062	-2.189706	-0.206686	3.290645	-2.203474
Н	2.672391	-0.812646	0.000000	2.655692	-0.866394	0.000000
Н	1.750161	0.453797	2.196556	1.732533	0.419467	2.214755
Н	-0.206382	3.292062	2.189706	-0.206686	3.290645	2.203474
Н	1.750161	0.453797	-2.196556	1.732533	0.419467	-2.214755
С	-1.560073	-0.754761	1.171374	-1.544383	-0.721527	1.180444
С	-2.062447	-0.084931	0.000000	-2.044658	-0.041262	0.000000
С	-1.560073	-0.754761	-1.171374	-1.544383	-0.721527	-1.180444
С	-0.786457	-1.879421	-0.726712	-0.776373	-1.860172	-0.730688
С	-0.786457	-1.879421	0.726712	-0.776373	-1.860172	0.730688
С	0.000000	-3.003033	-1.163972	0.000000	-2.999398	-1.169514
С	0.448340	-3.671699	0.000000	0.440491	-3.679477	0.000000
С	0.000000	-3.003033	1.163972	0.000000	-2.999398	1.169514
Н	-2.672391	0.812646	0.000000	-2.655692	0.866394	0.000000
Н	-1.750161	-0.453797	-2.196556	-1.732533	-0.419467	-2.214755
Н	1.072391	-4.562062	0.000000	1.059592	-4.583444	0.000000
Н	0.206382	-3.292062	2.189706	0.206686	-3.290645	2.203474
Н	-1.750161	-0.453797	2.196556	-1.732533	-0.419467	2.214755
Н	0.206382	-3.292062	-2.189706	0.206686	-3.290645	-2.203474
Fe	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

Table S42. Optimized coordina	ates of the Fe-4T for the formal states of the format states of the format states of the formal states of the formal states of the formal states of the formal states of the format states of the format states of the formal states of the format states of the fo	he (C8H6) ₂ Fe structures

		B3LYP			BP86	
	Х	У	Z	х	у	Z
С	1.175422	1.699672	1.164312	1.183641	1.660177	1.174407
С	0.000000	1.702909	1.999081	0.000000	1.655572	2.017029
С	-1.175421	1.699680	1.164312	-1.183641	1.660177	1.174407
С	-0.725441	1.738905	-0.199669	-0.729177	1.718156	-0.196920
С	0.725438	1.738905	-0.199669	0.729177	1.718156	-0.196920
С	-1.163384	1.733242	-1.575106	-1.168210	1.735844	-1.580663
С	0.000000	1.748384	-2.377944	0.000000	1.762536	-2.389735
С	1.163383	1.733240	-1.575104	1.168210	1.735844	-1.580663
Н	-0.000002	1.687999	3.084526	0.000000	1.631376	3.111105
Н	-2.200449	1.691175	1.518796	-2.217683	1.648541	1.529338
Н	0.000002	1.739525	-3.465035	0.000000	1.768751	-3.485118
Н	2.189000	1.727030	-1.929149	2.202161	1.730766	-1.937096
Н	2.200452	1.691184	1.518792	2.217683	1.648541	1.529338
Н	-2.189001	1.727034	-1.929149	-2.202161	1.730766	-1.937096
С	1.175421	-1.699680	1.164312	1.183641	-1.660177	1.174407
С	0.000000	-1.702909	1.999081	0.000000	-1.655572	2.017029
С	-1.175422	-1.699672	1.164312	-1.183641	-1.660177	1.174407
С	-0.725438	-1.738905	-0.199669	-0.729177	-1.718156	-0.196920
С	0.725441	-1.738905	-0.199669	0.729177	-1.718156	-0.196920
С	-1.163383	-1.733240	-1.575104	-1.168210	-1.735844	-1.580663
С	0.000000	-1.748384	-2.377944	0.000000	-1.762536	-2.389735
С	1.163384	-1.733242	-1.575106	1.168210	-1.735844	-1.580663
Н	0.000002	-1.687999	3.084526	0.000000	-1.631376	3.111105
Н	-2.200452	-1.691184	1.518792	-2.217683	-1.648541	1.529338
Н	-0.000002	-1.739525	-3.465035	0.000000	-1.768751	-3.485118
Н	2.189001	-1.727034	-1.929149	2.202161	-1.730766	-1.937096
Н	2.200449	-1.691175	1.518796	2.217683	-1.648541	1.529338
Н	-2.189000	-1.727030	-1.929149	-2.202161	-1.730766	-1.937096
Fe	0.000000	0.000000	0.830764	0.000000	0.000000	0.820299

Table S43. Optimized coordinates of the Fe-5T for the (C8H6)₂Fe structures

		B3LYP			BP86	
	Х	у	Z	х	у	Z
С	-0.910612	-0.280399	1.871479	-0.776285	-0.297565	1.884428
С	-1.595685	-1.506965	1.547515	-1.492693	-1.521520	1.569918
С	-2.357000	-1.334471	0.340045	-2.326001	-1.313606	0.408049
С	-2.053917	-0.038473	-0.141673	-2.030050	-0.003510	-0.078691
С	-1.136677	0.602823	0.781418	-1.052667	0.618842	0.818888
С	-2.335939	0.907875	-1.227345	-2.362474	0.971637	-1.125986
С	-1.589906	2.027103	-1.046139	-1.597010	2.093557	-0.955283
С	-0.681337	1.935757	0.178521	-0.625157	1.968949	0.220732
Н	-1.602907	-2.398465	2.167764	-1.471846	-2.433316	2.174756
Н	-2.988297	-2.084544	-0.124278	-2.982339	-2.060523	-0.046825
Н	-1.578772	2.889256	-1.710106	-1.614330	2.976225	-1.605861
Н	-0.836941	2.795004	0.846837	-0.733593	2.821192	0.921473
Н	-0.277422	-0.117708	2.735991	-0.087881	-0.159660	2.721323
Н	-3.026854	0.733496	-2.048544	-3.100625	0.818296	-1.921131
С	2.206746	-1.506200	-0.230139	2.086215	-1.576304	-0.245576
С	1.484952	-1.675367	-1.469451	1.333944	-1.728277	-1.478479
С	0.884768	-0.423476	-1.830493	0.778172	-0.444089	-1.853494
С	1.220567	0.505233	-0.779648	1.177674	0.482415	-0.806785
С	2.109542	-0.141348	0.138013	2.091368	-0.188073	0.093373
С	0.844881	1.882475	-0.225181	0.882701	1.888054	-0.258156
С	1.744500	1.955324	1.008683	1.840014	1.947361	0.936167
С	2.428642	0.798783	1.212469	2.488622	0.751547	1.134402
Н	1.444146	-2.591729	-2.049675	1.231335	-2.661998	-2.039510
Н	0.297009	-0.221964	-2.719128	0.189192	-0.216831	-2.745918
Н	1.786435	2.837438	1.643956	1.950204	2.845857	1.554160
Н	3.105975	0.602232	2.040142	3.192416	0.537368	1.946541
Н	2.752059	-2.289308	0.287414	2.603247	-2.386478	0.276823
Н	1.057779	2.710906	-0.916790	1.081580	2.706689	-0.979232
Fe	-0.065899	-0.966025	-0.035463	-0.105984	-0.949358	-0.070679

Table S44. Optimized coordinates of the Fe-6T for the (C8H6)₂Fe structures

		B3LYP			BP86	
	Х	V	z	х	V	Z
С	-1.047308	-1.038685	2.226824	1.037085	-1.078414	2.112442
Č	-1.923900	0.077490	1.985205	-0.099843	-1.947712	1.863088
Č	-1.136655	1.222071	1.573454	-1.248591	-1.117472	1.491947
Č	0.187687	0.757137	1.405472	-0.780931	0.220563	1.400289
С	0.249152	-0.618819	1.856931	0.621200	0.248319	1.805973
С	1.539825	1.145633	0.818210	-1.150438	1.580514	0.827465
С	2.400797	-0.010629	1.337305	0.032050	2.420635	1.323367
С	1.653566	-1.021857	1.854039	1.054806	1.642005	1.808368
Н	-2.987311	0.097419	2.204154	-0.141429	-3.020552	2.074057
Н	-1.531819	2.207505	1.353344	-2.253061	-1.494367	1.283756
Н	3.482674	-0.027423	1.232951	0.059704	3.512817	1.240294
Н	2.039478	-1.972028	2.213795	2.032078	2.007365	2.140595
Н	-1.347270	-2.013983	2.595717	2.031813	-1.400647	2.433358
Н	1.904632	2.122720	1.159488	-2.129136	1.968151	1.166395
С	-1.047308	-1.038685	-2.226824	1.037085	-1.078414	-2.112442
С	-1.923900	0.077490	-1.985205	-0.099843	-1.947712	-1.863088
С	-1.136655	1.222071	-1.573454	-1.248591	-1.117472	-1.491947
С	0.187687	0.757137	-1.405472	-0.780931	0.220563	-1.400289
С	0.249152	-0.618819	-1.856931	0.621200	0.248319	-1.805973
С	1.539825	1.145633	-0.818210	-1.150438	1.580514	-0.827465
С	2.400797	-0.010629	-1.337305	0.032050	2.420635	-1.323367
С	1.653566	-1.021857	-1.854039	1.054806	1.642005	-1.808368
Н	-2.987311	0.097419	-2.204154	-0.141429	-3.020552	-2.074057
Н	-1.531819	2.207505	-1.353344	-2.253061	-1.494367	-1.283756
Н	3.482674	-0.027423	-1.232951	0.059704	3.512817	-1.240294
Н	2.039478	-1.972028	-2.213795	2.032078	2.007365	-2.140595
Н	-1.347270	-2.013983	-2.595717	2.031813	-1.400647	-2.433358
Н	1.904632	2.122720	-1.159488	-2.129136	1.968151	-1.166395
Fe	-1.007643	-0.268327	0.000000	0.277539	-1.029492	0.000000

Table S45. Optimized coordinates of the Fe-7T for the (C8H6)₂Fe structures

		B3LYP			BP86	
	X	У	Z	х	У	Z
С	-0.076204	1.931335	1.519620	0.087922	1.940155	1.444455
С	-1.272394	1.179806	1.815597	-1.107193	1.252363	1.912461
С	-1.895312	0.794031	0.568422	-1.883007	0.833694	0.755907
С	-1.107548	1.341250	-0.490705	-1.207365	1.317524	-0.421586
С	0.000000	2.090032	0.094583	0.000000	2.047095	0.006729
С	-0.996676	1.445247	-1.926200	-1.259226	1.363133	-1.860211
С	0.127881	2.252003	-2.182380	-0.130977	2.114790	-2.281573
С	0.760612	2.651607	-0.971106	0.654720	2.537279	-1.164307
Н	-1.636344	0.932403	2.807555	-1.367622	1.061129	2.957850
Н	-2.790220	0.187495	0.473448	-2.811974	0.257178	0.792523
Н	0.478237	2.522500	-3.175954	0.113795	2.330838	-3.328009
Н	1.652276	3.264236	-0.886082	1.581472	3.115926	-1.208098
Н	0.604795	2.335956	2.261562	0.869110	2.351726	2.090318
Н	-1.655534	0.998731	-2.662366	-2.010552	0.901308	-2.505337
С	1.895312	-0.794031	0.568422	1.883007	-0.833694	0.755907
С	1.272394	-1.179806	1.815597	1.107193	-1.252363	1.912461
С	0.076204	-1.931335	1.519620	-0.087922	-1.940155	1.444455
С	0.000000	-2.090032	0.094583	0.000000	-2.047095	0.006729
С	1.107548	-1.341250	-0.490705	1.207365	-1.317524	-0.421586
С	-0.760612	-2.651607	-0.971106	-0.654720	-2.537279	-1.164307
С	-0.127881	-2.252003	-2.182380	0.130977	-2.114790	-2.281573
С	0.996676	-1.445247	-1.926200	1.259226	-1.363133	-1.860211
Н	1.636344	-0.932403	2.807555	1.367622	-1.061129	2.957850
Н	-0.604795	-2.335956	2.261562	-0.869110	-2.351726	2.090318
Н	-0.478237	-2.522500	-3.175954	-0.113795	-2.330838	-3.328009
Н	1.655534	-0.998731	-2.662366	2.010552	-0.901308	-2.505337
Н	2.790220	-0.187495	0.473448	2.811974	-0.257178	0.792523
Н	-1.652276	-3.264236	-0.886082	-1.581472	-3.115926	-1.208098
Со	0.000000	0.000000	0.786285	0.000000	0.000000	0.803667

Table S46. Optimized coordinates of the Co-1Dfor the (C8H6)₂Co structures

		B3LYP			BP86	
	х	у	Z	х	у	Z
С	1.173991	1.684923	1.146453	1.181638	1.650983	1.152752
С	0.000000	1.628947	1.986477	0.000000	1.615910	1.999551
С	-1.173991	1.684923	1.146453	-1.181638	1.650983	1.152752
С	-0.731844	1.823810	-0.205090	-0.738918	1.802148	-0.211018
С	0.731844	1.823810	-0.205090	0.738918	1.802148	-0.211018
С	-1.167736	1.988253	-1.557455	-1.176073	1.954461	-1.564793
С	0.000000	2.088693	-2.352062	0.000000	2.048778	-2.364413
С	1.167736	1.988253	-1.557455	1.176073	1.954461	-1.564793
Н	0.000000	1.558779	3.069541	0.000000	1.550563	3.091966
Н	-2.198699	1.651338	1.502713	-2.214132	1.618560	1.512796
Н	0.000000	2.214284	-3.432485	0.000000	2.166760	-3.454340
Н	2.191717	2.015263	-1.914950	2.207446	1.974156	-1.926345
Н	2.198699	1.651338	1.502713	2.214132	1.618560	1.512796
Н	-2.191717	2.015263	-1.914950	-2.207446	1.974156	-1.926345
С	1.173991	-1.684923	1.146453	1.181638	-1.650983	1.152752
С	0.000000	-1.628947	1.986477	0.000000	-1.615910	1.999551
С	-1.173991	-1.684923	1.146453	-1.181638	-1.650983	1.152752
С	-0.731844	-1.823810	-0.205090	-0.738918	-1.802148	-0.211018
С	0.731844	-1.823810	-0.205090	0.738918	-1.802148	-0.211018
С	-1.167736	-1.988253	-1.557455	-1.176073	-1.954461	-1.564793
С	0.000000	-2.088693	-2.352062	0.000000	-2.048778	-2.364413
С	1.167736	-1.988253	-1.557455	1.176073	-1.954461	-1.564793
Н	0.000000	-1.558779	3.069541	0.000000	-1.550563	3.091966
Н	-2.198699	-1.651338	1.502713	-2.214132	-1.618560	1.512796
Н	0.000000	-2.214284	-3.432485	0.000000	-2.166760	-3.454340
Н	2.191717	-2.015263	-1.914950	2.207446	-1.974156	-1.926345
Н	2.198699	-1.651338	1.502713	2.214132	-1.618560	1.512796
Н	-2.191717	-2.015263	-1.914950	-2.207446	-1.974156	-1.926345
Co	0.000000	0.000000	0.798076	0.000000	0.000000	0.804101

Table S47. Optimized coordinates of the Co-2Dfor the (C8H6)₂Co structures

		B3LYP			BP86	
	X	У	Z	x	У	Z
С	1.748005	1.052597	0.348072	1.760229	0.980551	0.351384
С	1.309524	1.565770	1.611595	1.311008	1.465721	1.637398
С	0.000000	2.179489	1.455130	0.000000	2.100018	1.486752
С	-0.372197	2.014295	0.104444	-0.359673	1.995747	0.111092
С	0.650423	1.231667	-0.554067	0.665918	1.203557	-0.560878
С	-1.466843	2.221821	-0.846796	-1.439951	2.241172	-0.844772
С	-1.187819	1.559351	-1.999105	-1.162879	1.587240	-2.019171
С	0.125161	0.780045	-1.922499	0.138099	0.780485	-1.944108
Н	1.889602	1.561628	2.529047	1.886599	1.427226	2.567004
Н	-0.565928	2.661972	2.244832	-0.571257	2.570972	2.291081
Н	-1.828430	1.527007	-2.878039	-1.800694	1.585722	-2.910900
Н	0.787847	1.035366	-2.762013	0.818465	1.028012	-2.783803
Н	2.679488	0.532824	0.156718	2.693000	0.448829	0.149876
Н	-2.361653	2.809237	-0.655894	-2.332960	2.844993	-0.648666
С	0.000000	-2.179489	1.455130	0.000000	-2.100018	1.486752
С	-1.309524	-1.565770	1.611595	-1.311008	-1.465721	1.637398
С	-1.748005	-1.052597	0.348072	-1.760229	-0.980551	0.351384
С	-0.650423	-1.231667	-0.554067	-0.665918	-1.203557	-0.560878
С	0.372197	-2.014295	0.104444	0.359673	-1.995747	0.111092
С	-0.125161	-0.780045	-1.922499	-0.138099	-0.780485	-1.944108
С	1.187819	-1.559351	-1.999105	1.162879	-1.587240	-2.019171
С	1.466843	-2.221821	-0.846796	1.439951	-2.241172	-0.844772
Н	-1.889602	-1.561628	2.529047	-1.886599	-1.427226	2.567004
Н	-2.679488	-0.532824	0.156718	-2.693000	-0.448829	0.149876
Н	1.828430	-1.527007	-2.878039	1.800694	-1.585722	-2.910900
Н	2.361653	-2.809237	-0.655894	2.332960	-2.844993	-0.648666
Н	0.565928	-2.661972	2.244832	0.571257	-2.570972	2.291081
Н	-0.787847	-1.035366	-2.762013	-0.818465	-1.028012	-2.783803
Co	0.000000	0.000000	0.902571	0.000000	0.000000	0.891054

Table S48. Optimized coordinates of the Co-3Dfor the (C8H6)₂Co structures

		B3LYP			BP86	
	Х	У	Z	х	у	Z
С	0.000000	3.051895	1.167267	0.000000	3.052855	1.174614
С	-0.434130	3.725294	0.000000	-0.425482	3.736413	0.000000
С	0.000000	3.051895	-1.167267	0.000000	3.052855	-1.174614
С	0.756129	1.912481	-0.729681	0.742076	1.898866	-0.735213
С	0.756129	1.912481	0.729681	0.742076	1.898866	0.735213
С	1.528067	0.791614	-1.173460	1.504260	0.758154	-1.181208
С	2.022542	0.112565	0.000000	2.008469	0.076765	0.000000
С	1.528067	0.791614	1.173460	1.504260	0.758154	1.181208
Н	-1.032371	4.633706	0.000000	-1.013354	4.661673	0.000000
Н	-0.191106	3.352556	-2.192195	-0.187645	3.358609	-2.207393
Н	2.634765	-0.783444	0.000000	2.621990	-0.829064	0.000000
Н	1.722061	0.489770	2.197745	1.695634	0.451821	2.213811
Н	-0.191106	3.352556	2.192195	-0.187645	3.358609	2.207393
Н	1.722061	0.489770	-2.197745	1.695634	0.451821	-2.213811
С	-1.528067	-0.791614	1.173460	-1.504260	-0.758154	1.181208
С	-2.022542	-0.112565	0.000000	-2.008469	-0.076765	0.000000
С	-1.528067	-0.791614	-1.173460	-1.504260	-0.758154	-1.181208
С	-0.756129	-1.912481	-0.729681	-0.742076	-1.898866	-0.735213
С	-0.756129	-1.912481	0.729681	-0.742076	-1.898866	0.735213
С	0.000000	-3.051895	-1.167267	0.000000	-3.052855	-1.174614
С	0.434130	-3.725294	0.000000	0.425482	-3.736413	0.000000
С	0.000000	-3.051895	1.167267	0.000000	-3.052855	1.174614
Н	-2.634765	0.783444	0.000000	-2.621990	0.829064	0.000000
Н	-1.722061	-0.489770	-2.197745	-1.695634	-0.451821	-2.213811
Н	1.032371	-4.633706	0.000000	1.013354	-4.661673	0.000000
Н	0.191106	-3.352556	2.192195	0.187645	-3.358609	2.207393
Н	-1.722061	-0.489770	2.197745	-1.695634	-0.451821	2.213811
Н	0.191106	-3.352556	-2.192195	0.187645	-3.358609	-2.207393
Со	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

Table S49. Optimized coordinates of the Co-4Dfor the (C8H6)₂Co structures

		B3LYP			BP86	
	Х	v	Z	х	V	Z
С	1.090631	-1.059920	2.083066	1.115608	-1.082609	1.986818
С	-0.051785	-1.929481	1.892490	-0.045468	-1.949886	1.822896
С	-1.216850	-1.138481	1.577395	-1.224025	-1.141901	1.548339
С	-0.748325	0.186463	1.386066	-0.751527	0.197232	1.374360
С	0.645794	0.246789	1.789433	0.664237	0.248421	1.752861
С	-1.152380	1.546105	0.819632	-1.158251	1.567020	0.828935
С	0.005965	2.404913	1.333049	0.008345	2.419179	1.332030
С	1.037971	1.652592	1.800756	1.061345	1.649144	1.770426
Н	-0.053792	-3.001635	2.064740	-0.048213	-3.033197	1.978776
Н	-2.210609	-1.528407	1.388408	-2.235367	-1.524066	1.388313
Н	0.014943	3.488461	1.246460	0.017175	3.512461	1.261575
Н	1.997422	2.037488	2.136243	2.038869	2.030970	2.083554
Н	2.081142	-1.372788	2.393931	2.121415	-1.408881	2.262975
Н	-2.130637	1.902702	1.165320	-2.145317	1.926467	1.173941
С	1.090631	-1.059920	-2.083066	1.115608	-1.082609	-1.986818
С	-0.051785	-1.929481	-1.892490	-0.045468	-1.949886	-1.822896
С	-1.216850	-1.138481	-1.577395	-1.224025	-1.141901	-1.548339
С	-0.748325	0.186463	-1.386066	-0.751527	0.197232	-1.374360
С	0.645794	0.246789	-1.789433	0.664237	0.248421	-1.752861
С	-1.152380	1.546105	-0.819632	-1.158251	1.567020	-0.828935
С	0.005965	2.404913	-1.333049	0.008345	2.419179	-1.332030
С	1.037971	1.652592	-1.800756	1.061345	1.649144	-1.770426
Н	-0.053792	-3.001635	-2.064740	-0.048213	-3.033197	-1.978776
Н	-2.210609	-1.528407	-1.388408	-2.235367	-1.524066	-1.388313
Н	0.014943	3.488461	-1.246460	0.017175	3.512461	-1.261575
Н	1.997422	2.037488	-2.136243	2.038869	2.030970	-2.083554
Н	2.081142	-1.372788	-2.393931	2.121415	-1.408881	-2.262975
Н	-2.130637	1.902702	-1.165320	-2.145317	1.926467	-1.173941
Co	0.195215	-0.961459	0.000000	0.165174	-0.958768	0.000000

Table S50. Optimized coordinates of the Co-5Dfor the (C8H6)₂Co structures

		B3LYP			BP86	
	Х	У	Z	Х	у	Z
С	1.715987	1.151780	0.253917	1.714590	1.051672	0.268477
С	1.333107	1.738076	1.509628	1.323804	1.639768	1.531756
С	0.000000	2.285456	1.383594	0.000000	2.237112	1.391386
С	-0.411380	2.040348	0.043620	-0.395139	2.031246	0.033071
С	0.616665	1.312740	-0.632205	0.630370	1.269102	-0.638007
С	-1.560711	2.155529	-0.858103	-1.520219	2.195264	-0.886927
С	-1.292592	1.471878	-2.001126	-1.249994	1.513730	-2.046531
С	0.072591	0.789040	-1.953846	0.095812	0.787872	-1.981143
Н	1.971273	1.822814	2.384088	1.951747	1.685856	2.427196
Н	-0.537270	2.831919	2.151640	-0.538325	2.790324	2.165630
Н	-1.962817	1.373878	-2.852633	-1.910372	1.449936	-2.919462
Н	0.684779	1.072481	-2.822516	0.741758	1.059266	-2.840474
Н	2.654534	0.647675	0.051897	2.650778	0.524272	0.070658
Н	-2.479480	2.695971	-0.643295	-2.433793	2.763658	-0.679496
С	0.000000	-2.285456	1.383594	0.000000	-2.237112	1.391386
С	-1.333107	-1.738076	1.509628	-1.323804	-1.639768	1.531756
С	-1.715987	-1.151780	0.253917	-1.714590	-1.051672	0.268477
С	-0.616665	-1.312740	-0.632205	-0.630370	-1.269102	-0.638007
С	0.411380	-2.040348	0.043620	0.395139	-2.031246	0.033071
С	-0.072591	-0.789040	-1.953846	-0.095812	-0.787872	-1.981143
С	1.292592	-1.471878	-2.001126	1.249994	-1.513730	-2.046531
С	1.560711	-2.155529	-0.858103	1.520219	-2.195264	-0.886927
Н	-1.971273	-1.822814	2.384088	-1.951747	-1.685856	2.427196
Н	-2.654534	-0.647675	0.051897	-2.650778	-0.524272	0.070658
Н	1.962817	-1.373878	-2.852633	1.910372	-1.449936	-2.919462
Н	2.479480	-2.695971	-0.643295	2.433793	-2.763658	-0.679496
Н	0.537270	-2.831919	2.151640	0.538325	-2.790324	2.165630
Н	-0.684779	-1.072481	-2.822516	-0.741758	-1.059266	-2.840474
Со	0.000000	0.000000	1.130219	0.000000	0.000000	1.166182

 Table S51 Optimized coordinates of the Co-6Q for the (C8H6)₂Co structures

		B3LYP		BP86			
	х	У	Z	х	у	Z	
С	0.000000	3.095759	1.158334	0.000000	3.094141	1.164783	
С	-0.466010	3.764290	0.000000	-0.457792	3.775121	0.000000	
С	0.000000	3.095759	-1.158334	0.000000	3.094141	-1.164783	
С	0.800322	1.981662	-0.717846	0.787419	1.964278	-0.722581	
С	0.800322	1.981662	0.717846	0.787419	1.964278	0.722581	
С	1.578075	0.849853	-1.161442	1.546076	0.808238	-1.169830	
С	2.129665	0.211061	0.000000	2.094078	0.156401	0.000000	
С	1.578075	0.849853	1.161442	1.546076	0.808238	1.169830	
Н	-1.093679	4.650925	0.000000	-1.075881	4.678552	0.000000	
Н	-0.207331	3.380260	-2.185982	-0.207127	3.380395	-2.200798	
Н	2.767387	-0.666068	0.000000	2.729060	-0.733396	0.000000	
Н	1.780753	0.561685	2.188673	1.742539	0.515002	2.205704	
Н	-0.207331	3.380260	2.185982	-0.207127	3.380395	2.200798	
Н	1.780753	0.561685	-2.188673	1.742539	0.515002	-2.205704	
С	-1.578075	-0.849853	1.161442	-1.546076	-0.808238	1.169830	
С	-2.129665	-0.211061	0.000000	-2.094078	-0.156401	0.000000	
С	-1.578075	-0.849853	-1.161442	-1.546076	-0.808238	-1.169830	
С	-0.800322	-1.981662	-0.717846	-0.787419	-1.964278	-0.722581	
С	-0.800322	-1.981662	0.717846	-0.787419	-1.964278	0.722581	
С	0.000000	-3.095759	-1.158334	0.000000	-3.094141	-1.164783	
С	0.466010	-3.764290	0.000000	0.457792	-3.775121	0.000000	
С	0.000000	-3.095759	1.158334	0.000000	-3.094141	1.164783	
Н	-2.767387	0.666068	0.000000	-2.729060	0.733396	0.000000	
Н	-1.780753	-0.561685	-2.188673	-1.742539	-0.515002	-2.205704	
Η	1.093679	-4.650925	0.000000	1.075881	-4.678552	0.000000	
Н	0.207331	-3.380260	2.185982	0.207127	-3.380395	2.200798	
Η	-1.780753	-0.561685	2.188673	-1.742539	-0.515002	2.205704	
Η	0.207331	-3.380260	-2.185982	0.207127	-3.380395	-2.200798	
Со	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	

Table S52 Optimized coordinates of the Co-7Q for the (C8H6)₂Co structures

	B3LYP			BP86			
	Х	у	Z	х	у	Z	
С	1.163523	1.762461	1.171450	1.170603	1.707441	1.173016	
С	0.000000	1.811123	2.009036	0.000000	1.759699	2.019842	
С	-1.163523	1.762461	1.171450	-1.170603	1.707441	1.173016	
С	-0.716590	1.825574	-0.202314	-0.721054	1.792792	-0.208551	
С	0.716590	1.825574	-0.202314	0.721054	1.792792	-0.208551	
С	-1.156959	1.865463	-1.578940	-1.163348	1.847192	-1.591134	
С	0.000000	1.908253	-2.390978	0.000000	1.899829	-2.408373	
С	1.156959	1.865463	-1.578940	1.163348	1.847192	-1.591134	
Н	0.000000	1.782475	3.093428	0.000000	1.733734	3.112820	
Н	-2.190349	1.758166	1.523551	-2.206193	1.696522	1.525481	
Н	0.000000	1.933971	-3.476811	0.000000	1.940094	-3.502052	
Н	2.184621	1.870979	-1.930242	2.199424	1.852824	-1.943716	
Н	2.190349	1.758166	1.523551	2.206193	1.696522	1.525481	
Н	-2.184621	1.870979	-1.930242	-2.199424	1.852824	-1.943716	
С	1.163523	-1.762461	1.171450	1.170603	-1.707441	1.173016	
С	0.000000	-1.811123	2.009036	0.000000	-1.759699	2.019842	
С	-1.163523	-1.762461	1.171450	-1.170603	-1.707441	1.173016	
С	-0.716590	-1.825574	-0.202314	-0.721054	-1.792792	-0.208551	
С	0.716590	-1.825574	-0.202314	0.721054	-1.792792	-0.208551	
С	-1.156959	-1.865463	-1.578940	-1.163348	-1.847192	-1.591134	
С	0.000000	-1.908253	-2.390978	0.000000	-1.899829	-2.408373	
С	1.156959	-1.865463	-1.578940	1.163348	-1.847192	-1.591134	
Н	0.000000	-1.782475	3.093428	0.000000	-1.733734	3.112820	
Н	-2.190349	-1.758166	1.523551	-2.206193	-1.696522	1.525481	
Н	0.000000	-1.933971	-3.476811	0.000000	-1.940094	-3.502052	
Н	2.184621	-1.870979	-1.930242	2.199424	-1.852824	-1.943716	
Н	2.190349	-1.758166	1.523551	2.206193	-1.696522	1.525481	
Н	-2.184621	-1.870979	-1.930242	-2.199424	-1.852824	-1.943716	
Co	0.000000	0.000000	0.800449	0.000000	0.000000	0.820512	

Table S53 Optimized coordinates of the Co-8Q for the (C8H6)₂Co structures

		B3LYP		BP86			
	Х	у	Z	х	У	Z	
С	-1.021749	-1.007747	2.251046	1.02346	-1.03183	2.15480	
С	-1.890206	0.128422	2.046081	-0.14120	-1.89075	1.97143	
С	-1.095152	1.231178	1.571147	-1.25082	-1.07323	1.52833	
С	0.238107	0.759420	1.435072	-0.76239	0.26559	1.40784	
С	0.292126	-0.585305	1.916980	0.60439	0.30222	1.86669	
С	1.583017	1.123292	0.820478	-1.12517	1.62367	0.82580	
С	2.443994	-0.027778	1.353747	0.03610	2.47344	1.35522	
С	1.691566	-1.015449	1.902679	1.04290	1.69531	1.86914	
Н	-2.945364	0.172313	2.296638	-0.19505	-2.95650	2.21290	
Н	-1.474490	2.217426	1.325981	-2.25823	-1.43825	1.31271	
Н	3.522822	-0.060041	1.227355	0.07096	3.56304	1.24945	
Н	2.068201	-1.960027	2.286369	2.00733	2.06178	2.23667	
Н	-1.321885	-1.967567	2.659354	1.99693	-1.35324	2.53617	
Н	1.958854	2.101398	1.147355	-2.11162	2.00106	1.15459	
С	-1.021749	-1.007747	-2.251046	1.02346	-1.03183	-2.15480	
С	-1.890206	0.128422	-2.046081	-0.14120	-1.89075	-1.97143	
С	-1.095152	1.231178	-1.571147	-1.25082	-1.07323	-1.52833	
С	0.238107	0.759420	-1.435072	-0.76239	0.26559	-1.40784	
С	0.292126	-0.585305	-1.916980	0.60439	0.30222	-1.86669	
С	1.583017	1.123292	-0.820478	-1.12517	1.62367	-0.82580	
С	2.443994	-0.027778	-1.353747	0.03610	2.47344	-1.35522	
С	1.691566	-1.015449	-1.902679	1.04290	1.69531	-1.86914	
Н	-2.945364	0.172313	-2.296638	-0.19505	-2.95650	-2.21290	
Н	-1.474490	2.217426	-1.325981	-2.25823	-1.43825	-1.31271	
Н	3.522822	-0.060041	-1.227355	0.07096	3.56304	-1.24945	
Н	2.068201	-1.960027	-2.286369	2.00733	2.06178	-2.23667	
Н	-1.321885	-1.967567	-2.659354	1.99693	-1.35324	-2.53617	
Н	1.958854	2.101398	-1.147355	-2.11162	2.00106	-1.15459	
Со	-1.130248	-0.306645	0.000000	0.29082	-1.18996	0.00000	

Table S54 Optimized coordinates of the Co-9Q for the (C8H6)₂Co structures

		B3LYP		BP86			
	Х	у	Z	х	у	Z	
С	1.178685	1.731284	1.094959	1.186495	1.719051	1.100003	
С	0.000000	1.764181	1.936508	0.000000	1.762160	1.946522	
С	-1.178685	1.731284	1.094959	-1.186495	1.719051	1.100003	
С	-0.744466	1.741297	-0.266361	-0.749129	1.720108	-0.269346	
С	0.744466	1.741297	-0.266361	0.749129	1.720108	-0.269346	
С	-1.177407	1.669397	-1.607851	-1.184142	1.634591	-1.616765	
С	0.000000	1.628482	-2.404195	0.000000	1.584326	-2.417892	
С	1.177407	1.669397	-1.607851	1.184142	1.634591	-1.616765	
Н	0.000000	1.846282	3.019048	0.000000	1.852943	3.037140	
Н	-2.201300	1.743436	1.458022	-2.217305	1.733292	1.465188	
Н	0.000000	1.588406	-3.492056	0.000000	1.540136	-3.514082	
Н	2.197889	1.650826	-1.972784	2.212491	1.615368	-1.984414	
Н	2.201300	1.743436	1.458022	2.217305	1.733292	1.465188	
Н	-2.197889	1.650826	-1.972784	-2.212491	1.615368	-1.984414	
С	1.178685	-1.731284	1.094959	1.186495	-1.719051	1.100003	
С	0.000000	-1.764181	1.936508	0.000000	-1.762160	1.946522	
С	-1.178685	-1.731284	1.094959	-1.186495	-1.719051	1.100003	
С	-0.744466	-1.741297	-0.266361	-0.749129	-1.720108	-0.269346	
С	0.744466	-1.741297	-0.266361	0.749129	-1.720108	-0.269346	
С	-1.177407	-1.669397	-1.607851	-1.184142	-1.634591	-1.616765	
С	0.000000	-1.628482	-2.404195	0.000000	-1.584326	-2.417892	
С	1.177407	-1.669397	-1.607851	1.184142	-1.634591	-1.616765	
Н	0.000000	-1.846282	3.019048	0.000000	-1.852943	3.037140	
Н	-2.201300	-1.743436	1.458022	-2.217305	-1.733292	1.465188	
Н	0.000000	-1.588406	-3.492056	0.000000	-1.540136	-3.514082	
Н	2.197889	-1.650826	-1.972784	2.212491	-1.615368	-1.984414	
Н	2.201300	-1.743436	1.458022	2.217305	-1.733292	1.465188	
Н	-2.197889	-1.650826	-1.972784	-2.212491	-1.615368	-1.984414	
Ni	0.000000	0.000000	0.975692	0.000000	0.000000	0.984065	

Table S55 Optimized coordinates of the Ni-1S for the (C8H6)₂Ni structures

		B3LYP		BP86			
	Х	у	Z	х	у	Z	
С	0.000000	2.465433	-1.851680	-0.207936	2.329413	-1.919833	
С	0.945106	3.354587	-1.302948	0.805313	3.238792	-1.506252	
С	0.957684	3.282473	0.129019	0.956229	3.236029	-0.079324	
С	-0.019087	2.341052	0.487872	0.000000	2.318876	0.423703	
С	-0.629360	1.819593	-0.747497	-0.736076	1.746920	-0.728770	
С	-0.643519	1.648077	1.589629	-0.532425	1.705596	1.620514	
С	-1.725007	0.847557	1.068246	-1.670350	0.878700	1.240160	
С	-1.653356	0.891249	-0.377570	-1.728254	0.838549	-0.213560	
Н	1.582695	4.014744	-1.887580	1.394441	3.863398	-2.188417	
Н	1.600785	3.853478	0.790618	1.668935	3.834094	0.494930	
Н	-2.441379	0.280405	1.652820	-2.343324	0.354875	1.924544	
Н	-2.303493	0.335481	-1.046711	-2.444814	0.248899	-0.793714	
Н	-0.220940	2.326912	-2.904545	-0.527736	2.137007	-2.947120	
Н	-0.429690	1.781243	2.646137	-0.223713	1.901829	2.652104	
С	1.653356	-0.891249	-0.377570	1.728254	-0.838549	-0.213560	
С	1.725007	-0.847557	1.068246	1.670350	-0.878700	1.240160	
С	0.643519	-1.648077	1.589629	0.532425	-1.705596	1.620514	
С	0.019087	-2.341052	0.487872	0.000000	-2.318876	0.423703	
С	0.629360	-1.819593	-0.747497	0.736076	-1.746920	-0.728770	
С	-0.957684	-3.282473	0.129019	-0.956229	-3.236029	-0.079324	
С	-0.945106	-3.354587	-1.302948	-0.805313	-3.238792	-1.506252	
С	0.000000	-2.465433	-1.851680	0.207936	-2.329413	-1.919833	
Н	2.441379	-0.280405	1.652820	2.343324	-0.354875	1.924544	
Н	0.429690	-1.781243	2.646137	0.223713	-1.901829	2.652104	
Н	-1.582695	-4.014744	-1.887580	-1.394441	-3.863398	-2.188417	
Н	0.220940	-2.326912	-2.904545	0.527736	-2.137007	-2.947120	
Η	2.303493	-0.335481	-1.046711	2.444814	-0.248899	-0.793714	
Н	-1.600785	-3.853478	0.790618	-1.668935	-3.834094	0.494930	
Ni	0.000000	0.000000	0.484202	0.000000	0.000000	0.559846	

Table S56Optimized coordinates of the Ni-2S for the (C8H6)₂Ni structures

	B3LYP			BP86			
	Х	у	Z	х	у	Z	
С	-1.970922	0.009722	0.483158	1.656668	1.018119	0.489311	
С	-1.939677	-0.810729	1.658275	1.173577	1.685121	1.678293	
С	-1.384011	-2.125527	1.323054	0.000000	2.512234	1.342242	
С	-0.951055	-2.057061	0.006846	-0.319610	2.246147	0.007566	
С	-1.189365	-0.702271	-0.487018	0.615407	1.222769	-0.492569	
С	-0.227975	-2.785582	-1.027349	-1.310983	2.483979	-1.031572	
С	0.000000	-1.961951	-2.085883	-1.058433	1.662727	-2.104104	
С	-0.555764	-0.552930	-1.875691	0.168243	0.767823	-1.892835	
Н	-2.420031	-0.565644	2.601254	1.705172	1.723249	2.634752	
Н	-1.286674	-2.954595	2.016625	-0.535646	3.153753	2.047640	
Н	0.523664	-2.241812	-2.998114	-1.647725	1.629843	-3.028637	
Н	-1.290884	-0.319754	-2.661649	0.926965	0.970931	-2.678211	
Н	-2.418435	0.993403	0.391377	2.572844	0.430715	0.388494	
Н	0.087856	-3.824066	-0.961039	-2.140382	3.197344	-0.965939	
С	1.384011	2.125527	1.323054	0.000000	-2.512234	1.342242	
С	1.939677	0.810729	1.658275	-1.173577	-1.685121	1.678293	
С	1.970922	-0.009722	0.483158	-1.656668	-1.018119	0.489311	
С	1.189365	0.702271	-0.487018	-0.615407	-1.222769	-0.492569	
С	0.951055	2.057061	0.006846	0.319610	-2.246147	0.007566	
С	0.555764	0.552930	-1.875691	-0.168243	-0.767823	-1.892835	
С	0.000000	1.961951	-2.085883	1.058433	-1.662727	-2.104104	
С	0.227975	2.785582	-1.027349	1.310983	-2.483979	-1.031572	
Н	2.420031	0.565644	2.601254	-1.705172	-1.723249	2.634752	
Н	2.418435	-0.993403	0.391377	-2.572844	-0.430715	0.388494	
Н	-0.523664	2.241812	-2.998114	1.647725	-1.629843	-3.028637	
Н	-0.087856	3.824066	-0.961039	2.140382	-3.197344	-0.965939	
Н	1.286674	2.954595	2.016625	0.535646	-3.153753	2.047640	
Η	1.290884	0.319754	-2.661649	-0.926965	-0.970931	-2.678211	
Ni	0.000000	0.000000	0.974240	0.000000	0.000000	0.973136	

Table S57 Optimized coordinates of the Ni-3S for the (C8H6)₂Ni structures

	B3LYP			BP86			
	X	У	Z	X	У	Z	
С	2.398772	0.016039	-1.158193	2.322677	0.205067	-1.188845	
С	2.830492	-0.598574	0.092235	2.835133	-0.354548	0.065938	
С	2.174489	0.026219	1.190271	2.143300	0.237265	1.183087	
С	1.213744	0.916290	0.614350	1.108203	1.057550	0.614126	
С	1.452952	1.000420	-0.818714	1.302729	1.126507	-0.842890	
С	0.034076	1.824682	0.963650	-0.152117	1.849903	0.966647	
С	-0.091289	2.626327	-0.329937	-0.371468	2.624652	-0.327882	
С	0.652071	2.102003	-1.340217	0.394412	2.138635	-1.361432	
Н	3.574705	-1.385624	0.169847	3.656106	-1.074324	0.139946	
Н	2.284581	-0.242554	2.235107	2.307231	0.005074	2.238287	
Н	-0.778751	3.461494	-0.433048	-1.135157	3.403840	-0.425310	
Н	0.659250	2.453707	-2.368573	0.336885	2.467450	-2.404531	
Н	2.792571	-0.219138	-2.141241	2.708108	-0.023503	-2.185930	
Н	0.213890	2.467966	1.834825	-0.049036	2.504464	1.851929	
С	-1.810415	-1.871025	-1.036438	-1.556666	-2.025157	-1.082382	
С	-0.876942	-2.557224	-0.128414	-0.556743	-2.604981	-0.161375	
С	-0.701820	-1.770909	1.062198	-0.503876	-1.825641	1.066399	
С	-1.179815	-0.467136	0.692083	-1.125415	-0.571719	0.689902	
С	-2.020882	-0.614212	-0.509095	-1.929636	-0.800673	-0.542706	
С	-1.312137	0.956541	1.231331	-1.418957	0.826887	1.232675	
С	-2.473975	1.459306	0.381070	-2.619359	1.204638	0.376004	
С	-2.806116	0.596512	-0.625133	-2.838846	0.313152	-0.659493	
Н	-0.588392	-3.600944	-0.222950	-0.142145	-3.614141	-0.265771	
Н	-0.249438	-2.094148	1.994588	-0.085169	-2.132332	2.030244	
Н	-2.933993	2.433043	0.538116	-3.202376	2.118656	0.543307	
Н	-3.568065	0.785548	-1.377965	-3.612112	0.429220	-1.427889	
Н	-2.228167	-2.302263	-1.940531	-1.903105	-2.495588	-2.006901	
Н	-1.530445	0.998751	2.306878	-1.634458	0.854409	2.317983	
Ni	0.623322	-0.879550	-0.081476	0.734107	-0.816159	-0.020429	

Table S58 Optimized coordinates of the Ni-4S for the (C8H6)₂Ni structures

Table S59	Optimized coord	linates of the N	i-5T for the (C8H6) ₂ Ni str	uctures	
		B3LYP			BP86	
	Х	У	Z	х	у	Z
С	1.711189	1.113968	0.302320	1.715901	1.053051	0.318212
С	1.312125	1.703377	1.557341	1.306514	1.633033	1.587541
С	0.000000	2.268740	1.410434	0.000000	2.230812	1.432046
С	-0.398683	2.037164	0.060286	-0.387710	2.033625	0.062117
С	0.632462	1.304643	-0.609685	0.645861	1.280754	-0.610295
С	-1.532814	2.178317	-0.856659	-1.507620	2.204971	-0.864917
С	-1.260396	1.498360	-2.000738	-1.234106	1.525844	-2.024889
С	0.090521	0.788788	-1.939149	0.105666	0.790232	-1.954699
Н	1.925630	1.753722	2.451277	1.914092	1.658918	2.496675
Н	-0.555959	2.790372	2.182306	-0.560953	2.752160	2.212117
Н	-1.920072	1.417826	-2.862174	-1.890561	1.467293	-2.901035
Н	0.716106	1.056396	-2.802938	0.751489	1.048973	-2.817695
Н	2.647780	0.601211	0.113937	2.653060	0.523246	0.130209
Н	-2.445379	2.732309	-0.650264	-2.420560	2.775418	-0.660298
С	0.000000	-2.268740	1.410434	0.000000	-2.230812	1.432046
С	-1.312125	-1.703377	1.557341	-1.306514	-1.633033	1.587541
С	-1.711189	-1.113968	0.302320	-1.715901	-1.053051	0.318212
С	-0.632462	-1.304643	-0.609685	-0.645861	-1.280754	-0.610295
С	0.398683	-2.037164	0.060286	0.387710	-2.033625	0.062117
С	-0.090521	-0.788788	-1.939149	-0.105666	-0.790232	-1.954699
С	1.260396	-1.498360	-2.000738	1.234106	-1.525844	-2.024889
С	1.532814	-2.178317	-0.856659	1.507620	-2.204971	-0.864917
Н	-1.925630	-1.753722	2.451277	-1.914092	-1.658918	2.496675
Н	-2.647780	-0.601211	0.113937	-2.653060	-0.523246	0.130209
Н	1.920072	-1.417826	-2.862174	1.890561	-1.467293	-2.901035
Н	2.445379	-2.732309	-0.650264	2.420560	-2.775418	-0.660298
Н	0.555959	-2.790372	2.182306	0.560953	-2.752160	2.212117
Н	-0.716106	-1.056396	-2.802938	-0.751489	-1.048973	-2.817695
Ni	0.000000	0.000000	1.001640	0.000000	0.000000	0.990667

Table S59 Opti	mized coordinates	of the Ni-5T for	r the $(C8H6)_2Ni$ s	tructures
----------------	-------------------	------------------	----------------------	-----------

Table S60	Optimized coord	linates of the N	i-6T for the (C8H6) ₂ Ni str	uctures	
		B3LYP			BP86	
	Х	y	Z	х	У	Z
С	0.000000	2.999420	-1.461675	0.000000	3.039808	-1.452086
С	0.651620	3.815736	-0.483608	0.635233	3.857100	-0.455826
С	0.345770	3.358691	0.809415	0.335321	3.368363	0.841030
С	-0.536686	2.226404	0.658262	-0.523582	2.221620	0.669451
С	-0.744139	2.012807	-0.756014	-0.727447	2.024223	-0.759838
С	-1.280319	1.238019	1.369962	-1.245782	1.188860	1.366620
С	-2.011362	0.444941	0.400347	-1.985323	0.408262	0.378129
С	-1.621357	0.875434	-0.908356	-1.585872	0.864728	-0.932175
Н	1.288082	4.666557	-0.712083	1.256546	4.733293	-0.670056
Н	0.696698	3.789199	1.742374	0.679315	3.794269	1.788232
Н	-2.701843	-0.359838	0.628741	-2.679640	-0.408538	0.592907
Н	-1.988149	0.451947	-1.838558	-1.948282	0.449558	-1.877683
Н	0.063448	3.124932	-2.538608	0.064932	3.181771	-2.535176
Н	-1.359535	1.126492	2.447516	-1.326152	1.058564	2.450545
С	1.621357	-0.875434	-0.908356	1.585872	-0.864728	-0.932175
С	2.011362	-0.444941	0.400347	1.985323	-0.408262	0.378129
С	1.280319	-1.238019	1.369962	1.245782	-1.188860	1.366620
С	0.536686	-2.226404	0.658262	0.523582	-2.221620	0.669451
С	0.744139	-2.012807	-0.756014	0.727447	-2.024223	-0.759838
С	-0.345770	-3.358691	0.809415	-0.335321	-3.368363	0.841030
С	-0.651620	-3.815736	-0.483608	-0.635233	-3.857100	-0.455826
С	0.000000	-2.999420	-1.461675	0.000000	-3.039808	-1.452086
Н	2.701843	0.359838	0.628741	2.679640	0.408538	0.592907
Н	1.359535	-1.126492	2.447516	1.326152	-1.058564	2.450545
Н	-1.288082	-4.666557	-0.712083	-1.256546	-4.733293	-0.670056
Н	-0.063448	-3.124932	-2.538608	-0.064932	-3.181771	-2.535176
Η	1.988149	-0.451947	-1.838558	1.948282	-0.449558	-1.877683
Η	-0.696698	-3.789199	1.742374	-0.679315	-3.794269	1.788232
Ni	0.000000	0.000000	0.178616	0.000000	0.000000	0.165672

•	Table S60 (Optimized	coordinates	of the	Ni-6T	for the	$e (C8H6)_2 N$	i structures
---	-------------	-----------	-------------	--------	-------	---------	----------------	--------------

		B3LYP		BP86		
	X	У	Z	x	У	Z
С	0.000000	3.225930	1.161807	0.000000	3.250815	1.169753
С	-0.447286	3.904015	0.000000	-0.436147	3.942350	0.000000
С	0.000000	3.225930	-1.161807	0.000000	3.250815	-1.169753
С	0.762950	2.094858	-0.721694	0.742337	2.104004	-0.727737
С	0.762950	2.094858	0.721694	0.742337	2.104004	0.727737
С	1.517716	0.956016	-1.165149	1.475852	0.938435	-1.172197
С	2.050233	0.296706	0.000000	2.018099	0.274887	0.000000
С	1.517716	0.956016	1.165149	1.475852	0.938435	1.172197
Н	-1.044220	4.812143	0.000000	-1.016363	4.871243	0.000000
Н	-0.194145	3.521692	-2.188529	-0.190984	3.551407	-2.204376
Н	2.697472	-0.573658	0.000000	2.670511	-0.602328	0.000000
Н	1.727273	0.669146	2.191504	1.683296	0.647592	2.206864
Н	-0.194145	3.521692	2.188529	-0.190984	3.551407	2.204376
Н	1.727273	0.669146	-2.191504	1.683296	0.647592	-2.206864
С	-1.517716	-0.956016	1.165149	-1.475852	-0.938435	1.172197
С	-2.050233	-0.296706	0.000000	-2.018099	-0.274887	0.000000
С	-1.517716	-0.956016	-1.165149	-1.475852	-0.938435	-1.172197
С	-0.762950	-2.094858	-0.721694	-0.742337	-2.104004	-0.727737
С	-0.762950	-2.094858	0.721694	-0.742337	-2.104004	0.727737
С	0.000000	-3.225930	-1.161807	0.000000	-3.250815	-1.169753
С	0.447286	-3.904015	0.000000	0.436147	-3.942350	0.000000
С	0.000000	-3.225930	1.161807	0.000000	-3.250815	1.169753
Н	-2.697472	0.573658	0.000000	-2.670511	0.602328	0.000000
Н	-1.727273	-0.669146	-2.191504	-1.683296	-0.647592	-2.206864
Н	1.044220	-4.812143	0.000000	1.016363	-4.871243	0.000000
Н	0.194145	-3.521692	2.188529	0.190984	-3.551407	2.204376
Н	-1.727273	-0.669146	2.191504	-1.683296	-0.647592	2.206864
Н	0.194145	-3.521692	-2.188529	0.190984	-3.551407	-2.204376
Ni	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000

Table S61 Optimized coordinates of the Ni-7T for the (C8H6)₂Ni structures

		B3LYP		BP86			
	X	У	Z	X	У	Z	
С	-0.145763	2.056005	1.541926	0.066825	2.053905	1.438212	
С	-1.331869	1.306394	1.770530	-1.127381	1.390839	1.892189	
С	-1.881700	0.907820	0.477603	-1.869375	0.937477	0.714495	
С	-1.073134	1.489473	-0.532249	-1.196741	1.435956	-0.451121	
С	0.000000	2.225338	0.107620	0.000000	2.150472	-0.012807	
С	-0.917467	1.642450	-1.970528	-1.245752	1.501389	-1.897950	
С	0.196152	2.457071	-2.169996	-0.124290	2.252582	-2.310925	
С	0.782106	2.825086	-0.903896	0.657145	2.655231	-1.167139	
Н	-1.748339	1.047945	2.738454	-1.415261	1.219284	2.932955	
Н	-2.779950	0.313387	0.339642	-2.809549	0.377824	0.743499	
Н	0.577550	2.770355	-3.138495	0.123070	2.493717	-3.350347	
Н	1.663974	3.444937	-0.771036	1.585065	3.234537	-1.198186	
Н	0.491332	2.473481	2.315485	0.832944	2.485952	2.089131	
Н	-1.552191	1.212390	-2.738131	-2.005264	1.057045	-2.546953	
С	1.881700	-0.907820	0.477603	1.869375	-0.937477	0.714495	
С	1.331869	-1.306394	1.770530	1.127381	-1.390839	1.892189	
С	0.145763	-2.056005	1.541926	-0.066825	-2.053905	1.438212	
С	0.000000	-2.225338	0.107620	0.000000	-2.150472	-0.012807	
С	1.073134	-1.489473	-0.532249	1.196741	-1.435956	-0.451121	
С	-0.782106	-2.825086	-0.903896	-0.657145	-2.655231	-1.167139	
С	-0.196152	-2.457071	-2.169996	0.124290	-2.252582	-2.310925	
С	0.917467	-1.642450	-1.970528	1.245752	-1.501389	-1.897950	
Н	1.748339	-1.047945	2.738454	1.415261	-1.219284	2.932955	
Н	-0.491332	-2.473481	2.315485	-0.832944	-2.485952	2.089131	
Н	-0.577550	-2.770355	-3.138495	-0.123070	-2.493717	-3.350347	
Н	1.552191	-1.212390	-2.738131	2.005264	-1.057045	-2.546953	
Н	2.779950	-0.313387	0.339642	2.809549	-0.377824	0.743499	
Н	-1.663974	-3.444937	-0.771036	-1.585065	-3.234537	-1.198186	
Ni	0.000000	0.000000	0.809144	0.000000	0.000000	0.864298	

Table S62 Optimized	coordinates of the	Ni-8T for the (C8H6) ₂ Ni structures

		B3LYP			BP86	
	X	У	Z	x	У	Z
С	1.165548	1.790201	1.128277	1.172356	1.741182	1.132486
С	0.000000	1.770263	1.974637	0.000000	1.735875	1.986571
С	-1.165548	1.790201	1.128277	-1.172356	1.741182	1.132486
С	-0.722439	1.936055	-0.227127	-0.729479	1.907962	-0.233431
С	0.722439	1.936055	-0.227127	0.729479	1.907962	-0.233431
С	-1.161316	2.103745	-1.581676	-1.169807	2.085243	-1.586465
С	0.000000	2.211147	-2.386035	0.000000	2.200064	-2.394843
С	1.161316	2.103745	-1.581676	1.169807	2.085243	-1.586465
Н	0.000000	1.716135	3.058004	0.000000	1.682202	3.078600
Н	-2.192170	1.770690	1.482385	-2.206813	1.719528	1.489718
Н	0.000000	2.346073	-3.464282	0.000000	2.346869	-3.480123
Н	2.187670	2.141372	-1.934176	2.203819	2.121875	-1.941921
Н	2.192170	1.770690	1.482385	2.206813	1.719528	1.489718
Н	-2.187670	2.141372	-1.934176	-2.203819	2.121875	-1.941921
С	1.165548	-1.790201	1.128277	1.172356	-1.741182	1.132486
С	0.000000	-1.770263	1.974637	0.000000	-1.735875	1.986571
С	-1.165548	-1.790201	1.128277	-1.172356	-1.741182	1.132486
С	-0.722439	-1.936055	-0.227127	-0.729479	-1.907962	-0.233431
С	0.722439	-1.936055	-0.227127	0.729479	-1.907962	-0.233431
С	-1.161316	-2.103745	-1.581676	-1.169807	-2.085243	-1.586465
С	0.000000	-2.211147	-2.386035	0.000000	-2.200064	-2.394843
С	1.161316	-2.103745	-1.581676	1.169807	-2.085243	-1.586465
Н	0.000000	-1.716135	3.058004	0.000000	-1.682202	3.078600
Н	-2.192170	-1.770690	1.482385	-2.206813	-1.719528	1.489718
Н	0.000000	-2.346073	-3.464282	0.000000	-2.346869	-3.480123
Н	2.187670	-2.141372	-1.934176	2.203819	-2.121875	-1.941921
Н	2.192170	-1.770690	1.482385	2.206813	-1.719528	1.489718
Н	-2.187670	-2.141372	-1.934176	-2.203819	-2.121875	-1.941921
Ni	0.000000	0.000000	0.853183	0.000000	0.000000	0.857463

Table S63 Optimized coordinates of the Ni-9T for the (C8H6)₂Ni structures

		B3LYP			BP86	
	х	у	Z	х	у	Z
С	-1.031761	-1.041880	2.201570	1.068021	-1.046229	2.133420
С	-1.898524	0.089305	2.028569	-0.074548	-1.915439	1.975391
С	-1.114651	1.212492	1.573809	-1.214536	-1.119842	1.549450
С	0.224300	0.756093	1.430736	-0.757738	0.233382	1.420971
С	0.284091	-0.604813	1.874077	0.621632	0.288285	1.845407
С	1.568047	1.136847	0.821349	-1.143653	1.585003	0.827662
С	2.435418	-0.016096	1.340897	0.016405	2.451544	1.336249
С	1.685214	-1.021755	1.862591	1.040833	1.686710	1.837248
Н	-2.961256	0.111559	2.247974	-0.093792	-2.988317	2.186851
Н	-1.504496	2.200602	1.354532	-2.218657	-1.506330	1.355899
Н	3.515663	-0.035958	1.225435	0.032916	3.541689	1.233826
Н	2.066246	-1.972384	2.226420	2.007408	2.066572	2.185092
Н	-1.329786	-2.017160	2.571843	2.059425	-1.354110	2.476444
Н	1.938225	2.115447	1.152361	-2.130725	1.957011	1.160349
С	-1.031761	-1.041880	-2.201570	1.068021	-1.046229	-2.133420
С	-1.898524	0.089305	-2.028569	-0.074548	-1.915439	-1.975391
С	-1.114651	1.212492	-1.573809	-1.214536	-1.119842	-1.549450
С	0.224300	0.756093	-1.430736	-0.757738	0.233382	-1.420971
С	0.284091	-0.604813	-1.874077	0.621632	0.288285	-1.845407
С	1.568047	1.136847	-0.821349	-1.143653	1.585003	-0.827662
С	2.435418	-0.016096	-1.340897	0.016405	2.451544	-1.336249
С	1.685214	-1.021755	-1.862591	1.040833	1.686710	-1.837248
Н	-2.961256	0.111559	-2.247974	-0.093792	-2.988317	-2.186851
Н	-1.504496	2.200602	-1.354532	-2.218657	-1.506330	-1.355899
Н	3.515663	-0.035958	-1.225435	0.032916	3.541689	-1.233826
Н	2.066246	-1.972384	-2.226420	2.007408	2.066572	-2.185092
Н	-1.329786	-2.017160	-2.571843	2.059425	-1.354110	-2.476444
Н	1.938225	2.115447	-1.152361	-2.130725	1.957011	-1.160349
Ni	-1.045528	-0.247376	0.000000	0.214638	-1.049785	0.000000

Table 64 Optimized coordinates of the Ni-10T for the (C8H6)₂Ni structures

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
76(1)	74(1)	785(82)	752(56)	1288(2)	1251(5)
79(4)	76(2)	788(8)	755(22)	1303(7)	1262(4)
124(1)	121(1)	795(7)	767(44)	1310(5)	1269(4)
137(0)	137(0)	801(59)	769(26)	1327(1)	1287(1)
186(1)	187(1)	807(1)	773(0)	1332(5)	1292(3)
210(0)	205(0)	811(5)	775(6)	1402(7)	1360(3)
279(3)	276(3)	867(1)	836(1)	1415(2)	1377(1)
302(1)	297(1)	871(0)	839(0)	1424(2)	1383(1)
323(4)	320(4)	887(5)	843(3)	1435(1)	1392(1)
340(2)	335(4)	891(1)	851(1)	1457(3)	1415(2)
360(2)	356(2)	900(6)	859(2)	1465(4)	1424(4)
413(2)	402(2)	901(10)	862(2)	1471(3)	1430(2)
454(2)	441(2)	905(5)	873(5)	1490(12)	1448(6)
463(1)	449(1)	913(9)	883(20)	1495(3)	1456(1)
528(30)	511(20)	1017(8)	989(8)	1519(8)	1478(6)
561(4)	539(3)	1031(6)	998(5)	3212(2)	3138(3)
571(2)	550(2)	1038(4)	1009(5)	3226(2)	3149(3)
612(0)	592(0)	1050(4)	1021(7)	3226(1)	3150(1)
644(3)	626(2)	1054(13)	1024(10)	3227(1)	3152(1)
690(4)	673(2)	1067(1)	1036(1)	3228(6)	3153(8)
711(53)	684(58)	1075(3)	1043(2)	3241(2)	3167(3)
715(7)	693(0)	1081(1)	1049(0)	3243(6)	3168(7)
720(1)	698(0)	1130(10)	1101(7)	3245(1)	3171(2)
737(7)	720(4)	1137(2)	1108(1)	3247(2)	3173(3)
765(11)	736(13)	1186(1)	1146(1)	3251(2)	3176(2)
769(13)	740(8)	1188(0)	1147(0)	3253(2)	3179(3)
773(18)	744(20)	1277(9)	1238(9)	3256(1)	3181(1)

Table S65. Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Ti-1S** of $(C_8H_6)_2$ Ti

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
36(0)	44(0)	767(47)	740(0)	1285(0)	1246(0)
67(0)	66(0)	776(0)	744(1)	1290(21)	1255(21)
101(0)	103(0)	783(71)	755(2)	1299(10)	1257(5)
132(1)	128(1)	790(32)	761(67)	1318(1)	1283(0)
182(0)	180(0)	806(6)	778(6)	1326(16)	1292(13)
222(1)	225(1)	824(1)	786(2)	1361(1)	1318(1)
272(8)	278(10)	857(7)	811(13)	1400(7)	1360(8)
302(1)	307(2)	869(1)	834(3)	1409(1)	1370(1)
334(6)	335(2)	872(2)	836(1)	1437(1)	1387(1)
344(8)	348(0)	878(3)	837(0)	1447(2)	1401(1)
347(0)	352(11)	901(17)	858(0)	1449(6)	1404(0)
379(2)	373(4)	905(1)	860(6)	1454(0)	1407(3)
438(3)	429(2)	906(0)	876(0)	1485(63)	1444(0)
461(1)	450(0)	915(2)	882(12)	1489(0)	1450(64)
505(3)	487(1)	1013(2)	986(3)	1504(0)	1465(0)
549(16)	532(8)	1020(3)	997(5)	3219(4)	3144(0)
561(3)	539(2)	1031(5)	999(1)	3219(0)	3145(5)
584(6)	559(8)	1038(31)	1007(28)	3220(0)	3146(0)
644(1)	624(0)	1048(11)	1015(15)	3230(0)	3155(6)
666(0)	651(0)	1066(0)	1035(0)	3231(5)	3156(1)
677(2)	659(1)	1068(9)	1038(10)	3237(2)	3162(4)
690(0)	664(1)	1072(0)	1041(2)	3242(1)	3168(12)
705(72)	677(75)	1128(1)	1103(1)	3243(7)	3171(1)
717(0)	695(0)	1133(5)	1104(3)	3244(5)	3172(3)
746(1)	724(18)	1180(2)	1140(1)	3249(3)	3177(3)
757(14)	729(12)	1184(0)	1143(0)	3250(0)	3177(2)
766(0)	735(12)	1278(0)	1240(1)	3251(1)	3178(0)

Table S66 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Ti-2T** of $(C_8H_6)_2$ Ti

-	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-	94(4)	89(3)	781(31)	736(5)	1257(0)	1213(1)
	127(0)	124(0)	792(4)	745(5)	1289(5)	1244(3)
	201(0)	197(1)	803(57)	766(43)	1317(5)	1268(8)
	216(0)	229(1)	832(16)	786(18)	1336(0)	1291(4)
	228(0)	237(0)	842(29)	799(1)	1339(0)	1293(0)
	254(0)	262(1)	853(0)	806(13)	1387(0)	1343(0)
	286(9)	289(6)	869(13)	835(14)	1388(4)	1346(2)
	314(1)	304(0)	892(5)	860(1)	1419(0)	1367(1)
	321(26)	339(9)	913(8)	878(1)	1423(4)	1373(4)
	392(17)	395(1)	938(4)	887(1)	1468(7)	1418(6)
	402(2)	399(1)	938(0)	889(6)	1469(3)	1420(2)
	404(6)	401(6)	962(3)	938(3)	1512(2)	1468(1)
	453(2)	438(2)	973(2)	942(2)	1512(5)	1469(7)
	459(2)	446(1)	1005(2)	974(4)	1602(1)	1540(17)
	480(0)	466(0)	1013(13)	978(10)	1603(5)	1540(4)
	569(21)	546(13)	1022(25)	989(24)	3044(9)	2963(12)
	596(0)	564(0)	1027(20)	994(27)	3049(45)	2967(53)
	619(5)	601(4)	1032(1)	997(3)	3202(1)	3128(3)
	642(0)	624(0)	1079(2)	1044(3)	3202(1)	3128(1)
	665(4)	640(5)	1081(0)	1046(2)	3217(14)	3141(9)
	673(13)	642(17)	1126(4)	1090(5)	3221(0)	3145(1)
	679(9)	650(11)	1139(1)	1103(0)	3226(18)	3151(19)
	708(2)	681(0)	1175(5)	1129(4)	3226(6)	3151(6)
	717(75)	686(77)	1185(2)	1138(1)	3237(1)	3161(1)
	754(17)	716(17)	1198(3)	1150(2)	3237(0)	3161(3)
	759(48)	720(17)	1220(4)	1172(3)	3251(1)	3178(0)
	773(14)	731(48)	1256(1)	1209(0)	3251(0)	3178(0)

Table S67 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Ti-3T** of $(C_8H_6)_2$ Ti

	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
_	61(18)	-22(24)	791(12)	752(55)	1266(0)	1216(0)
	112(1)	107(1)	793(40)	758(7)	1283(1)	1241(0)
	120(3)	119(3)	797(15)	760(13)	1308(5)	1259(5)
	218(7)	211(6)	834(13)	805(9)	1336(0)	1291(1)
	232(0)	233(0)	858(10)	819(11)	1338(8)	1292(12)
	245(1)	244(2)	861(1)	822(3)	1377(3)	1327(2)
	280(1)	276(1)	873(7)	839(5)	1380(8)	1328(9)
	295(0)	286(0)	882(6)	848(4)	1396(1)	1355(0)
	303(0)	299(0)	895(0)	859(3)	1402(8)	1361(8)
	382(0)	367(0)	933(4)	881(0)	1433(11)	1381(15)
	393(1)	398(0)	933(0)	882(4)	1439(7)	1388(5)
	397(2)	402(0)	957(3)	930(4)	1515(12)	1476(13)
	450(3)	434(2)	979(0)	949(0)	1522(5)	1484(6)
	465(0)	453(0)	998(6)	964(32)	1601(18)	1538(31)
	494(0)	481(0)	999(31)	966(10)	1604(10)	1544(16)
	572(0)	544(0)	1025(2)	995(5)	3028(17)	2938(22)
	581(0)	555(0)	1030(12)	1000(13)	3032(56)	2943(72)
	613(7)	596(6)	1032(23)	1001(19)	3201(3)	3126(4)
	634(0)	611(1)	1076(3)	1042(3)	3201(1)	3126(1)
	639(1)	615(0)	1079(1)	1046(1)	3214(0)	3135(0)
	674(11)	646(10)	1124(12)	1087(18)	3214(1)	3135(1)
	681(33)	652(39)	1133(0)	1097(0)	3225(20)	3149(15)
	703(0)	676(3)	1177(0)	1132(0)	3225(6)	3149(8)
	715(65)	684(66)	1178(9)	1132(12)	3228(1)	3150(0)
	742(25)	704(17)	1209(0)	1164(0)	3228(3)	3150(10)
	752(24)	713(3)	1215(4)	1167(4)	3248(1)	3172(1)
	760(6)	716(12)	1256(2)	1213(1)	3249(1)	3172(2)

Table S68 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Ti-4S** of $(C_8H_6)_2$ Ti

-	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-	84(0)	88(0)	782(14)	755(33)	1255(0)	1204(0)
	134(1)	131(1)	792(34)	756(11)	1289(7)	1247(4)
	186(3)	199(2)	812(3)	766(4)	1307(1)	1259(5)
	221(1)	238(0)	822(4)	775(5)	1337(3)	1290(11)
	245(0)	242(2)	851(22)	801(24)	1340(3)	1294(3)
	248(0)	252(2)	857(13)	805(13)	1387(1)	1343(1)
	263(1)	265(1)	874(5)	841(4)	1387(1)	1346(0)
	323(2)	324(2)	891(2)	856(4)	1418(2)	1372(1)
	331(3)	338(0)	912(5)	866(4)	1420(1)	1375(1)
	393(15)	384(1)	920(5)	868(1)	1466(0)	1414(1)
	398(1)	402(0)	929(8)	880(5)	1469(0)	1422(0)
	398(2)	416(4)	931(2)	892(6)	1518(0)	1469(1)
	437(5)	425(3)	976(14)	944(1)	1518(1)	1472(1)
	477(12)	465(9)	977(4)	951(18)	1601(6)	1531(22)
	483(0)	466(2)	1015(0)	979(0)	1604(6)	1532(14)
	584(4)	554(3)	1018(9)	984(11)	3054(6)	2969(8)
	593(1)	563(0)	1032(6)	1000(11)	3069(57)	2982(68)
	637(1)	619(1)	1035(15)	1005(8)	3207(2)	3134(3)
	644(4)	622(4)	1077(0)	1041(0)	3212(3)	3138(4)
	667(0)	635(3)	1083(1)	1050(3)	3220(0)	3141(6)
	673(2)	647(16)	1129(1)	1093(4)	3221(1)	3141(1)
	688(11)	655(2)	1138(6)	1103(10)	3231(1)	3157(1)
	699(0)	671(1)	1176(2)	1127(3)	3233(1)	3160(0)
	719(48)	687(62)	1190(0)	1141(0)	3236(1)	3162(13)
	755(34)	707(25)	1192(4)	1143(5)	3236(17)	3163(4)
	755(47)	708(14)	1239(3)	1190(5)	3247(0)	3174(0)
	767(1)	726(1)	1248(1)	1200(1)	3249(2)	3177(3)

Table S69 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Ti-5T** of $(C_8H_6)_2$ Ti

-	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
	83(0)	82(0)	775(1)	733(15)	1255(0)	1206(0)
	130(0)	125(0)	777(5)	745(2)	1278(2)	1237(4)
	214(1)	206(5)	791(19)	755(16)	1298(6)	1251(8)
	230(19)	226(20)	792(9)	755(2)	1339(5)	1296(11)
	258(3)	254(0)	845(10)	806(8)	1345(2)	1301(2)
	261(1)	258(5)	846(16)	807(16)	1373(0)	1333(0)
	262(1)	261(1)	875(5)	842(4)	1377(25)	1338(25)
	317(1)	304(11)	881(12)	848(15)	1391(14)	1343(12)
	317(12)	310(0)	906(1)	869(3)	1396(2)	1349(3)
	398(2)	400(1)	913(5)	871(3)	1431(1)	1376(3)
	415(2)	410(1)	929(0)	876(7)	1435(7)	1381(6)
	423(8)	414(5)	930(9)	888(5)	1530(11)	1490(11)
	438(0)	440(1)	976(3)	943(2)	1533(2)	1493(2)
	481(6)	467(4)	985(36)	957(52)	1596(9)	1528(19)
	486(1)	468(6)	1000(17)	968(16)	1597(9)	1533(15)
	572(11)	547(13)	1016(15)	985(21)	3036(11)	2947(14)
	582(2)	559(4)	1018(28)	989(4)	3049(79)	2958(103)
	631(3)	612(2)	1019(4)	992(17)	3205(1)	3130(1)
	645(6)	625(8)	1074(0)	1041(0)	3210(3)	3134(3)
	673(0)	645(0)	1080(5)	1046(5)	3219(1)	3140(2)
	676(4)	652(10)	1127(4)	1092(9)	3219(1)	3140(1)
	688(12)	659(3)	1137(3)	1102(4)	3228(2)	3153(2)
	696(0)	668(0)	1176(4)	1130(6)	3231(1)	3153(3)
	720(68)	689(67)	1177(3)	1131(4)	3231(2)	3153(3)
	732(85)	693(80)	1187(3)	1140(2)	3233(17)	3157(17)
	738(7)	706(0)	1235(4)	1187(4)	3244(0)	3167(0)
	768(1)	730(4)	1245(2)	1199(1)	3246(3)	3168(5)

Table S70 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Ti-6S** of $(C_8H_6)_2$ Ti

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
29(1)	24(0)	790(43)	754(15)	1284(1)	1244(0)
89(1)	90(0)	793(4)	756(8)	1302(9)	1257(8)
123(0)	126(0)	802(50)	763(29)	1308(2)	1266(4)
136(1)	142(1)	807(5)	768(27)	1319(10)	1282(6)
177(2)	183(1)	816(5)	778(2)	1321(25)	1286(10)
238(1)	240(3)	819(4)	786(5)	1385(4)	1355(2)
302(13)	307(14)	855(3)	817(6)	1405(0)	1371(1)
328(12)	333(11)	868(1)	835(1)	1417(1)	1377(1)
339(0)	346(1)	876(0)	838(1)	1435(1)	1386(2)
352(8)	353(10)	883(1)	842(0)	1438(1)	1390(1)
362(4)	359(6)	884(0)	858(2)	1451(1)	1405(3)
399(8)	391(10)	906(13)	863(4)	1453(3)	1407(0)
446(5)	435(3)	914(1)	865(4)	1477(0)	1433(0)
469(0)	458(1)	925(4)	891(10)	1504(2)	1461(7)
528(2)	513(1)	1019(6)	987(4)	1532(7)	1494(2)
555(2)	531(2)	1035(6)	1001(6)	3198(14)	3126(13)
577(3)	558(3)	1039(16)	1010(18)	3223(0)	3148(0)
613(2)	588(2)	1049(6)	1017(12)	3230(7)	3154(1)
644(0)	626(1)	1052(7)	1024(6)	3231(2)	3156(5)
664(3)	644(1)	1063(7)	1031(6)	3232(5)	3158(10)
669(2)	651(7)	1070(0)	1039(1)	3237(11)	3161(1)
695(69)	667(73)	1077(2)	1043(5)	3239(0)	3164(12)
712(12)	687(6)	1123(11)	1095(9)	3245(2)	3169(2)
717(0)	694(3)	1138(1)	1108(0)	3249(0)	3177(0)
726(10)	697(0)	1185(0)	1142(0)	3254(0)	3180(0)
757(3)	736(16)	1186(0)	1145(0)	3256(0)	3183(0)
776(19)	741(7)	1283(13)	1241(13)	3262(0)	3186(0)

Table S71 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure V-1D of $(C_8H_6)_2V$

_	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
	66(0)	71(0)	777(0)	750(0)	1268(8)	1229(4)
	106(0)	112(0)	779(36)	753(51)	1318(11)	1272(9)
	118(0)	119(0)	786(13)	767(8)	1319(1)	1274(1)
	139(0)	143(0)	802(2)	776(11)	1327(0)	1286(0)
	140(3)	155(3)	813(15)	781(4)	1331(5)	1290(2)
	186(1)	178(1)	828(4)	786(2)	1388(13)	1344(2)
	220(2)	228(1)	865(0)	830(0)	1394(0)	1350(0)
	268(3)	277(3)	866(0)	831(0)	1430(2)	1391(2)
	331(3)	328(2)	884(3)	837(1)	1431(6)	1391(3)
	343(3)	344(5)	886(0)	839(2)	1467(7)	1424(2)
	358(3)	354(4)	892(4)	842(5)	1471(1)	1427(1)
	420(6)	411(8)	892(0)	844(0)	1494(38)	1451(15)
	448(1)	437(1)	901(0)	873(0)	1499(0)	1456(0)
	455(1)	447(0)	902(25)	875(24)	1512(2)	1465(4)
	503(14)	489(11)	1008(11)	982(12)	1514(1)	1469(1)
	566(0)	542(0)	1008(3)	983(1)	3216(4)	3141(3)
	569(1)	550(1)	1035(8)	1006(5)	3216(0)	3141(0)
	606(0)	581(0)	1035(1)	1006(0)	3229(0)	3153(1)
	628(5)	608(5)	1051(1)	1019(1)	3229(9)	3154(12)
	686(5)	668(7)	1053(16)	1022(15)	3233(0)	3157(0)
	689(0)	672(0)	1082(5)	1048(3)	3233(0)	3158(0)
	712(0)	681(0)	1085(0)	1052(0)	3244(1)	3168(0)
	713(117)	682(105)	1126(2)	1096(1)	3244(1)	3170(3)
	717(3)	692(1)	1128(13)	1099(8)	3245(11)	3170(14)
	720(1)	696(0)	1185(1)	1143(0)	3246(3)	3171(3)
	766(7)	735(8)	1186(0)	1145(0)	3257(0)	3180(3)
	769(27)	744(17)	1268(2)	1229(6)	3257(2)	3180(0)

Table S72 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **V-2D** of $(C_8H_6)_2V$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
 -194(5)	-197(5)	769(0)	738(0)	1271(2)	1233(1)
88(0)	92(0)	778(1)	751(0)	1317(10)	1273(8)
111(5)	97(6)	797(5)	770(0)	1319(0)	1275(0)
119(1)	124(0)	801(0)	773(12)	1335(0)	1296(0)
120(1)	143(1)	815(0)	791(0)	1342(0)	1302(0)
152(0)	156(0)	821(1)	791(2)	1384(9)	1344(1)
191(0)	200(0)	865(0)	833(0)	1396(0)	1354(0)
243(6)	238(4)	866(1)	834(2)	1433(3)	1393(2)
249(0)	244(0)	889(0)	840(0)	1438(0)	1399(0)
307(1)	303(1)	891(7)	841(8)	1464(4)	1419(1)
332(0)	325(0)	893(0)	846(0)	1478(0)	1432(0)
401(0)	391(0)	894(0)	846(2)	1483(0)	1441(1)
443(1)	430(1)	904(0)	878(0)	1486(0)	1442(1)
444(3)	432(3)	906(34)	880(28)	1498(8)	1456(3)
484(13)	472(9)	1017(14)	987(13)	1502(0)	1462(0)
551(2)	515(5)	1018(3)	988(1)	3221(2)	3147(2)
552(2)	520(1)	1037(2)	1012(0)	3222(0)	3147(0)
605(0)	579(0)	1041(0)	1015(0)	3223(0)	3148(0)
628(5)	609(5)	1049(1)	1018(2)	3223(1)	3148(0)
688(15)	671(21)	1052(17)	1021(19)	3235(0)	3160(0)
701(0)	683(0)	1086(3)	1053(2)	3235(0)	3160(0)
716(16)	694(22)	1090(0)	1057(0)	3235(0)	3160(0)
718(0)	694(0)	1125(1)	1096(1)	3237(12)	3162(17)
741(0)	710(1)	1131(5)	1103(2)	3246(0)	3171(0)
751(182)	718(166)	1186(0)	1144(0)	3246(1)	3171(1)
752(31)	726(30)	1187(0)	1146(0)	3248(12)	3173(16)
763(11)	736(10)	1270(2)	1231(5)	3248(0)	3173(0)

Table S73 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **V-3D** of $(C_8H_6)_2V$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
119(13)	95(3)	793(31)	749(0)	1265(0)	1214(1)
120(1)	123(0)	794(20)	751(1)	1283(0)	1243(2)
172(1)	146(9)	799(11)	763(28)	1313(7)	1265(6)
239(0)	229(0)	831(7)	791(11)	1336(0)	1292(9)
249(3)	232(7)	843(6)	794(3)	1343(27)	1293(0)
257(0)	238(0)	859(9)	806(9)	1380(3)	1346(1)
300(1)	273(0)	880(4)	837(6)	1385(3)	1347(5)
304(0)	300(3)	886(10)	853(5)	1393(17)	1358(2)
315(8)	305(0)	924(39)	872(0)	1398(1)	1359(0)
388(1)	381(0)	935(1)	887(0)	1435(4)	1402(9)
413(1)	407(0)	936(5)	888(4)	1439(3)	1407(4)
415(0)	418(11)	958(1)	935(2)	1522(1)	1459(5)
451(2)	439(1)	978(1)	937(2)	1524(0)	1468(0)
464(0)	448(2)	998(5)	972(4)	1603(16)	1540(15)
489(1)	475(0)	1007(7)	972(13)	1605(7)	1542(5)
574(0)	549(0)	1020(17)	989(16)	3035(17)	2962(14)
578(5)	553(0)	1021(22)	993(16)	3039(56)	2966(60)
617(8)	601(4)	1025(4)	999(8)	3201(1)	3128(3)
631(0)	619(0)	1072(0)	1044(1)	3201(2)	3128(1)
643(6)	623(3)	1081(5)	1044(1)	3217(0)	3151(0)
671(7)	640(13)	1124(13)	1088(8)	3223(24)	3151(20)
678(25)	649(17)	1132(1)	1098(2)	3226(25)	3151(4)
699(0)	674(0)	1178(8)	1129(9)	3226(6)	3152(1)
727(41)	690(62)	1181(3)	1137(0)	3233(1)	3165(0)
745(18)	715(17)	1205(0)	1151(2)	3233(4)	3165(1)
764(44)	731(47)	1219(2)	1171(2)	3254(0)	3177(1)
764(4)	741(9)	1257(8)	1210(0)	3254(4)	3177(1)

Table S74 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure V-4D of $(C_8H_6)_2V$

B3LYP 87(0) 147(1) 223(1) 245(18) 259(2)	BP86 88(0) 141(0) 212(2) 247(1)	B3LYP 779(24) 782(13) 790(23)	BP86 748(3) 755(26) 761(2)	B3LYP 1256(0) 1282(1)	BP86 1206(0) 1244(5)
87(0) 147(1) 223(1) 245(18) 259(2)	88(0) 141(0) 212(2) 247(1)	779(24) 782(13) 790(23)	748(3) 755(26) 761(2)	1256(0) 1282(1)	1206(0) 1244(5)
$ \begin{array}{r} 147(1) \\ 223(1) \\ 245(18) \\ 259(2) \end{array} $	141(0) 212(2) 247(1)	782(13) 790(23)	755(26)	1282(1)	1244(5)
223(1) 245(18) 259(2)	212(2) 247(1)	790(23)	761(2)		
245(18) 259(2)	247(1)		/01(2)	1300(6)	1257(6)
259(2)		794(4)	768(6)	1334(3)	1291(8)
	249(5)	833(1)	793(15)	1344(11)	1294(2)
276(1)	256(5)	836(3)	796(12)	1377(1)	1342(1)
301(9)	269(0)	873(5)	840(4)	1388(11)	1345(9)
311(17)	306(15)	879(14)	851(8)	1390(11)	1361(2)
314(1)	325(2)	900(1)	869(0)	1397(0)	1365(3)
402(0)	388(0)	910(5)	869(3)	1431(2)	1400(3)
424(2)	408(22)	926(0)	876(7)	1437(3)	1408(2)
427(7)	419(1)	928(7)	888(3)	1524(0)	1471(6)
460(6)	430(1)	972(2)	942(2)	1525(5)	1474(0)
477(5)	462(3)	976(29)	946(32)	1594(7)	1532(14)
489(0)	467(6)	1004(7)	976(1)	1598(14)	1535(16)
560(5)	544(3)	1015(10)	982(16)	3048(10)	2968(10)
568(6)	556(0)	1018(9)	997(10)	3061(69)	2980(84)
631(2)	614(3)	1020(30)	1001(23)	3206(2)	3133(2)
642(2)	620(3)	1072(0)	1040(0)	3211(3)	3137(4)
669(1)	640(2)	1081(9)	1047(1)	3216(0)	3150(0)
673(4)	640(16)	1126(3)	1092(3)	3216(2)	3151(0)
688(1)	654(1)	1137(8)	1100(9)	3229(2)	3156(2)
692(0)	666(0)	1177(2)	1129(2)	3234(16)	3160(13)
725(58)	691(58)	1177(1)	1140(1)	3240(0)	3161(1)
747(60)	710(23)	1182(4)	1140(6)	3241(6)	3162(3)
754(23)	722(26)	1237(3)	1191(5)	3246(0)	3173(0)
775(6)	731(3)	1245(2)	1201(0)	3248(3)	3174(3)
	$\begin{array}{c} 259(2)\\ 276(1)\\ 301(9)\\ 311(17)\\ 314(1)\\ 402(0)\\ 424(2)\\ 427(7)\\ 460(6)\\ 477(5)\\ 489(0)\\ 560(5)\\ 568(6)\\ 631(2)\\ 642(2)\\ 669(1)\\ 673(4)\\ 688(1)\\ 692(0)\\ 725(58)\\ 747(60)\\ 754(23)\\ 775(6)\end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table S75 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **V-5D** of $(C_8H_6)_2V$
B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
119(0)	113(0)	802(45)	762(1)	1259(1)	1217(1)
127(0)	124(0)	806(0)	768(40)	1286(5)	1244(4)
208(0)	202(0)	815(0)	772(0)	1315(1)	1266(3)
213(0)	217(1)	831(18)	802(12)	1338(8)	1293(12)
233(2)	236(1)	860(1)	813(5)	1338(1)	1295(0)
271(3)	270(4)	862(15)	813(12)	1389(2)	1347(3)
290(3)	290(5)	872(8)	840(6)	1390(3)	1349(2)
315(0)	309(0)	890(1)	857(1)	1411(0)	1366(0)
342(4)	346(5)	914(1)	880(0)	1415(2)	1370(1)
392(17)	393(5)	938(4)	890(0)	1462(2)	1415(3)
415(2)	414(2)	938(0)	892(4)	1462(2)	1416(1)
417(2)	418(3)	961(2)	929(2)	1505(2)	1461(1)
455(2)	442(1)	962(2)	938(2)	1505(0)	1462(0)
461(1)	449(1)	1003(2)	974(3)	1602(3)	1543(4)
489(1)	479(0)	1014(5)	981(5)	1603(7)	1544(9)
587(0)	560(0)	1024(7)	991(6)	3048(9)	2971(10)
592(1)	563(1)	1034(14)	1003(17)	3053(37)	2975(41)
622(7)	607(6)	1035(13)	1003(11)	3203(1)	3129(2)
638(0)	622(0)	1078(1)	1045(1)	3203(2)	3129(1)
668(8)	642(12)	1079(4)	1046(4)	3227(18)	3152(20)
675(10)	645(12)	1125(7)	1089(8)	3227(6)	3152(6)
687(20)	657(14)	1138(0)	1102(0)	3229(0)	3156(0)
709(0)	682(0)	1171(2)	1121(2)	3229(1)	3156(1)
723(35)	695(41)	1185(2)	1140(1)	3241(2)	3167(2)
755(13)	721(11)	1196(2)	1151(2)	3241(1)	3167(1)
770(73)	732(49)	1219(2)	1172(1)	3251(1)	3176(1)
778(9)	741(3)	1256(0)	1209(0)	3251(1)	3176(2)

Table S76 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **V-6Q** of $(C_8H_6)_2V$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
85(0)	85(0)	785(18)	758(19)	1254(0)	1206(1)
140(0)	139(1)	794(38)	759(11)	1288(4)	1247(4)
201(0)	207(1)	803(0)	761(13)	1304(0)	1258(2)
241(3)	236(0)	813(0)	773(0)	1334(2)	1290(5)
243(0)	245(4)	855(10)	807(7)	1339(6)	1294(6)
266(0)	267(0)	857(11)	811(10)	1388(0)	1347(0)
274(3)	273(2)	872(4)	839(5)	1393(5)	1352(3)
322(1)	326(3)	889(2)	857(2)	1413(1)	1370(1)
351(8)	353(8)	908(1)	872(2)	1417(1)	1373(1)
389(11)	382(2)	915(2)	875(0)	1464(1)	1416(2)
413(4)	415(0)	928(8)	879(7)	1467(1)	1423(0)
426(2)	422(6)	931(2)	889(2)	1509(0)	1465(0)
437(3)	434(1)	959(12)	933(16)	1510(2)	1467(1)
475(12)	464(9)	974(4)	943(3)	1602(6)	1539(10)
493(2)	479(1)	1014(0)	980(0)	1604(5)	1540(5)
578(1)	551(1)	1018(6)	985(5)	3063(6)	2984(6)
596(0)	569(0)	1032(7)	1001(9)	3078(48)	2997(54)
642(2)	621(3)	1037(22)	1007(18)	3208(2)	3135(2)
643(3)	625(2)	1074(0)	1040(0)	3213(4)	3139(4)
670(0)	643(1)	1083(5)	1050(5)	3226(0)	3153(0)
674(4)	650(8)	1128(1)	1093(1)	3228(0)	3154(0)
692(4)	659(1)	1137(3)	1100(3)	3232(1)	3158(2)
699(0)	671(0)	1171(3)	1123(4)	3237(1)	3163(17)
718(46)	689(50)	1189(0)	1144(0)	3238(16)	3164(0)
762(17)	725(19)	1191(4)	1145(3)	3240(4)	3166(5)
765(65)	729(44)	1240(3)	1194(3)	3248(1)	3174(1)
774(14)	739(3)	1247(1)	1199(0)	3249(2)	3174(3)

Table S77 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure V-7Q of $(C_8H_6)_2V$

_	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
	31(0)	42(0)	773(2)	738(3)	1282(0)	1244(2)
	66(0)	65(0)	775(5)	739(2)	1290(24)	1258(18)
	90(0)	84(0)	782(68)	748(43)	1309(5)	1267(5)
	122(1)	111(1)	796(11)	761(1)	1319(1)	1284(2)
	133(0)	134(0)	807(5)	775(10)	1329(15)	1302(10)
	183(2)	190(2)	823(3)	786(5)	1356(0)	1311(1)
	230(2)	235(4)	858(3)	814(2)	1390(3)	1346(2)
	264(2)	276(2)	865(0)	829(0)	1404(8)	1366(6)
	321(1)	328(2)	872(0)	834(1)	1425(1)	1378(0)
	350(3)	354(1)	881(4)	837(2)	1447(2)	1396(3)
	354(8)	360(11)	883(2)	841(1)	1455(5)	1410(8)
	377(2)	381(4)	886(4)	842(4)	1476(18)	1438(23)
	438(3)	431(2)	899(12)	870(1)	1481(69)	1447(63)
	455(2)	442(2)	901(2)	871(13)	1506(2)	1467(2)
	478(6)	459(1)	1019(2)	989(2)	1510(5)	1475(6)
	552(9)	538(2)	1019(2)	989(6)	3218(2)	3144(2)
	564(2)	540(2)	1022(6)	1004(28)	3220(1)	3145(1)
	576(10)	558(11)	1035(29)	1007(1)	3225(1)	3153(1)
	614(5)	589(7)	1038(6)	1009(9)	3230(0)	3156(1)
	665(0)	649(0)	1050(11)	1018(7)	3232(3)	3159(3)
	682(2)	659(2)	1067(9)	1037(12)	3234(4)	3160(5)
	685(1)	668(2)	1077(2)	1043(2)	3239(2)	3166(1)
	695(5)	674(8)	1125(5)	1098(5)	3242(1)	3167(3)
	707(30)	682(48)	1131(4)	1104(1)	3243(8)	3170(14)
	709(47)	684(48)	1182(1)	1142(1)	3244(10)	3170(7)
	723(43)	691(16)	1184(0)	1144(0)	3247(1)	3174(2)
	769(13)	735(10)	1277(8)	1239(10)	3253(1)	3177(2)

Table S78 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **V-8Q** of $(C_8H_6)_2V$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
 41(0)	52(0)	791(5)	758(19)	1280(0)	1235(0)
129(0)	129(0)	801(2)	761(1)	1300(4)	1255(1)
138(0)	131(0)	812(0)	774(25)	1305(9)	1258(7)
154(2)	153(1)	813(67)	780(1)	1327(98)	1291(69)
155(1)	157(1)	827(7)	784(6)	1333(4)	1302(2)
261(2)	267(4)	833(2)	790(2)	1336(2)	1314(3)
312(7)	320(11)	856(7)	801(6)	1397(0)	1362(0)
351(9)	345(4)	862(0)	827(1)	1416(1)	1366(1)
360(0)	366(21)	874(4)	848(6)	1422(8)	1377(1)
365(13)	367(0)	885(5)	849(1)	1433(0)	1383(7)
418(31)	417(41)	911(9)	863(3)	1446(7)	1395(4)
426(9)	420(3)	913(5)	871(6)	1448(0)	1399(0)
447(12)	434(11)	929(3)	879(8)	1474(0)	1423(0)
482(2)	473(7)	941(5)	901(7)	1517(117)	1483(82)
535(0)	515(1)	1013(2)	982(0)	1535(3)	1500(1)
549(2)	522(2)	1018(7)	985(9)	3190(14)	3117(15)
574(0)	554(0)	1037(20)	1002(3)	3228(0)	3148(1)
629(1)	603(1)	1041(19)	1009(9)	3231(1)	3149(0)
642(5)	631(2)	1046(6)	1017(19)	3236(3)	3154(1)
663(9)	641(11)	1055(2)	1024(5)	3240(7)	3156(6)
679(19)	663(11)	1069(0)	1036(0)	3241(0)	3165(8)
703(0)	683(97)	1074(2)	1039(3)	3244(9)	3168(14)
704(102)	684(1)	1106(18)	1078(15)	3248(4)	3170(2)
711(2)	687(0)	1143(1)	1109(0)	3258(0)	3182(1)
723(0)	702(0)	1182(0)	1137(0)	3262(0)	3186(1)
778(2)	742(12)	1184(0)	1140(0)	3263(0)	3188(0)
787(16)	752(5)	1269(28)	1231(21)	3266(0)	3191(0)

Table S79 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Cr-1S** of $(C_8H_6)_2$ Cr

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
123(1)	120(1)	794(8)	755(1)	1261(0)	1215(1)
131(0)	126(0)	802(2)	758(1)	1281(3)	1239(2)
216(6)	210(9)	808(10)	763(18)	1310(5)	1261(6)
219(0)	221(0)	833(14)	793(2)	1337(1)	1292(12)
255(22)	246(26)	850(1)	803(6)	1337(9)	1293(1)
261(0)	259(0)	854(7)	811(12)	1386(3)	1341(2)
302(2)	296(1)	873(7)	839(6)	1389(1)	1345(3)
313(1)	310(3)	882(2)	849(1)	1396(5)	1348(1)
317(3)	313(3)	901(0)	866(0)	1400(2)	1355(2)
392(2)	384(2)	936(0)	887(0)	1438(7)	1386(9)
416(1)	421(2)	936(3)	888(4)	1442(3)	1392(2)
424(3)	429(4)	956(1)	931(2)	1504(6)	1460(7)
456(0)	443(0)	965(2)	935(2)	1511(1)	1470(1)
464(0)	452(0)	998(3)	967(5)	1603(13)	1543(19)
499(0)	489(0)	1004(14)	969(14)	1604(6)	1545(8)
577(0)	548(0)	1021(4)	988(5)	3041(14)	2958(17)
586(0)	558(0)	1030(14)	999(15)	3045(50)	2962(58)
617(7)	603(6)	1032(17)	1000(14)	3202(2)	3127(2)
629(0)	613(0)	1070(3)	1039(4)	3202(1)	3127(2)
646(2)	618(2)	1074(0)	1041(0)	3226(19)	3151(21)
672(6)	644(6)	1122(6)	1086(8)	3226(6)	3151(6)
683(20)	655(24)	1132(0)	1097(0)	3229(0)	3152(0)
705(0)	677(1)	1179(7)	1132(7)	3229(0)	3153(0)
722(53)	693(59)	1181(0)	1137(0)	3241(1)	3165(1)
747(16)	712(14)	1200(0)	1154(1)	3242(2)	3165(3)
774(72)	740(50)	1217(3)	1170(3)	3253(1)	3175(1)
783(8)	745(5)	1258(2)	1213(0)	3253(1)	3175(2)

Table S80 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Cr-2T** of $(C_8H_6)_2$ Cr

-	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-	27(0)	42(0)	761(1)	731(1)	1281(82)	1247(1)
	58(0)	76(0)	762(5)	735(1)	1287(5)	1264(60)
	67(1)	78(0)	787(21)	765(62)	1305(2)	1271(0)
	106(1)	94(2)	798(0)	771(1)	1325(7)	1281(3)
	132(0)	145(0)	810(0)	781(4)	1327(15)	1285(13)
	193(0)	188(0)	818(4)	783(1)	1345(7)	1323(10)
	208(0)	217(1)	848(205)	821(32)	1382(3)	1355(0)
	265(0)	295(1)	857(0)	824(0)	1408(0)	1376(1)
	329(125)	348(23)	867(25)	838(12)	1410(7)	1377(0)
	357(2)	353(0)	874(0)	844(1)	1429(143)	1389(1)
	364(3)	365(16)	888(9)	846(0)	1439(0)	1391(1)
	367(8)	392(11)	890(1)	847(1)	1460(326)	1456(100)
	414(50)	436(0)	891(0)	860(11)	1494(2)	1464(0)
	443(2)	439(7)	893(1)	863(0)	1520(17)	1490(10)
	445(10)	455(1)	1020(12)	992(8)	1538(0)	1499(0)
	557(53)	546(10)	1022(1)	993(0)	3215(21)	3142(9)
	565(1)	550(1)	1025(63)	1006(8)	3215(7)	3142(7)
	589(0)	570(0)	1035(2)	1009(35)	3227(0)	3153(0)
	595(26)	579(16)	1036(35)	1012(3)	3227(0)	3153(0)
	650(40)	638(1)	1049(0)	1025(0)	3234(0)	3160(0)
	668(3)	647(0)	1067(23)	1035(13)	3234(0)	3160(2)
	668(1)	655(1)	1070(4)	1037(4)	3239(0)	3164(0)
	683(2)	660(0)	1117(14)	1093(6)	3239(15)	3165(13)
	700(23)	683(108)	1128(5)	1102(0)	3247(1)	3172(1)
	703(1)	685(0)	1185(2)	1147(1)	3247(2)	3173(12)
	707(65)	690(3)	1185(0)	1147(0)	3249(7)	3173(4)
	717(1)	692(1)	1262(478)	1237(10)	3250(6)	3173(0)

Table S81 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Cr-3T** of $(C_8H_6)_2$ Cr

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
26(0)	44(0)	757(1)	731(2)	1279(126)	1241(9)
51(1)	60(1)	759(0)	736(0)	1285(8)	1270(41)
64(0)	76(0)	791(66)	761(0)	1308(3)	1274(4)
95(0)	104(0)	792(0)	765(55)	1325(4)	1284(2)
137(2)	110(8)	807(0)	772(5)	1327(5)	1287(4)
187(1)	188(0)	813(0)	785(1)	1339(15)	1330(1)
208(0)	200(1)	847(284)	822(29)	1382(1)	1348(1)
254(0)	280(0)	861(0)	826(0)	1408(25)	1376(0)
343(174)	357(2)	868(31)	840(12)	1413(4)	1382(2)
349(0)	358(1)	876(1)	842(0)	1427(273)	1391(8)
365(3)	369(33)	887(14)	843(3)	1440(0)	1398(1)
368(6)	380(10)	889(1)	845(1)	1460(485)	1450(131)
408(150)	436(1)	889(0)	863(14)	1490(0)	1458(0)
443(1)	443(3)	892(0)	864(0)	1515(22)	1484(13)
446(7)	463(1)	1020(2)	990(12)	1535(0)	1497(1)
557(121)	542(0)	1021(74)	990(7)	3214(50)	3141(23)
568(0)	548(18)	1022(14)	1009(3)	3215(1)	3141(2)
591(0)	573(0)	1036(1)	1010(38)	3230(1)	3155(0)
594(31)	585(14)	1036(79)	1013(1)	3230(0)	3155(0)
651(81)	642(11)	1048(0)	1020(1)	3237(0)	3164(3)
658(1)	648(3)	1066(47)	1039(24)	3237(0)	3164(6)
669(1)	652(1)	1070(0)	1042(0)	3238(1)	3165(0)
683(0)	665(0)	1114(54)	1087(29)	3238(9)	3166(2)
697(25)	681(63)	1128(4)	1099(3)	3245(26)	3171(15)
706(1)	687(72)	1185(4)	1146(0)	3245(1)	3171(3)
710(114)	688(1)	1185(1)	1147(0)	3250(4)	3175(2)
711(0)	693(1)	1261(708)	1233(36)	3250(0)	3176(1)

Table S82 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure Cr-4T of $(C_8H_6)_2$ Cr

	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
_	89(0)	89(0)	781(7)	757(17)	1255(0)	1205(0)
	154(0)	151(0)	791(14)	758(5)	1281(2)	1240(3)
	213(0)	215(0)	804(8)	762(5)	1299(5)	1253(6)
	257(12)	249(13)	819(2)	780(1)	1335(5)	1292(9)
	263(2)	256(2)	842(12)	797(12)	1342(4)	1298(4)
	281(1)	282(1)	846(5)	797(4)	1380(0)	1340(0)
	284(9)	287(6)	874(6)	840(5)	1389(10)	1349(4)
	321(19)	313(28)	884(5)	852(8)	1395(7)	1349(8)
	328(1)	330(1)	902(1)	867(1)	1402(2)	1355(3)
	402(3)	394(0)	909(3)	868(0)	1438(2)	1384(4)
	423(6)	413(6)	927(0)	876(8)	1442(3)	1392(1)
	428(0)	436(3)	928(8)	885(3)	1516(6)	1473(6)
	465(2)	452(3)	968(22)	939(2)	1518(0)	1475(0)
	479(6)	467(4)	972(3)	943(30)	1597(6)	1530(10)
	495(1)	490(1)	1007(4)	973(4)	1599(9)	1535(13)
	566(5)	541(4)	1016(8)	985(7)	3051(9)	2968(11)
	588(0)	562(0)	1025(7)	995(7)	3065(68)	2980(80)
	628(3)	611(3)	1027(27)	998(23)	3206(1)	3131(1)
	640(2)	620(2)	1070(0)	1037(0)	3211(3)	3136(3)
	671(0)	645(1)	1075(5)	1044(5)	3229(0)	3152(0)
	674(2)	649(5)	1125(2)	1089(3)	3230(0)	3153(0)
	693(3)	662(1)	1135(3)	1100(4)	3230(2)	3155(3)
	696(0)	669(1)	1178(1)	1132(3)	3234(15)	3158(15)
	723(52)	694(57)	1181(1)	1136(2)	3240(1)	3163(1)
	756(31)	717(25)	1183(5)	1137(4)	3241(4)	3165(7)
	769(51)	736(35)	1238(3)	1190(4)	3249(0)	3172(1)
	780(11)	745(8)	1247(1)	1201(0)	3250(3)	3173(4)

Table S83 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Cr-5T** of $(C_8H_6)_2$ Cr

_						
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
	65(0)	60(0)	785(0)	758(0)	1265(1)	1223(1)
	87(5)	99(2)	795(45)	770(46)	1318(13)	1270(12)
	110(0)	117(0)	803(3)	779(3)	1320(3)	1272(0)
	117(0)	119(0)	817(1)	789(1)	1327(1)	1282(0)
	167(0)	173(0)	843(9)	800(7)	1330(8)	1285(3)
	249(1)	248(1)	859(5)	817(8)	1380(15)	1332(1)
	272(10)	268(12)	863(3)	824(1)	1386(0)	1336(0)
	289(4)	299(3)	863(1)	828(0)	1431(5)	1385(4)
	326(6)	318(2)	883(2)	832(2)	1431(15)	1386(6)
	361(4)	360(5)	884(2)	835(6)	1481(11)	1434(0)
	406(15)	413(19)	888(2)	841(0)	1483(0)	1434(0)
	429(10)	416(9)	891(1)	844(0)	1499(110)	1458(52)
	456(1)	447(4)	902(17)	874(15)	1512(3)	1469(2)
	472(1)	470(2)	903(0)	874(0)	1533(8)	1485(14)
	507(3)	491(3)	992(5)	965(1)	1535(0)	1486(0)
	569(0)	543(0)	994(6)	965(7)	3214(2)	3136(1)
	574(2)	554(1)	1026(3)	994(2)	3215(2)	3137(7)
	596(0)	567(0)	1027(14)	995(4)	3226(1)	3151(1)
	618(7)	592(6)	1050(1)	1016(1)	3226(10)	3151(8)
	675(5)	652(85)	1052(14)	1020(14)	3234(0)	3157(0)
	677(0)	653(4)	1083(7)	1048(4)	3235(1)	3158(0)
	690(3)	657(29)	1086(0)	1050(0)	3244(0)	3166(0)
	691(129)	657(0)	1124(0)	1092(0)	3245(4)	3169(8)
	708(3)	681(2)	1129(29)	1099(23)	3246(16)	3172(18)
	715(1)	688(1)	1184(1)	1141(0)	3246(0)	3172(0)
	753(4)	722(5)	1186(0)	1144(0)	3258(0)	3178(6)
	765(8)	741(1)	1264(14)	1221(11)	3258(3)	3178(0)

Table S84 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Cr-6S** of $(C_8H_6)_2$ Cr

	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
_	128(0)	111(1)	800(27)	769(4)	1260(0)	1215(0)
	145(0)	123(1)	828(3)	769(5)	1283(5)	1241(4)
	216(0)	212(2)	829(2)	786(1)	1310(3)	1258(7)
	231(1)	220(1)	837(14)	800(11)	1338(7)	1290(5)
	272(0)	267(21)	855(11)	803(9)	1340(2)	1296(2)
	285(22)	268(0)	867(0)	819(6)	1393(2)	1348(1)
	313(1)	305(1)	876(13)	839(6)	1393(2)	1348(2)
	323(3)	315(2)	887(1)	852(0)	1403(1)	1354(3)
	332(7)	334(8)	904(0)	868(1)	1403(3)	1357(2)
	396(3)	387(1)	939(1)	890(1)	1447(5)	1391(8)
	440(10)	437(1)	939(3)	891(3)	1450(1)	1394(0)
	441(2)	440(10)	954(2)	921(2)	1504(2)	1460(2)
	463(0)	455(0)	958(1)	933(1)	1510(0)	1468(0)
	466(0)	460(1)	999(2)	969(3)	1606(3)	1546(10)
	508(1)	501(3)	1008(8)	971(8)	1606(8)	1547(3)
	580(0)	549(3)	1021(2)	986(2)	3052(12)	2972(14)
	593(1)	567(1)	1037(10)	1002(9)	3057(41)	2976(46)
	619(6)	576(11)	1039(12)	1005(10)	3202(1)	3126(1)
	635(2)	617(14)	1071(0)	1035(1)	3202(2)	3126(3)
	654(6)	617(3)	1076(7)	1043(7)	3226(19)	3145(2)
	678(8)	648(16)	1121(4)	1084(4)	3226(6)	3148(1)
	687(17)	651(9)	1133(0)	1096(0)	3229(0)	3150(21)
	710(0)	681(0)	1175(3)	1126(3)	3230(0)	3150(7)
	723(42)	686(60)	1184(0)	1137(0)	3242(3)	3158(4)
	757(8)	715(23)	1198(1)	1151(2)	3242(1)	3159(0)
	787(64)	722(7)	1219(3)	1169(4)	3251(3)	3168(5)
	800(5)	756(64)	1259(1)	1210(0)	3251(4)	3168(7)

Table S85 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Mn-1D** of $(C_8H_6)_2Mn$

	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
_	30(0)	37(0)	760(0)	726(0)	1268(3)	1241(0)
	59(0)	68(0)	765(2)	736(1)	1290(0)	1255(38)
	94(0)	95(1)	789(36)	771(54)	1293(2)	1259(5)
	112(1)	112(0)	810(3)	781(0)	1330(11)	1298(0)
	164(0)	167(0)	816(0)	784(6)	1334(5)	1310(17)
	169(2)	173(0)	833(0)	792(0)	1350(16)	1312(6)
	197(0)	217(1)	837(0)	811(5)	1356(0)	1317(0)
	268(1)	303(0)	838(121)	816(2)	1397(9)	1368(4)
	337(124)	359(40)	859(31)	839(17)	1404(0)	1370(0)
	368(4)	388(0)	874(1)	846(2)	1422(149)	1380(4)
	380(0)	402(11)	890(1)	846(1)	1432(1)	1382(0)
	389(7)	425(6)	890(0)	847(0)	1460(320)	1453(115)
	401(25)	434(0)	892(0)	863(2)	1493(10)	1468(0)
	441(8)	439(2)	896(1)	868(0)	1520(0)	1488(0)
	442(0)	449(1)	1001(1)	987(0)	1538(0)	1493(0)
	555(76)	547(17)	1011(31)	989(2)	3215(8)	3140(6)
	559(5)	550(1)	1015(40)	990(3)	3216(7)	3141(7)
	583(0)	571(1)	1018(0)	993(27)	3232(0)	3156(0)
	588(39)	579(13)	1027(7)	1011(4)	3232(1)	3159(0)
	638(0)	626(1)	1048(0)	1017(0)	3238(0)	3162(0)
	655(4)	645(3)	1061(30)	1030(16)	3239(0)	3164(3)
	668(3)	646(0)	1063(12)	1032(7)	3239(0)	3166(0)
	672(0)	660(5)	1109(3)	1085(6)	3239(12)	3166(14)
	704(0)	684(103)	1130(0)	1089(0)	3245(13)	3171(7)
	707(2)	687(0)	1179(0)	1141(0)	3246(10)	3172(12)
	710(89)	692(2)	1181(0)	1143(0)	3251(1)	3175(2)
	718(1)	699(4)	1261(330)	1233(13)	3252(2)	3178(8)

Table S86 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Mn-2D** of $(C_8H_6)_2$ Mn

-	DALVD	DD0(DALVD	DD0/	DALVD	
-	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
	90(0)	98(0)	795(31)	756(38)	1255(0)	1204(0)
	161(0)	171(2)	798(7)	769(6)	1284(4)	1239(5)
	208(0)	186(4)	824(0)	789(6)	1300(2)	1253(5)
	265(2)	235(3)	836(1)	795(4)	1336(4)	1289(9)
	271(6)	261(2)	858(3)	812(10)	1341(4)	1292(3)
	287(0)	280(8)	866(14)	830(12)	1385(0)	1331(1)
	307(11)	283(0)	875(11)	841(10)	1393(8)	1338(6)
	333(1)	337(40)	889(1)	858(1)	1403(3)	1359(1)
	338(29)	349(5)	903(0)	868(0)	1410(2)	1367(2)
	407(3)	391(0)	908(2)	869(0)	1447(2)	1393(2)
	422(7)	407(6)	929(1)	878(8)	1450(0)	1402(1)
	448(0)	438(2)	929(8)	883(3)	1515(1)	1471(0)
	467(2)	446(5)	957(15)	939(19)	1516(0)	1471(0)
	481(7)	479(1)	972(3)	940(2)	1601(3)	1534(5)
	497(1)	487(1)	1012(2)	976(1)	1602(7)	1539(11)
	569(2)	543(4)	1019(5)	984(5)	3063(7)	2981(8)
	595(1)	563(1)	1031(5)	997(7)	3077(58)	2992(68)
	631(6)	610(8)	1035(18)	1003(13)	3206(1)	3132(2)
	638(2)	617(1)	1068(0)	1033(0)	3211(2)	3136(3)
	675(1)	644(2)	1076(6)	1040(2)	3226(0)	3146(0)
	676(0)	645(3)	1123(1)	1086(1)	3228(1)	3146(1)
	699(3)	659(3)	1134(1)	1097(3)	3230(2)	3151(1)
	701(0)	670(0)	1172(4)	1128(4)	3234(18)	3153(13)
	723(44)	694(46)	1186(4)	1140(5)	3235(0)	3155(3)
	765(8)	724(13)	1186(0)	1140(1)	3237(7)	3159(19)
	783(45)	736(12)	1240(3)	1190(3)	3248(3)	3165(16)
	784(19)	755(5)	1246(1)	1200(0)	3248(5)	3165(5)

Table S87 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Mn-3D** of $(C_8H_6)_2$ Mn

_						
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
	39(0)	-56(0)	744(2)	717(0)	1275(0)	1236(12)
	84(0)	68(0)	751(0)	717(2)	1281(11)	1240(65)
	86(0)	78(0)	780(48)	741(0)	1288(0)	1248(1)
	135(0)	129(1)	782(0)	742(56)	1320(0)	1291(0)
	187(0)	172(0)	795(0)	760(0)	1331(15)	1297(6)
	193(0)	186(0)	803(0)	761(0)	1347(8)	1310(2)
	229(0)	220(0)	811(1)	767(0)	1360(5)	1323(2)
	281(1)	288(1)	836(121)	794(2)	1399(276)	1355(0)
	344(135)	331(0)	847(47)	826(19)	1403(7)	1364(9)
	364(0)	362(21)	873(0)	839(1)	1404(0)	1373(48)
	392(4)	400(3)	883(1)	839(0)	1434(0)	1387(0)
	407(6)	405(8)	886(8)	845(3)	1450(114)	1421(127)
	412(47)	429(0)	887(3)	862(4)	1490(10)	1451(3)
	444(0)	436(18)	893(0)	867(0)	1502(0)	1459(0)
	448(5)	441(2)	1006(27)	978(0)	1521(1)	1481(1)
	545(36)	534(5)	1010(0)	981(0)	3213(11)	3140(3)
	561(0)	543(0)	1016(8)	983(7)	3217(7)	3143(7)
	591(0)	564(0)	1019(21)	989(22)	3233(0)	3158(1)
	597(26)	573(15)	1034(0)	1009(0)	3234(1)	3158(0)
	649(13)	637(1)	1049(0)	1024(0)	3242(0)	3165(0)
	652(1)	640(0)	1063(30)	1036(12)	3243(6)	3167(8)
	666(0)	643(1)	1066(7)	1037(9)	3246(0)	3171(0)
	672(1)	644(0)	1108(0)	1073(0)	3247(2)	3172(3)
	691(0)	669(0)	1111(7)	1082(4)	3248(12)	3172(7)
	699(63)	671(101)	1177(1)	1135(0)	3250(7)	3174(9)
	705(3)	677(1)	1178(0)	1136(1)	3254(1)	3178(1)
	709(3)	687(2)	1247(425)	1227(0)	3254(1)	3178(2)

Table S88 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Mn-4Q** of $(C_8H_6)_2$ Mn

-	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-	124(0)	118(1)	798(52)	761(2)	1260(0)	1214(0)
	129(0)	125(0)	806(3)	762(45)	1283(2)	1238(2)
	189(0)	125(0) 185(0)	814(2)	771(4)	1203(2) 1313(0)	1250(2) 1262(2)
	200(2)	103(0) 198(4)	835(18)	790(2)	1313(0) 1331(2)	1202(2) 1283(5)
	200(2) 218(1)	221(2)	850(1)	808(13)	1340(10)	1205(3) 1292(12)
	242(1)	221(2) 236(1)	861(16)	817(13)	1378(3)	1292(12) 1325(6)
	242(1) 264(2)	250(1) 265(3)	868(3)	836(4)	1370(3) 1384(10)	1323(0) 1342(8)
	204(2) 304(3)	203(3) 208(4)	885(10)	850(7)	1304(10) 1401(1)	1342(0) 1351(1)
	304(3) 323(7)	236(4) 326(6)	917(0)	880(3)	1401(1) 1/10(2)	1331(1) 1371(0)
	323(7) 350(8)	320(0) 354(1)	936(2)	887(0)	1410(2) 1466(3)	1371(0) 1410(4)
	339(8) 370(4)	334(1) 356(1)	930(2)	807(0)	1400(3) 1477(3)	1410(4) 1426(4)
	$\frac{370(4)}{400(0)}$	330(1) 306(1)	938(2)	023(2)	1477(3) 1400(3)	1430(4) 1444(4)
	400(0)	390(1)	930(2)	923(2)	1490(3) 1516(5)	1444(4) 1474(4)
	430(3)	433(3)	903(2)	939(2)	1510(3) 1506(2)	14/4(4) 1520(7)
	459(1)	448(1)	1000(2)	969(2) 072(()	1596(3)	1530(7)
	4/9(4)	461(5)	1008(6)	9/3(6)	1599(4)	1538(6)
	557(5)	523(4)	1019(7)	983(10)	3055(10)	29/8(18)
	592(2)	565(2)	1027(23)	991(22)	3060(36)	2986(30)
	625(3)	607(1)	1034(14)	1002(14)	3202(2)	3127(2)
	637(2)	616(10)	1070(1)	1035(1)	3203(2)	3129(3)
	661(4)	623(3)	1074(3)	1040(1)	3224(0)	3148(0)
	667(6)	635(6)	1125(10)	1087(11)	3226(14)	3150(14)
	678(18)	645(14)	1133(1)	1093(2)	3226(11)	3152(11)
	695(3)	665(5)	1162(3)	1108(4)	3228(0)	3154(1)
	720(38)	689(42)	1181(1)	1134(1)	3239(2)	3160(3)
	748(12)	713(11)	1194(4)	1147(5)	3242(1)	3167(1)
	761(53)	721(32)	1220(1)	1170(1)	3246(2)	3168(2)
	771(14)	734(6)	1252(1)	1205(1)	3254(1)	3178(2)

Table S89 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Mn-5Q** of $(C_8H_6)_2$ Mn

	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-	56(0)	54(0)	777(5)	749(0)	1257(0)	1210(0)
	109(0)	117(0)	777(0)	751(2)	1279(4)	1234(4)
	161(0)	168(1)	791(9)	761(30)	1296(0)	1246(7)
	183(2)	172(2)	798(33)	761(7)	1329(4)	1284(0)
	194(1)	195(2)	836(16)	786(12)	1335(8)	1296(7)
	236(3)	232(2)	841(14)	792(11)	1365(0)	1314(4)
	255(0)	250(0)	873(1)	839(0)	1368(13)	1321(20)
	284(0)	304(3)	874(0)	839(1)	1390(23)	1339(14)
	299(7)	313(9)	897(10)	864(0)	1396(0)	1343(1)
	368(21)	361(8)	908(2)	865(2)	1447(4)	1391(4)
	375(3)	384(4)	933(9)	875(2)	1449(0)	1396(0)
	391(0)	398(0)	933(2)	875(13)	1536(1)	1498(1)
	434(4)	420(4)	958(9)	919(6)	1539(2)	1498(5)
	465(1)	430(1)	978(4)	953(2)	1590(8)	1507(19)
	478(8)	463(7)	1012(0)	977(4)	1592(7)	1516(32)
	538(1)	494(15)	1015(17)	979(47)	3060(7)	2987(6)
	568(11)	546(11)	1019(2)	982(2)	3074(52)	3000(53)
	634(0)	609(0)	1020(28)	983(13)	3205(2)	3129(2)
	641(0)	613(4)	1063(7)	1038(5)	3210(3)	3134(3)
	656(2)	633(5)	1072(5)	1038(6)	3227(1)	3151(1)
	664(2)	636(0)	1126(0)	1087(0)	3228(0)	3151(0)
	672(4)	649(7)	1127(6)	1089(5)	3228(2)	3152(2)
	697(2)	674(5)	1171(4)	1117(8)	3233(16)	3155(16)
	726(44)	696(57)	1186(4)	1138(5)	3240(1)	3162(1)
	755(56)	720(32)	1186(1)	1138(3)	3241(2)	3162(5)
	760(30)	722(25)	1239(3)	1191(0)	3249(1)	3171(2)
	771(25)	745(17)	1245(0)	1193(4)	3251(2)	3172(2)

Table S90 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Mn-6Q** of $(C_8H_6)_2Mn$

_	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
	137(0)	133(0)	810(0)	769(1)	1258(2)	1215(1)
	171(0)	168(1)	818(3)	785(1)	1281(3)	1237(2)
	229(1)	235(3)	839(14)	804(4)	1310(6)	1260(8)
	244(2)	238(2)	841(4)	808(10)	1336(10)	1290(13)
	276(0)	269(0)	866(0)	816(13)	1337(1)	1292(1)
	326(1)	320(0)	867(8)	819(4)	1381(2)	1334(2)
	332(10)	324(12)	875(13)	840(8)	1388(1)	1340(0)
	348(13)	351(15)	888(1)	853(0)	1404(0)	1356(1)
	370(6)	375(7)	910(0)	875(0)	1414(2)	1364(1)
	432(11)	423(10)	936(2)	888(1)	1448(2)	1396(1)
	457(1)	449(5)	937(2)	890(2)	1449(2)	1397(2)
	460(6)	459(8)	944(2)	909(2)	1496(1)	1449(1)
	470(5)	463(4)	958(1)	935(1)	1500(0)	1453(1)
	491(6)	494(11)	998(1)	969(1)	1606(3)	1546(3)
	521(5)	516(10)	1009(4)	974(4)	1608(10)	1548(11)
	576(0)	544(0)	1018(3)	984(3)	3060(13)	2982(14)
	589(0)	561(0)	1031(13)	997(14)	3064(42)	2986(45)
	628(5)	615(4)	1034(12)	1000(10)	3202(1)	3126(1)
	639(3)	621(4)	1069(2)	1037(2)	3202(2)	3126(3)
	666(7)	638(7)	1074(2)	1040(2)	3227(19)	3150(22)
	679(10)	653(14)	1121(4)	1084(5)	3227(6)	3150(6)
	692(12)	668(12)	1132(0)	1095(0)	3237(0)	3154(2)
	708(0)	680(0)	1173(3)	1123(3)	3237(1)	3155(1)
	727(41)	701(48)	1185(1)	1140(0)	3248(3)	3166(8)
	757(3)	724(2)	1194(1)	1148(2)	3248(2)	3166(1)
	789(39)	754(23)	1219(2)	1172(2)	3256(4)	3173(6)
	802(36)	767(27)	1257(0)	1208(0)	3256(3)	3173(8)

Table S91 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Fe-1S** of $(C_8H_6)_2Fe$

	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
_	99(0)	101(0)	796(40)	761(7)	1253(0)	1203(0)
	178(1)	181(1)	806(4)	773(2)	1284(3)	1241(3)
	228(1)	236(3)	823(7)	782(12)	1299(4)	1252(5)
	265(2)	259(3)	848(1)	816(1)	1330(4)	1285(6)
	292(2)	282(2)	865(0)	821(2)	1338(6)	1291(6)
	295(0)	294(0)	875(11)	835(10)	1381(0)	1335(0)
	330(7)	326(6)	878(12)	842(10)	1392(2)	1346(1)
	353(5)	361(10)	891(2)	857(2)	1405(3)	1358(2)
	402(1)	391(0)	902(0)	867(0)	1415(2)	1365(2)
	405(22)	404(13)	905(1)	868(0)	1450(1)	1398(2)
	438(17)	428(24)	925(1)	876(7)	1457(0)	1408(1)
	463(3)	456(6)	926(7)	880(1)	1502(0)	1454(0)
	488(7)	481(9)	951(14)	927(15)	1504(2)	1457(2)
	493(1)	498(2)	969(2)	936(2)	1599(2)	1532(2)
	524(3)	524(4)	1010(0)	974(0)	1602(9)	1538(10)
	567(1)	542(1)	1017(5)	983(4)	3069(7)	2990(8)
	592(1)	562(0)	1027(9)	994(10)	3083(58)	3002(63)
	637(1)	615(0)	1035(13)	1003(10)	3207(1)	3131(1)
	640(7)	624(8)	1065(0)	1030(0)	3211(3)	3136(3)
	676(1)	653(4)	1077(4)	1044(3)	3230(1)	3148(0)
	680(4)	653(7)	1122(1)	1084(1)	3231(1)	3150(2)
	697(2)	669(2)	1133(2)	1096(3)	3233(1)	3155(3)
	699(0)	670(1)	1169(4)	1123(4)	3235(18)	3159(0)
	724(49)	696(52)	1185(0)	1139(0)	3241(0)	3159(20)
	767(5)	730(6)	1185(3)	1140(3)	3243(8)	3160(16)
	785(13)	746(20)	1240(2)	1191(3)	3252(2)	3170(4)
	785(25)	759(18)	1245(1)	1197(0)	3253(6)	3170(10)

Table S92 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Fe-2S** of $(C_8H_6)_2Fe$

	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-	-5(0)	23(0)	782(0)	746(0)	1296(0)	1250(0)
	73(0)	64(0)	791(3)	754(3)	1308(41)	1266(29)
	114(2)	114(1)	833(58)	795(47)	1311(5)	1200(2)) 1270(1)
	115(0)	115(0)	845(13)	810(11)	1332(26)	1270(1) 1305(0)
	173(0)	173(0)	854(0)	813(0)	1332(20) 1343(0)	1313(13)
	237(3)	232(3)	854(15)	815(9)	1349(15)	1317(18)
	260(1)	232(3) 244(1)	864(0)	873(0)	1374(0)	1351(0)
	200(1) 306(1)	244(1) 301(0)	870(0)	827(0) 833(1)	1/18(0)	1375(6)
	362(56)	360(44)	888(0)	8/6(1)	1410(0) 1/22(1)	1373(0) 1378(0)
	378(0)	381(0)	802(1)	8/0(1)	1422(4) 1440(1)	1390(0)
	386(13)	308(14)	892(1)	850(1)	1440(1) 1441(0)	1390(0) 1391(0)
	446(0)	$\frac{370(14)}{434(0)}$	896(1)	852(0)	1512(28)	1371(0) 1475(0)
	440(0)	434(0)	890(1)	852(0)	1512(20) 1516(84)	1475(9)
	447(23)	440(1)	004(0)	803(1) 872(0)	1510(64) 1517(0)	14/3(02) 1/22(0)
	430(4) 473(0)	447(20)	904(0)	$\frac{872(0)}{001(2)}$	1517(0) 1526(0)	1402(0)
	4/3(0)	4/1(3)	1009(0) 1027(0)	991(2)	1320(0) 2215(0)	1490(0) 2140(5)
	570(8)	549(4)	1027(0) 1022(4)	993(0)	3213(9)	3140(3)
	5/5(1)	550(1)	1032(4)	1002(1)	3210(5)	3140(6)
	58/(3)	561(1)	103/(4)	100/(32)	3225(0)	3142(0)
	596(39)	5/3(24)	1041(43)	1009(1)	3227(0)	3144(1)
	600(1)	600(0)	1049(0)	1024(0)	3233(0)	3152(0)
	661(1)	643(0)	1065(22)	1034(17)	3235(3)	3154(12)
	671(0)	646(0)	1068(6)	1037(8)	3236(0)	3160(0)
	678(5)	662(5)	1122(5)	1091(4)	3236(14)	3161(3)
	704(0)	687(0)	1134(0)	1103(0)	3243(4)	3161(14)
	719(6)	695(106)	1188(0)	1144(0)	3243(13)	3163(19)
	724(97)	697(6)	1190(0)	1146(0)	3245(3)	3168(6)
	733(4)	702(4)	1269(1)	1235(7)	3247(9)	3168(12)

Table S93 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Fe-3S** of $(C_8H_6)_2Fe$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
24(0)	-21(0)	762(0)	730(0)	1286(8)	1239(9)
71(0)	71(0)	764(0)	730(0)	1290(153)	1258(0)
113(0)	105(0)	823(0)	789(0)	1294(0)	1258(38)
114(0)	115(0)	832(60)	794(0)	1333(0)	1308(0)
192(0)	196(0)	834(0)	798(45)	1347(0)	1311(0)
251(24)	243(1)	854(1)	802(1)	1348(5)	1312(1)
264(2)	248(18)	855(28)	819(4)	1358(8)	1323(4)
291(0)	297(0)	858(0)	820(0)	1409(0)	1363(11)
367(0)	368(0)	884(0)	838(7)	1410(9)	1366(0)
386(12)	382(14)	886(12)	843(0)	1434(78)	1387(18)
395(0)	394(0)	889(0)	848(0)	1441(0)	1394(0)
423(20)	417(27)	890(0)	848(2)	1472(336)	1442(180)
438(47)	433(0)	893(2)	864(3)	1487(0)	1452(0)
443(0)	435(2)	900(0)	873(0)	1506(0)	1472(0)
448(3)	447(25)	1014(0)	988(0)	1519(0)	1477(0)
551(44)	528(24)	1026(0)	994(4)	3214(13)	3140(10)
574(0)	552(0)	1027(4)	1002(0)	3214(0)	3140(0)
589(0)	563(0)	1033(81)	1002(45)	3232(1)	3150(0)
594(37)	571(21)	1033(0)	1006(0)	3232(0)	3151(0)
642(0)	629(0)	1043(0)	1017(0)	3235(0)	3159(2)
664(1)	638(0)	1065(23)	1036(25)	3235(10)	3160(0)
667(0)	647(11)	1065(0)	1037(0)	3239(0)	3161(0)
673(0)	651(0)	1114(0)	1083(2)	3239(6)	3161(19)
702(0)	680(0)	1120(3)	1087(0)	3243(31)	3168(0)
705(3)	682(3)	1182(0)	1141(0)	3243(0)	3168(22)
712(0)	684(0)	1184(0)	1142(0)	3250(0)	3168(14)
715(137)	688(135)	1275(0)	1236(0)	3251(2)	3169(0)

Table 94 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Fe-4T** of $(C_8H_6)_2$ Fe

	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-	48(0)	36(0)	756(0)	726(0)	1275(0)	1239(10)
	90(0)	87(0)	758(2)	731(2)	1283(10)	1252(36)
	120(0)	119(0)	813(0)	774(0)	1295(5)	1259(2)
	138(3)	137(3)	816(44)	783(42)	1329(0)	1301(0)
	206(0)	200(0)	830(1)	801(3)	1340(15)	1308(5)
	225(0)	237(3)	843(49)	809(1)	1352(4)	1318(2)
	272(1)	265(1)	844(1)	814(2)	1366(14)	1332(10)
	302(6)	305(3)	863(0)	829(0)	1409(5)	1364(0)
	367(46)	375(9)	875(19)	836(5)	1411(0)	1365(8)
	391(0)	378(0)	884(0)	840(0)	1417(175)	1384(20)
	411(5)	408(12)	887(2)	843(1)	1442(0)	1393(0)
	413(12)	429(15)	890(1)	849(2)	1457(102)	1428(93)
	441(53)	432(0)	892(3)	866(1)	1491(0)	1452(0)
	445(0)	455(0)	901(1)	874(0)	1498(0)	1459(0)
	459(1)	460(26)	1017(0)	986(0)	1518(0)	1477(0)
	548(12)	535(0)	1020(20)	991(4)	3214(4)	3140(1)
	564(0)	542(0)	1024(5)	993(0)	3216(8)	3142(5)
	592(2)	564(2)	1029(0)	1004(18)	3231(0)	3149(0)
	596(23)	572(13)	1035(17)	1007(0)	3232(1)	3150(3)
	651(5)	634(0)	1046(0)	1021(0)	3239(0)	3161(0)
	660(0)	639(0)	1067(12)	1038(7)	3240(7)	3162(0)
	663(0)	642(0)	1068(11)	1040(10)	3243(0)	3163(1)
	666(0)	651(2)	1105(0)	1071(0)	3244(5)	3164(19)
	692(0)	671(0)	1116(7)	1088(5)	3246(10)	3168(0)
	703(94)	677(118)	1182(1)	1140(0)	3247(8)	3169(9)
	709(0)	684(0)	1183(0)	1140(1)	3251(2)	3170(21)
	713(5)	691(5)	1269(236)	1230(0)	3252(6)	3171(3)

Table S95 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Fe-5T** of $(C_8H_6)_2Fe$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
99(0)	104(0)	796(41)	759(19)	1261(0)	1216(1)
124(0)	120(0)	801(13)	762(15)	1282(5)	1240(4)
176(0)	183(0)	823(1)	785(1)	1311(1)	1260(4)
189(0)	198(0)	833(16)	804(13)	1321(2)	1275(4)
223(1)	222(1)	856(6)	807(13)	1332(5)	1286(6)
246(2)	241(3)	862(14)	817(1)	1373(1)	1328(6)
270(3)	275(4)	864(1)	831(3)	1380(21)	1333(14)
286(2)	285(3)	880(0)	847(0)	1390(6)	1342(7)
301(2)	298(5)	903(5)	867(2)	1395(5)	1346(5)
369(18)	360(4)	933(2)	875(5)	1441(0)	1384(1)
390(3)	381(3)	941(2)	893(2)	1464(7)	1417(6)
399(7)	413(2)	960(2)	932(1)	1513(9)	1469(15)
455(3)	439(2)	965(2)	935(4)	1519(1)	1473(2)
458(2)	449(2)	1002(5)	970(7)	1590(13)	1513(25)
476(1)	475(0)	1013(4)	977(7)	1604(5)	1546(7)
499(1)	506(1)	1022(10)	988(6)	3050(13)	2972(13)
585(3)	550(3)	1024(22)	993(23)	3054(34)	2976(39)
615(8)	597(3)	1032(11)	1003(9)	3201(1)	3126(2)
633(2)	613(6)	1059(4)	1030(4)	3203(2)	3129(3)
651(9)	621(11)	1076(7)	1041(7)	3226(14)	3150(14)
666(3)	641(8)	1119(6)	1082(9)	3226(10)	3151(0)
676(11)	648(11)	1126(3)	1089(2)	3229(2)	3151(9)
690(6)	669(7)	1176(4)	1126(6)	3230(0)	3153(2)
721(42)	684(40)	1184(1)	1138(1)	3241(2)	3162(3)
747(8)	716(12)	1199(1)	1152(2)	3247(1)	3168(2)
770(48)	733(22)	1219(2)	1170(2)	3252(2)	3171(4)
779(26)	746(41)	1256(1)	1207(0)	3256(2)	3178(2)

Table S96 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Fe-6T** of $(C_8H_6)_2$ Fe

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
79(0)	90(0)	783(17)	755(19)	1258(0)	1212(1)
132(0)	125(2)	789(76)	756(79)	1279(7)	1236(10)
166(0)	160(1)	803(9)	769(4)	1297(0)	1247(1)
197(0)	179(0)	816(6)	789(1)	1327(5)	1282(4)
199(1)	214(6)	853(12)	803(14)	1329(1)	1286(0)
214(10)	231(4)	858(14)	811(19)	1374(2)	1319(0)
253(0)	244(0)	874(0)	839(1)	1377(3)	1324(1)
296(1)	280(1)	882(0)	840(1)	1395(15)	1350(5)
302(0)	325(9)	900(7)	860(2)	1398(2)	1350(8)
378(0)	365(1)	901(1)	869(0)	1476(13)	1442(9)
383(22)	372(2)	932(8)	871(0)	1479(1)	1442(0)
392(0)	386(0)	932(2)	876(9)	1528(2)	1487(6)
433(5)	423(6)	947(7)	913(5)	1529(0)	1487(0)
472(4)	439(9)	976(3)	944(3)	1592(4)	1523(10)
474(10)	459(7)	1013(0)	976(0)	1592(2)	1525(2)
568(12)	523(7)	1014(7)	978(9)	3071(6)	2998(6)
579(4)	547(11)	1026(1)	991(3)	3086(47)	3012(52)
616(2)	605(3)	1027(18)	991(19)	3206(1)	3131(1)
637(1)	620(2)	1051(9)	1031(3)	3211(2)	3136(3)
644(0)	623(0)	1069(0)	1036(0)	3227(0)	3149(0)
666(1)	633(0)	1123(3)	1083(2)	3228(3)	3149(5)
672(1)	650(1)	1126(1)	1091(2)	3229(2)	3155(2)
698(0)	666(0)	1164(4)	1109(8)	3234(18)	3159(18)
725(35)	698(27)	1191(4)	1145(0)	3240(0)	3161(1)
761(3)	723(4)	1191(0)	1146(6)	3242(3)	3163(5)
770(29)	740(15)	1243(3)	1190(0)	3249(3)	3168(5)
778(24)	741(6)	1245(0)	1198(4)	3250(4)	3170(8)

Table S97 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Fe-7T** of $(C_8H_6)_2$ Fe

_						
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-	32(0)	29(0)	750(1)	719(1)	1279(44)	1245(3)
	71(0)	71(0)	753(9)	722(8)	1286(7)	1247(55)
	100(1)	107(1)	823(35)	794(52)	1301(0)	1263(0)
	143(5)	135(1)	836(1)	805(0)	1335(5)	1290(0)
	178(1)	177(0)	844(94)	812(21)	1338(15)	1297(19)
	237(2)	234(5)	851(2)	817(4)	1338(2)	1317(1)
	242(3)	235(1)	858(0)	826(0)	1366(5)	1327(1)
	293(0)	300(0)	862(5)	828(2)	1407(5)	1368(4)
	340(87)	341(41)	885(10)	846(5)	1410(1)	1374(0)
	381(10)	385(8)	886(0)	851(0)	1434(18)	1385(1)
	395(8)	388(1)	891(0)	854(0)	1436(0)	1386(0)
	395(8)	396(26)	894(1)	854(1)	1477(218)	1454(92)
	443(1)	434(0)	897(0)	860(1)	1493(1)	1459(0)
	446(3)	436(5)	899(1)	863(0)	1520(5)	1491(2)
	455(18)	462(7)	1018(1)	989(4)	1536(0)	1500(0)
	555(33)	543(10)	1022(2)	991(0)	3212(13)	3137(8)
	561(4)	547(1)	1022(40)	995(8)	3213(9)	3137(11)
	587(1)	566(0)	1031(22)	1000(20)	3232(0)	3150(1)
	591(22)	571(11)	1034(1)	1014(5)	3232(1)	3150(0)
	644(14)	634(4)	1042(0)	1017(0)	3239(1)	3159(2)
	657(6)	639(0)	1065(13)	1032(11)	3239(2)	3159(5)
	668(3)	641(2)	1067(6)	1035(6)	3240(1)	3166(2)
	669(6)	655(6)	1111(8)	1087(8)	3240(16)	3166(15)
	703(9)	680(92)	1124(7)	1098(1)	3250(2)	3168(3)
	705(79)	685(2)	1183(0)	1142(0)	3251(6)	3169(11)
	706(2)	689(7)	1184(0)	1143(0)	3253(5)	3176(4)
	716(0)	692(0)	1263(223)	1235(13)	3253(5)	3176(7)

Table S98 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Co-1D** of $(C_8H_6)_2Co$

_						
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
	-27(0)	-19(0)	752(0)	719(0)	1272(6)	1246(0)
	71(0)	69(0)	757(3)	724(4)	1288(0)	1249(42)
	117(0)	117(2)	828(1)	800(56)	1299(5)	1265(1)
	117(13)	118(0)	836(188)	807(0)	1334(1)	1288(1)
	156(0)	155(0)	845(0)	812(15)	1334(0)	1302(22)
	226(8)	230(1)	845(7)	815(4)	1343(9)	1309(0)
	230(1)	232(5)	856(3)	831(1)	1348(19)	1331(2)
	286(1)	295(0)	867(1)	831(0)	1406(0)	1369(5)
	320(159)	333(50)	881(8)	846(5)	1409(7)	1373(0)
	365(8)	373(9)	888(3)	853(0)	1433(42)	1383(1)
	379(0)	384(0)	891(0)	853(0)	1433(3)	1384(0)
	387(10)	412(22)	895(0)	856(0)	1465(368)	1455(105)
	433(47)	433(0)	895(0)	856(0)	1489(23)	1467(0)
	443(0)	435(6)	898(2)	868(0)	1525(0)	1490(0)
	444(7)	460(7)	1010(0)	992(0)	1527(0)	1499(0)
	546(18)	545(9)	1020(33)	992(3)	3212(13)	3136(7)
	550(72)	547(2)	1023(0)	995(2)	3213(9)	3137(12)
	581(0)	567(0)	1027(42)	1001(23)	3229(1)	3148(0)
	585(40)	573(14)	1032(8)	1013(0)	3230(0)	3150(1)
	639(0)	625(1)	1032(0)	1017(5)	3236(0)	3157(0)
	646(6)	639(0)	1062(21)	1031(13)	3238(4)	3159(8)
	663(0)	639(1)	1065(7)	1033(6)	3240(0)	3166(3)
	681(7)	665(8)	1110(6)	1086(9)	3240(11)	3167(0)
	689(0)	674(0)	1127(0)	1099(0)	3245(11)	3167(11)
	706(74)	683(100)	1183(0)	1143(0)	3246(11)	3168(15)
	711(4)	693(1)	1185(0)	1145(0)	3248(4)	3172(7)
	717(0)	694(4)	1260(320)	1236(15)	3250(6)	3173(8)

Table S99 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Co-2D** of $(C_8H_6)_2Co$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
115(0)	119(0)	793(17)	761(25)	1260(0)	1212(3)
141(0)	145(0)	797(2)	766(3)	1285(5)	1241(4)
185(0)	174(5)	806(9)	769(1)	1310(3)	1261(5)
206(0)	193(1)	836(15)	806(11)	1330(9)	1281(15)
230(0)	231(1)	848(3)	808(5)	1331(1)	1286(0)
253(1)	246(2)	861(0)	818(1)	1357(6)	1310(8)
287(2)	284(19)	863(11)	823(7)	1371(6)	1322(8)
302(2)	284(0)	884(0)	851(0)	1397(25)	1348(18)
302(3)	298(4)	902(12)	870(3)	1403(0)	1354(0)
383(22)	372(8)	936(0)	880(0)	1440(2)	1389(5)
383(11)	396(22)	937(4)	881(9)	1447(0)	1399(1)
418(2)	409(2)	957(1)	932(3)	1524(9)	1470(15)
443(3)	426(5)	964(2)	932(2)	1527(1)	1475(2)
457(2)	444(0)	1002(5)	970(13)	1596(19)	1520(41)
461(1)	446(1)	1010(3)	976(2)	1599(9)	1529(17)
493(0)	486(1)	1016(26)	984(22)	3052(11)	2973(12)
587(2)	554(3)	1020(8)	988(12)	3056(40)	2976(45)
618(12)	601(11)	1029(2)	997(3)	3202(2)	3128(4)
639(0)	610(2)	1064(15)	1029(10)	3202(1)	3128(1)
644(3)	621(0)	1078(2)	1041(3)	3226(18)	3151(15)
672(3)	648(1)	1116(11)	1075(19)	3226(5)	3151(4)
677(9)	649(11)	1133(0)	1097(0)	3233(3)	3155(5)
707(1)	679(0)	1179(5)	1130(8)	3234(1)	3155(2)
724(54)	689(67)	1186(0)	1140(0)	3247(1)	3170(3)
751(4)	714(3)	1201(1)	1154(1)	3248(2)	3170(3)
778(86)	746(51)	1221(2)	1174(2)	3257(1)	3179(4)
788(3)	751(1)	1254(2)	1211(0)	3258(2)	3179(2)

Table S100 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, inkm/mol) for the structure **Co-3D** of $(C_8H_6)_2C_0$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-20(0)	-32(0)	747(0)	711(0)	1270(0)	1235(293)
66(0)	65(1)	751(0)	711(1)	1290(14)	1245(18)
110(0)	107(0)	827(0)	799(0)	1298(0)	1262(0)
115(0)	116(0)	837(65)	801(121)	1332(0)	1293(9)
155(0)	142(184)	840(0)	808(0)	1338(7)	1304(0)
237(17)	172(0)	841(188)	814(67)	1344(0)	1310(0)
244(1)	235(1)	857(0)	825(1)	1362(0)	1321(1)
277(0)	285(82)	860(1)	825(0)	1407(0)	1368(0)
324(132)	300(0)	885(0)	847(10)	1413(7)	1376(3)
358(0)	362(0)	886(4)	851(0)	1432(60)	1384(14)
377(9)	373(11)	893(4)	851(1)	1438(0)	1389(0)
380(0)	390(0)	894(0)	852(0)	1471(474)	1442(242)
435(42)	431(0)	896(0)	858(3)	1492(0)	1464(0)
441(0)	432(5)	896(0)	869(0)	1516(0)	1482(0)
443(6)	447(23)	1005(0)	987(0)	1529(0)	1485(0)
551(83)	531(41)	1027(0)	995(4)	3212(38)	3136(48)
560(0)	553(0)	1028(122)	998(74)	3212(0)	3137(0)
585(0)	566(0)	1028(5)	999(0)	3233(1)	3153(2)
593(36)	573(21)	1028(0)	1009(0)	3233(0)	3153(0)
622(0)	619(0)	1045(1)	1017(3)	3239(5)	3160(0)
644(44)	623(38)	1063(35)	1033(38)	3239(0)	3160(5)
675(0)	643(0)	1064(0)	1034(0)	3239(0)	3166(0)
677(0)	659(0)	1099(0)	1078(0)	3240(8)	3166(13)
697(0)	679(0)	1127(6)	1094(7)	3245(27)	3170(5)
705(2)	680(0)	1182(0)	1141(0)	3245(0)	3170(0)
709(0)	681(141)	1184(0)	1142(0)	3252(0)	3171(22)
711(142)	681(2)	1264(514)	1233(0)	3252(3)	3172(0)
	B3LYP -20(0) 66(0) 110(0) 115(0) 155(0) 237(17) 244(1) 277(0) 324(132) 358(0) 377(9) 380(0) 435(42) 441(0) 443(6) 551(83) 560(0) 585(0) 593(36) 622(0) 644(44) 675(0) 677(0) 697(0) 705(2) 709(0) 711(142)	B3LYPBP86 $-20(0)$ $-32(0)$ 66(0)65(1)110(0)107(0)115(0)116(0)155(0)142(184)237(17)172(0)244(1)235(1)277(0)285(82)324(132)300(0)358(0)362(0)377(9)373(11)380(0)390(0)435(42)431(0)441(0)432(5)443(6)447(23)551(83)531(41)560(0)553(0)585(0)566(0)593(36)573(21)622(0)619(0)644(44)623(38)675(0)643(0)677(0)659(0)697(0)679(0)705(2)680(0)709(0)681(141)711(142)681(2)	B3LYPBP86B3LYP $-20(0)$ $-32(0)$ $747(0)$ $66(0)$ $65(1)$ $751(0)$ $110(0)$ $107(0)$ $827(0)$ $115(0)$ $116(0)$ $837(65)$ $155(0)$ $142(184)$ $840(0)$ $237(17)$ $172(0)$ $841(188)$ $244(1)$ $235(1)$ $857(0)$ $277(0)$ $285(82)$ $860(1)$ $324(132)$ $300(0)$ $885(0)$ $358(0)$ $362(0)$ $886(4)$ $377(9)$ $373(11)$ $893(4)$ $380(0)$ $390(0)$ $894(0)$ $435(42)$ $431(0)$ $896(0)$ $441(0)$ $432(5)$ $896(0)$ $443(6)$ $447(23)$ $1005(0)$ $551(83)$ $531(41)$ $1027(0)$ $560(0)$ $553(0)$ $1028(122)$ $585(0)$ $566(0)$ $1028(5)$ $593(36)$ $573(21)$ $1028(0)$ $622(0)$ $619(0)$ $1045(1)$ $644(44)$ $623(38)$ $1063(35)$ $675(0)$ $643(0)$ $1064(0)$ $677(0)$ $659(0)$ $1099(0)$ $697(0)$ $679(0)$ $1127(6)$ $709(0)$ $681(141)$ $1184(0)$ $711(142)$ $681(2)$ $1264(514)$	B3LYPBP86B3LYPBP86 $-20(0)$ $-32(0)$ $747(0)$ $711(0)$ $66(0)$ $65(1)$ $751(0)$ $711(1)$ $110(0)$ $107(0)$ $827(0)$ $799(0)$ $115(0)$ $116(0)$ $837(65)$ $801(121)$ $155(0)$ $142(184)$ $840(0)$ $808(0)$ $237(17)$ $172(0)$ $841(188)$ $814(67)$ $244(1)$ $235(1)$ $857(0)$ $825(1)$ $277(0)$ $285(82)$ $860(1)$ $825(0)$ $324(132)$ $300(0)$ $885(0)$ $847(10)$ $358(0)$ $362(0)$ $886(4)$ $851(0)$ $377(9)$ $373(11)$ $893(4)$ $851(1)$ $380(0)$ $390(0)$ $894(0)$ $852(0)$ $435(42)$ $431(0)$ $896(0)$ $858(3)$ $441(0)$ $432(5)$ $896(0)$ $869(0)$ $443(6)$ $447(23)$ $1005(0)$ $987(0)$ $551(83)$ $531(41)$ $1027(0)$ $995(4)$ $560(0)$ $553(0)$ $1028(122)$ $998(74)$ $585(0)$ $566(0)$ $1028(5)$ $999(0)$ $593(36)$ $573(21)$ $1028(0)$ $1009(0)$ $622(0)$ $619(0)$ $1045(1)$ $1017(3)$ $644(44)$ $623(38)$ $1063(35)$ $1033(38)$ $675(0)$ $643(0)$ $1099(0)$ $1078(0)$ $697(0)$ $679(0)$ $1127(6)$ $1094(7)$ $705(2)$ $680(0)$ $1182(0)$ $1141(0)$ $709(0)$ $681(141)$ $1184(0)$ $1142(0)$	B3LYPBP86B3LYPBP86B3LYP $-20(0)$ $-32(0)$ $747(0)$ $711(0)$ $1270(0)$ $66(0)$ $65(1)$ $751(0)$ $711(1)$ $1290(14)$ $110(0)$ $107(0)$ $827(0)$ $799(0)$ $1298(0)$ $115(0)$ $116(0)$ $837(65)$ $801(121)$ $1332(0)$ $155(0)$ $142(184)$ $840(0)$ $808(0)$ $1338(7)$ $237(17)$ $172(0)$ $841(188)$ $814(67)$ $1344(0)$ $244(1)$ $235(1)$ $857(0)$ $825(1)$ $1362(0)$ $277(0)$ $285(82)$ $860(1)$ $825(0)$ $1407(0)$ $324(132)$ $300(0)$ $885(0)$ $847(10)$ $1413(7)$ $358(0)$ $362(0)$ $886(4)$ $851(0)$ $1432(60)$ $377(9)$ $373(11)$ $893(4)$ $851(1)$ $1438(0)$ $380(0)$ $390(0)$ $894(0)$ $852(0)$ $1471(474)$ $435(42)$ $431(0)$ $896(0)$ $858(3)$ $1492(0)$ $441(0)$ $432(5)$ $896(0)$ $869(0)$ $1516(0)$ $443(6)$ $447(23)$ $1005(0)$ $987(0)$ $1529(0)$ $551(83)$ $531(41)$ $1027(0)$ $995(4)$ $3212(38)$ $560(0)$ $553(0)$ $1028(5)$ $999(0)$ $3233(1)$ $593(36)$ $573(21)$ $1028(0)$ $1009(0)$ $3233(0)$ $622(0)$ $619(0)$ $1045(1)$ $1017(3)$ $3239(0)$ $677(0)$ $659(0)$ $1099(0)$ $1078(0)$ $3240(8)$ $697(0)$ 67

Table S101 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, inkm/mol) for the structure **Co-4D** of $(C_8H_6)_2Co$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
83(0)	83(0)	783(20)	750(6)	1257(0)	1210(0)
154(0)	155(0)	790(84)	758(61)	1279(8)	1236(12)
178(0)	194(0)	800(12)	766(13)	1295(0)	1247(1)
198(0)	195(0)	815(10)	788(11)	1327(3)	1280(0)
213(2)	207(8)	858(5)	811(1)	1331(11)	1287(12)
254(1)	244(0)	866(9)	823(5)	1365(3)	1317(0)
292(3)	281(3)	876(0)	841(1)	1373(4)	1328(6)
310(1)	325(7)	885(1)	843(1)	1396(16)	1346(7)
326(11)	334(6)	897(1)	857(3)	1401(1)	1350(1)
382(7)	366(4)	898(6)	863(0)	1467(9)	1420(6)
406(2)	404(10)	930(3)	870(2)	1471(2)	1423(0)
412(4)	417(0)	930(7)	873(9)	1528(1)	1482(1)
435(4)	423(4)	943(6)	913(3)	1532(3)	1485(1)
466(1)	441(0)	975(3)	947(3)	1590(8)	1511(16)
474(7)	460(4)	1015(0)	981(0)	1590(3)	1515(12)
561(4)	515(21)	1015(4)	981(4)	3075(6)	3002(5)
566(8)	542(5)	1019(1)	987(3)	3089(47)	3015(48)
617(0)	578(1)	1022(20)	989(28)	3206(1)	3131(1)
639(0)	612(0)	1053(12)	1027(9)	3211(2)	3135(3)
648(1)	630(1)	1066(3)	1032(4)	3229(0)	3150(0)
668(1)	641(0)	1122(4)	1081(5)	3229(2)	3151(7)
673(2)	648(4)	1123(0)	1086(0)	3230(5)	3154(2)
697(2)	670(1)	1161(5)	1108(10)	3234(17)	3157(17)
728(37)	697(45)	1189(4)	1143(5)	3244(0)	3165(0)
763(1)	725(5)	1190(0)	1143(0)	3247(4)	3167(8)
766(21)	733(18)	1242(3)	1186(0)	3254(2)	3174(4)
778(13)	744(16)	1243(0)	1196(4)	3254(2)	3175(3)

Table S102 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, inkm/mol) for the structure **Co-5D** of $(C_8H_6)_2$ Co

B3L	YP	BP86	B3LYP	BP86	B3LYP	BP86
1	04(0)	98(0)	785(12)	743(6)	1256(1)	1212(3)
1	21(0)	118(0)	792(1)	757(4)	1287(3)	1246(3)
1	66(1)	157(1)	804(39)	764(34)	1315(0)	1268(1)
1	79(0)	179(0)	832(18)	797(18)	1331(4)	1287(6)
1	87(0)	197(1)	847(31)	804(12)	1333(0)	1290(0)
2	05(0)	199(1)	851(0)	807(2)	1372(2)	1326(2)
2	33(0)	243(0)	867(5)	835(4)	1373(3)	1327(8)
2	75(4)	281(11)	887(1)	856(0)	1408(0)	1364(1)
2	98(1)	286(1)	913(4)	880(0)	1413(5)	1367(5)
33	4(37)	330(3)	937(0)	887(0)	1465(1)	1422(0)
3	72(0)	352(0)	937(4)	889(8)	1466(2)	1425(1)
3	87(1)	371(1)	960(2)	932(1)	1504(1)	1468(1)
4	54(3)	439(4)	961(2)	936(2)	1508(2)	1470(3)
4	56(0)	440(0)	1001(3)	972(6)	1594(2)	1528(10)
4	74(2)	457(2)	1014(4)	982(3)	1594(7)	1529(3)
5	91(0)	563(0)	1019(20)	985(22)	3050(8)	2973(9)
5	94(1)	567(1)	1025(8)	991(10)	3055(37)	2977(38)
62	6(10)	608(6)	1031(9)	999(5)	3202(1)	3127(1)
6	37(0)	624(0)	1074(1)	1042(3)	3202(2)	3127(3)
6	58(4)	628(6)	1076(2)	1042(1)	3226(19)	3149(0)
6	72(7)	642(5)	1125(8)	1090(10)	3226(6)	3150(0)
68	0(12)	644(9)	1136(0)	1104(0)	3228(0)	3150(21)
7	05(0)	674(0)	1167(3)	1116(4)	3229(0)	3151(6)
71	8(44)	689(46)	1183(1)	1139(1)	3244(2)	3168(3)
7	51(8)	716(9)	1195(3)	1150(3)	3244(1)	3169(2)
76	5(77)	736(60)	1218(2)	1172(1)	3253(1)	3179(0)
77	6(15)	742(2)	1255(0)	1210(0)	3253(3)	3179(4)

Table S103 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, inkm/mol) for the structure **Co-6Q** of $(C_8H_6)_2Co$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
 22(0)	22(0)	785(0)	749(0)	1285(0)	1240(3)
58(0)	57(0)	788(0)	753(0)	1289(1)	1246(0)
88(0)	87(0)	791(0)	760(0)	1292(0)	1262(0)
97(0)	94(0)	794(55)	768(44)	1294(76)	1262(29)
171(0)	180(0)	850(0)	811(0)	1337(31)	1308(0)
196(13)	196(15)	854(1)	821(0)	1346(0)	1313(8)
233(1)	225(1)	855(0)	821(0)	1351(13)	1317(23)
249(0)	260(0)	868(0)	824(0)	1399(0)	1356(26)
273(0)	275(0)	873(0)	825(0)	1403(26)	1359(0)
318(0)	305(8)	873(0)	825(0)	1452(33)	1402(14)
321(9)	353(4)	886(0)	843(0)	1452(0)	1406(0)
351(3)	356(0)	887(2)	846(0)	1474(0)	1442(214)
379(0)	391(4)	902(12)	874(7)	1479(268)	1443(0)
431(0)	421(0)	908(0)	880(0)	1486(0)	1455(0)
435(7)	423(6)	940(0)	970(0)	1502(0)	1466(0)
457(0)	532(0)	1022(0)	990(0)	3218(0)	3144(0)
555(0)	533(7)	1022(0)	991(1)	3218(0)	3144(0)
557(16)	544(20)	1034(5)	1005(80)	3229(0)	3153(3)
571(18)	555(0)	1036(101)	1007(0)	3229(13)	3153(0)
587(0)	561(0)	1037(0)	1014(2)	3230(4)	3155(12)
657(0)	641(0)	1065(31)	1035(33)	3230(0)	3155(0)
662(0)	642(2)	1066(0)	1036(0)	3233(0)	3156(0)
679(0)	643(1)	1112(0)	1086(0)	3234(7)	3157(14)
684(3)	654(0)	1129(0)	1089(0)	3242(28)	3168(29)
690(4)	676(5)	1173(0)	1137(0)	3242(0)	3168(0)
713(0)	680(0)	1181(2)	1140(1)	3256(0)	3177(3)
 714(152)	681(147)	1233(0)	1240(0)	3256(1)	3177(0)

Table S1104 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, inkm/mol) for the structure **Co-7Q** of $(C_8H_6)_2Co$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
33(0)	22(0)	770(41)	738(29)	1265(125)	1234(2)
62(0)	69(0)	788(7)	750(0)	1268(0)	1258(29)
88(0)	100(2)	790(3)	751(4)	1284(1)	1266(3)
100(4)	103(0)	790(0)	758(7)	1293(34)	1275(0)
118(0)	176(0)	838(0)	802(0)	1311(0)	1299(0)
179(0)	195(2)	840(9)	815(2)	1341(40)	1308(22)
189(0)	244(1)	853(0)	820(0)	1352(4)	1318(4)
230(6)	262(2)	859(0)	825(0)	1389(49)	1352(45)
251(1)	270(1)	869(0)	827(5)	1405(0)	1359(0)
261(10)	289(1)	874(6)	830(0)	1429(66)	1400(20)
328(1)	322(2)	874(0)	837(1)	1454(19)	1409(1)
336(20)	364(0)	884(0)	846(2)	1464(8)	1428(45)
364(0)	386(9)	901(14)	873(6)	1470(4)	1436(3)
433(0)	421(0)	903(6)	880(1)	1480(0)	1447(0)
436(6)	424(5)	967(0)	978(1)	1486(101)	1450(42)
490(1)	523(5)	1000(0)	985(0)	3219(1)	3145(0)
545(0)	529(1)	1021(0)	994(2)	3220(1)	3146(0)
549(2)	543(12)	1022(2)	1002(0)	3231(0)	3153(0)
562(33)	551(0)	1027(7)	1002(0)	3231(0)	3154(2)
574(0)	555(0)	1042(58)	1010(54)	3232(11)	3156(0)
650(3)	633(0)	1067(11)	1037(10)	3232(4)	3157(10)
655(0)	642(0)	1069(19)	1040(12)	3237(0)	3159(0)
656(1)	647(0)	1093(1)	1071(0)	3237(6)	3159(12)
685(0)	662(0)	1110(0)	1072(0)	3244(7)	3169(6)
691(0)	663(0)	1176(1)	1137(1)	3245(11)	3170(12)
703(135)	670(139)	1182(0)	1139(0)	3254(2)	3175(2)
712(0)	681(0)	1256(0)	1230(0)	3255(4)	3176(6)

Table S105 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Co-8Q** of $(C_8H_6)_2Co$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
52(0)	39(0)	784(22)	750(2)	1255(0)	1209(0)
132(0)	127(0)	789(22)	756(10)	1285(3)	1244(5)
153(0)	159(0)	803(12)	764(13)	1301(0)	1256(1)
171(0)	162(0)	808(6)	767(20)	1330(0)	1284(0)
175(1)	186(1)	852(19)	809(21)	1333(4)	1291(5)
203(1)	187(1)	858(21)	810(11)	1366(6)	1322(1)
237(0)	241(0)	871(1)	836(3)	1370(0)	1324(9)
277(0)	278(7)	883(1)	846(0)	1409(2)	1366(2)
316(2)	303(2)	909(3)	875(1)	1412(2)	1372(1)
339(41)	332(6)	911(2)	875(2)	1465(0)	1421(0)
366(0)	357(0)	930(8)	881(2)	1466(1)	1421(0)
386(0)	367(1)	933(3)	882(8)	1512(4)	1475(0)
435(4)	422(5)	949(8)	919(8)	1513(1)	1475(4)
470(9)	452(6)	973(4)	945(3)	1593(2)	1521(4)
482(3)	456(4)	1012(7)	981(7)	1596(5)	1524(7)
580(5)	557(2)	1013(0)	981(0)	3068(5)	2996(5)
600(1)	565(0)	1025(1)	991(2)	3084(46)	3011(46)
636(0)	617(1)	1029(31)	995(32)	3207(1)	3132(2)
641(2)	620(0)	1073(1)	1039(3)	3212(4)	3136(4)
659(0)	629(2)	1073(1)	1047(2)	3228(0)	3150(0)
671(3)	649(6)	1130(0)	1094(2)	3229(0)	3150(0)
690(6)	653(3)	1130(3)	1096(0)	3230(2)	3155(3)
700(0)	667(0)	1169(4)	1124(6)	3236(17)	3159(18)
715(51)	690(44)	1189(0)	1144(0)	3237(1)	3161(1)
757(12)	723(20)	1190(4)	1145(4)	3239(3)	3163(5)
762(73)	735(60)	1241(3)	1192(0)	3249(3)	3171(4)
775(20)	744(13)	1244(0)	1197(3)	3250(3)	3172(4)

Table S106 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Co-9Q** of $(C_8H_6)_2Co$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-22(0)	-23(0)	742(5)	705(5)	1283(23)	1239(25)
91(2)	98(2)	749(0)	711(0)	1297(0)	1255(0)
108(0)	112(0)	818(71)	782(0)	1303(9)	1262(9)
146(1)	145(1)	820(0)	783(65)	1305(1)	1263(0)
151(0)	154(0)	831(0)	798(0)	1315(44)	1273(31)
190(0)	197(0)	842(0)	806(0)	1329(24)	1285(14)
212(7)	209(7)	851(0)	815(0)	1381(1)	1341(2)
287(0)	288(1)	856(0)	825(0)	1414(0)	1371(6)
348(4)	342(3)	860(0)	834(0)	1420(6)	1373(0)
357(10)	347(11)	875(0)	843(0)	1421(0)	1374(0)
363(6)	360(6)	883(1)	846(0)	1423(0)	1390(0)
366(0)	363(0)	885(2)	850(1)	1493(8)	1466(10)
448(0)	436(13)	902(0)	858(0)	1533(0)	1498(0)
448(13)	436(0)	906(0)	859(0)	1537(1)	1499(0)
459(0)	451(1)	949(0)	967(0)	1571(0)	1537(0)
532(11)	525(8)	1021(17)	992(17)	3204(2)	3128(2)
574(0)	555(0)	1024(4)	992(9)	3207(15)	3132(17)
590(0)	567(0)	1024(8)	994(3)	3231(0)	3152(0)
602(0)	581(1)	1029(0)	999(0)	3232(0)	3153(1)
603(3)	630(0)	1055(2)	1024(2)	3240(0)	3163(0)
664(3)	646(3)	1057(1)	1026(1)	3241(3)	3163(5)
669(14)	655(10)	1061(10)	1034(4)	3246(0)	3171(1)
685(0)	663(0)	1108(18)	1082(18)	3248(5)	3172(8)
690(10)	672(8)	1125(0)	1097(0)	3250(0)	3172(0)
715(1)	691(0)	1184(0)	1144(0)	3251(6)	3174(7)
727(116)	697(111)	1189(0)	1147(0)	3251(4)	3176(4)
730(9)	700(9)	1229(0)	1226(0)	3253(5)	3178(7)
	B3LYP -22(0) 91(2) 108(0) 146(1) 151(0) 190(0) 212(7) 287(0) 348(4) 357(10) 363(6) 366(0) 448(0) 448(13) 459(0) 532(11) 574(0) 590(0) 602(0) 603(3) 664(3) 669(14) 685(0) 690(10) 715(1) 727(116) 730(9)	B3LYPBP86 $-22(0)$ $-23(0)$ 91(2)98(2)108(0)112(0)146(1)145(1)151(0)154(0)190(0)197(0)212(7)209(7)287(0)288(1)348(4)342(3)357(10)347(11)363(6)360(6)366(0)363(0)448(13)436(13)448(13)436(0)459(0)451(1)532(11)525(8)574(0)555(0)590(0)567(0)602(0)581(1)603(3)630(0)664(3)646(3)669(14)655(10)685(0)663(0)690(10)672(8)715(1)691(0)727(116)697(111)730(9)700(9)	B3LYPBP86B3LYP $-22(0)$ $-23(0)$ $742(5)$ $91(2)$ $98(2)$ $749(0)$ $108(0)$ $112(0)$ $818(71)$ $146(1)$ $145(1)$ $820(0)$ $151(0)$ $154(0)$ $831(0)$ $190(0)$ $197(0)$ $842(0)$ $212(7)$ $209(7)$ $851(0)$ $287(0)$ $288(1)$ $856(0)$ $348(4)$ $342(3)$ $860(0)$ $357(10)$ $347(11)$ $875(0)$ $363(6)$ $360(6)$ $883(1)$ $366(0)$ $363(0)$ $885(2)$ $448(13)$ $436(0)$ $906(0)$ $459(0)$ $451(1)$ $949(0)$ $532(11)$ $525(8)$ $1021(17)$ $574(0)$ $555(0)$ $1024(4)$ $590(0)$ $567(0)$ $1024(8)$ $602(0)$ $581(1)$ $1029(0)$ $603(3)$ $630(0)$ $1055(2)$ $664(3)$ $646(3)$ $1057(1)$ $669(14)$ $655(10)$ $1061(10)$ $685(0)$ $663(0)$ $1108(18)$ $690(10)$ $672(8)$ $1125(0)$ $715(1)$ $691(0)$ $1184(0)$ $727(116)$ $697(111)$ $1189(0)$ $730(9)$ $700(9)$ $1229(0)$	B3LYPBP86B3LYPBP86 $-22(0)$ $-23(0)$ $742(5)$ $705(5)$ $91(2)$ $98(2)$ $749(0)$ $711(0)$ $108(0)$ $112(0)$ $818(71)$ $782(0)$ $146(1)$ $145(1)$ $820(0)$ $783(65)$ $151(0)$ $154(0)$ $831(0)$ $798(0)$ $190(0)$ $197(0)$ $842(0)$ $806(0)$ $212(7)$ $209(7)$ $851(0)$ $815(0)$ $287(0)$ $288(1)$ $856(0)$ $825(0)$ $348(4)$ $342(3)$ $860(0)$ $834(0)$ $357(10)$ $347(11)$ $875(0)$ $843(0)$ $363(6)$ $360(6)$ $883(1)$ $846(0)$ $366(0)$ $363(0)$ $885(2)$ $850(1)$ $448(13)$ $436(0)$ $906(0)$ $859(0)$ $459(0)$ $451(1)$ $949(0)$ $967(0)$ $532(11)$ $525(8)$ $1021(17)$ $992(17)$ $574(0)$ $555(0)$ $1024(4)$ $992(9)$ $590(0)$ $567(0)$ $1024(8)$ $994(3)$ $602(0)$ $581(1)$ $1029(0)$ $999(0)$ $603(3)$ $630(0)$ $1055(2)$ $1024(2)$ $664(3)$ $646(3)$ $1057(1)$ $1026(1)$ $690(10)$ $672(8)$ $1125(0)$ $1097(0)$ $715(1)$ $691(0)$ $1184(0)$ $1144(0)$ $727(116)$ $697(111)$ $1189(0)$ $1147(0)$ $730(9)$ $700(9)$ $1229(0)$ $1226(0)$	B3LYPBP86B3LYPBP86B3LYP $-22(0)$ $-23(0)$ $742(5)$ $705(5)$ $1283(23)$ $91(2)$ $98(2)$ $749(0)$ $711(0)$ $1297(0)$ $108(0)$ $112(0)$ $818(71)$ $782(0)$ $1303(9)$ $146(1)$ $145(1)$ $820(0)$ $783(65)$ $1305(1)$ $151(0)$ $154(0)$ $831(0)$ $798(0)$ $1315(44)$ $190(0)$ $197(0)$ $842(0)$ $806(0)$ $1329(24)$ $212(7)$ $209(7)$ $851(0)$ $815(0)$ $1381(1)$ $287(0)$ $288(1)$ $856(0)$ $825(0)$ $1414(0)$ $348(4)$ $342(3)$ $860(0)$ $834(0)$ $1420(6)$ $357(10)$ $347(11)$ $875(0)$ $843(0)$ $1421(0)$ $363(6)$ $360(6)$ $883(1)$ $846(0)$ $1423(0)$ $366(0)$ $363(0)$ $885(2)$ $850(1)$ $1493(8)$ $448(13)$ $436(0)$ $906(0)$ $859(0)$ $1537(1)$ $459(0)$ $451(1)$ $949(0)$ $967(0)$ $1571(0)$ $532(11)$ $525(8)$ $1021(17)$ $992(17)$ $3204(2)$ $574(0)$ $555(0)$ $1024(4)$ $992(9)$ $3207(15)$ $590(0)$ $567(0)$ $1024(8)$ $994(3)$ $3231(0)$ $602(0)$ $581(1)$ $1029(0)$ $999(0)$ $3222(0)$ $633(3)$ $630(0)$ $1055(2)$ $1024(2)$ $3240(0)$ $669(14)$ $655(10)$ $1061(10)$ $1034(4)$ $3246(0)$ $669(14)$ $655(10)$

Table S107 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Ni-1S** of $(C_8H_6)_2Ni$

 B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
 11(1)	-9(0)	765(0)	725(2)	1286(11)	1243(11)
64(0)	67(0)	765(10)	726(0)	1293(2)	1254(4)
73(0)	70(0)	810(0)	774(42)	1310(2)	1264(0)
123(2)	130(0)	811(46)	777(1)	1311(4)	1266(2)
127(0)	130(1)	854(3)	822(0)	1328(22)	1289(17)
201(5)	194(3)	856(0)	824(3)	1330(151)	1292(107)
204(1)	195(2)	868(0)	832(2)	1375(2)	1339(3)
272(1)	270(1)	870(2)	836(0)	1408(10)	1364(3)
321(17)	309(14)	877(0)	843(0)	1409(0)	1373(0)
347(8)	352(6)	885(5)	848(4)	1427(1)	1380(1)
369(0)	363(0)	889(12)	851(0)	1439(1)	1392(1)
370(0)	366(1)	896(0)	852(2)	1505(17)	1473(11)
439(3)	428(4)	897(3)	857(0)	1522(0)	1484(0)
442(8)	428(6)	903(0)	864(4)	1530(0)	1485(0)
460(7)	451(6)	962(5)	962(1)	1563(3)	1530(1)
557(50)	548(13)	1022(0)	990(1)	3209(5)	3134(7)
579(1)	559(0)	1023(19)	996(13)	3209(12)	3134(11)
591(0)	571(0)	1031(13)	998(14)	3231(3)	3153(2)
594(7)	572(3)	1032(12)	999(15)	3231(0)	3154(0)
605(6)	619(1)	1048(0)	1024(1)	3236(1)	3158(1)
662(2)	649(1)	1062(9)	1029(7)	3236(0)	3158(3)
675(2)	650(2)	1063(5)	1031(4)	3240(8)	3166(11)
678(52)	661(16)	1123(14)	1094(7)	3240(3)	3166(2)
690(16)	666(33)	1123(11)	1094(3)	3246(13)	3173(12)
714(1)	694(1)	1186(1)	1144(0)	3247(5)	3173(7)
731(141)	700(147)	1188(2)	1145(1)	3255(0)	3175(2)
732(1)	701(1)	1232(22)	1218(3)	3255(1)	3175(2)

Table S108Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Ni-2S** of $(C_8H_6)_2Ni$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
71(1)	-74(3)	790(18)	746(1)	1266(0)	1215(1)
93(0)	85(1)	796(0)	755(11)	1281(3)	1238(3)
119(1)	103(1)	806(23)	764(9)	1306(1)	1258(1)
142(0)	140(0)	836(9)	801(27)	1331(24)	1284(19)
205(2)	198(1)	847(33)	806(9)	1338(0)	1295(0)
230(0)	226(1)	858(2)	815(3)	1354(5)	1302(5)
260(3)	260(2)	865(8)	829(1)	1356(1)	1304(1)
287(2)	287(3)	881(3)	848(3)	1388(46)	1341(37)
297(0)	292(0)	890(36)	860(20)	1394(0)	1347(0)
363(33)	354(17)	944(0)	891(1)	1441(1)	1391(3)
404(0)	401(1)	944(4)	892(8)	1441(1)	1391(2)
412(8)	414(4)	965(1)	940(1)	1567(7)	1513(3)
459(4)	441(5)	979(1)	946(1)	1569(0)	1515(2)
459(1)	444(1)	998(2)	969(3)	1595(26)	1535(34)
476(0)	465(0)	1000(27)	969(31)	1600(8)	1541(9)
562(14)	541(11)	1011(5)	981(2)	3031(12)	2948(13)
589(7)	564(7)	1018(7)	981(5)	3034(37)	2951(41)
612(22)	596(21)	1037(1)	1005(2)	3200(2)	3125(3)
640(0)	614(7)	1072(24)	1036(17)	3200(1)	3125(1)
646(9)	624(0)	1080(0)	1044(0)	3224(19)	3148(20)
678(2)	653(10)	1118(15)	1079(16)	3224(7)	3148(7)
679(8)	656(1)	1134(2)	1098(2)	3226(4)	3148(5)
704(6)	675(5)	1183(6)	1137(9)	3227(2)	3149(3)
732(35)	701(41)	1185(0)	1138(0)	3241(2)	3166(3)
752(2)	717(2)	1212(0)	1166(0)	3242(1)	3166(0)
774(65)	739(55)	1219(2)	1170(2)	3249(2)	3172(9)
783(1)	742(24)	1250(8)	1208(8)	3249(6)	3172(3)

Table S109 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure Ni-3S of $(C_8H_6)_2Ni$

В	3LYP	BP86	B3LYP	BP86	B3LYP	BP86
	71(0)	68(0)	780(26)	752(18)	1261(0)	1213(1)
	98(0)	106(1)	792(4)	759(11)	1276(7)	1231(10)
	140(1)	153(2)	797(19)	764(10)	1296(2)	1247(1)
	171(0)	174(0)	810(46)	772(43)	1331(21)	1283(12)
	204(1)	212(0)	843(13)	797(8)	1339(11)	1291(7)
	240(1)	242(1)	863(6)	817(4)	1344(7)	1295(16)
	252(3)	252(2)	869(3)	836(3)	1359(4)	1312(3)
	271(0)	282(2)	878(1)	844(1)	1385(25)	1335(13)
	301(6)	296(7)	891(22)	850(8)	1411(11)	1358(7)
	368(20)	359(10)	905(2)	860(6)	1434(3)	1382(10)
	398(10)	392(8)	935(6)	884(6)	1448(3)	1405(2)
	418(1)	411(4)	944(5)	893(5)	1541(3)	1488(4)
	437(4)	425(3)	960(4)	922(2)	1562(2)	1498(1)
	476(1)	447(1)	983(11)	952(13)	1593(8)	1525(9)
	484(12)	467(11)	985(4)	957(4)	1600(7)	1557(6)
	552(5)	532(6)	1012(11)	983(6)	3061(11)	2988(15)
	600(11)	589(8)	1021(1)	985(6)	3079(41)	3011(37)
	638(1)	615(0)	1027(9)	991(9)	3198(2)	3121(2)
	639(0)	620(1)	1071(16)	1033(6)	3213(3)	3132(3)
	659(5)	635(4)	1078(7)	1040(8)	3216(3)	3136(3)
	666(3)	644(1)	1123(7)	1085(3)	3221(12)	3143(15)
	694(9)	664(10)	1133(6)	1092(5)	3230(5)	3145(8)
	698(16)	678(15)	1168(4)	1118(7)	3230(0)	3155(2)
	734(30)	704(40)	1181(3)	1135(4)	3235(8)	3158(9)
	757(21)	716(4)	1191(1)	1145(1)	3242(5)	3166(6)
	761(30)	735(24)	1235(2)	1185(2)	3245(1)	3169(2)
	776(10)	739(16)	1246(4)	1201(3)	3252(3)	3176(4)

Table S110 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure Ni-4S of $(C_8H_6)_2Ni$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
 108(0)	104(0)	796(68)	760(58)	1259(2)	1216(3)
130(0)	130(0)	798(1)	761(2)	1286(4)	1243(4)
181(0)	172(0)	812(0)	774(1)	1312(0)	1264(0)
182(0)	176(0)	833(19)	803(14)	1332(8)	1287(13)
199(1)	187(0)	853(0)	809(1)	1334(0)	1292(0)
201(0)	197(2)	856(17)	810(11)	1373(5)	1328(3)
230(0)	227(0)	870(7)	836(7)	1373(3)	1330(7)
292(2)	284(4)	887(0)	854(0)	1401(0)	1358(0)
296(0)	285(0)	913(1)	879(0)	1404(3)	1359(2)
344(30)	331(11)	936(0)	886(0)	1460(2)	1412(1)
373(0)	361(0)	937(4)	888(6)	1461(1)	1416(1)
394(0)	382(0)	956(2)	922(1)	1498(0)	1454(4)
454(3)	439(4)	959(2)	936(2)	1499(3)	1456(0)
457(0)	440(0)	1000(3)	970(5)	1594(3)	1528(8)
477(2)	460(2)	1013(5)	979(5)	1594(7)	1529(4)
589(0)	560(0)	1020(6)	987(6)	3054(9)	2978(9)
593(1)	562(1)	1033(9)	1003(10)	3058(36)	2981(36)
624(9)	608(7)	1035(20)	1004(17)	3203(1)	3128(1)
636(0)	621(0)	1070(0)	1037(0)	3203(2)	3128(3)
656(7)	626(7)	1073(4)	1041(5)	3226(19)	3151(20)
673(7)	639(6)	1123(7)	1087(9)	3226(6)	3151(6)
679(20)	650(18)	1137(0)	1102(0)	3234(0)	3158(1)
707(0)	674(1)	1167(3)	1116(3)	3234(1)	3159(1)
720(32)	691(37)	1184(1)	1140(1)	3246(2)	3171(3)
750(7)	714(7)	1195(3)	1150(3)	3246(1)	3171(1)
761(60)	725(41)	1219(1)	1172(1)	3255(1)	3179(2)
774(8)	737(4)	1257(0)	1210(0)	3255(3)	3179(5)

Table 111 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Ni-5T** of $(C_8H_6)_2$ Ni
B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
15(0)	17(0)	784(0)	746(1)	1270(165)	1235(94)
56(0)	57(0)	785(0)	747(0)	1283(1)	1245(6)
80(0)	80(0)	790(0)	761(0)	1300(33)	1259(31)
99(0)	100(0)	799(49)	769(38)	1309(6)	1269(6)
136(3)	120(12)	840(57)	808(43)	1332(9)	1291(2)
170(2)	164(2)	852(0)	823(0)	1338(3)	1298(2)
203(1)	208(1)	861(1)	828(0)	1363(0)	1329(1)
240(0)	248(0)	874(0)	833(0)	1400(10)	1359(3)
273(26)	262(24)	876(1)	834(0)	1403(23)	1371(16)
282(0)	301(0)	881(0)	843(0)	1437(15)	1390(7)
345(2)	349(3)	882(0)	852(9)	1446(0)	1398(1)
351(1)	365(0)	888(0)	854(0)	1481(331)	1444(223)
387(13)	404(20)	889(9)	863(3)	1491(46)	1461(34)
417(5)	422(0)	903(0)	876(0)	1497(8)	1470(2)
435(8)	424(8)	912(3)	953(2)	1523(0)	1491(0)
444(5)	543(20)	1016(42)	988(24)	3217(6)	3142(10)
562(39)	545(0)	1017(6)	988(6)	3217(0)	3143(0)
564(0)	548(20)	1029(1)	1002(67)	3229(0)	3151(1)
566(20)	561(0)	1034(66)	1004(0)	3230(1)	3152(2)
575(0)	595(10)	1037(0)	1012(0)	3232(0)	3156(0)
653(9)	635(4)	1065(30)	1032(28)	3232(12)	3157(2)
664(1)	649(1)	1069(0)	1036(0)	3234(0)	3158(0)
677(7)	654(5)	1114(17)	1088(8)	3234(4)	3159(18)
687(3)	658(1)	1139(0)	1110(1)	3242(35)	3168(37)
699(1)	681(2)	1175(5)	1140(1)	3242(0)	3168(0)
721(147)	691(144)	1182(1)	1142(0)	3255(0)	3176(0)
722(0)	691(0)	1212(19)	1218(8)	3255(1)	3176(2)

Table S112 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure Ni-6T of $(C_8H_6)_2Ni$

_						
	B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
	9(0)	16(0)	783(0)	745(0)	1272(257)	1242(153)
	54(0)	52(0)	785(0)	746(0)	1292(0)	1249(0)
	84(0)	83(0)	792(0)	764(0)	1295(6)	1250(11)
	91(0)	88(0)	801(53)	771(40)	1297(0)	1264(0)
	141(0)	107(16)	840(59)	807(47)	1337(3)	1289(2)
	163(4)	156(0)	851(0)	821(0)	1345(0)	1305(0)
	200(1)	203(1)	853(0)	822(0)	1347(7)	1322(0)
	238(0)	246(0)	871(0)	829(0)	1400(0)	1358(0)
	265(0)	257(23)	872(0)	829(0)	1403(30)	1370(21)
	273(25)	303(0)	877(0)	837(0)	1444(22)	1393(10)
	279(0)	341(3)	877(0)	848(7)	1447(0)	1397(0)
	343(2)	364(0)	885(0)	851(0)	1482(0)	1448(266)
	364(0)	401(24)	887(5)	867(2)	1483(402)	1457(0)
	388(12)	422(0)	897(2)	878(0)	1492(0)	1470(0)
	435(8)	423(9)	904(0)	947(0)	1520(0)	1486(0)
	436(0)	544(0)	1023(0)	991(0)	3217(6)	3143(9)
	564(0)	545(7)	1024(2)	992(3)	3217(0)	3143(0)
	565(11)	555(40)	1029(128)	999(99)	3229(1)	3152(1)
	573(0)	560(0)	1030(0)	1001(0)	3230(0)	3153(0)
	575(48)	586(0)	1036(1)	1015(0)	3232(0)	3155(0)
	651(13)	631(8)	1063(38)	1030(33)	3232(11)	3156(5)
	665(0)	651(0)	1064(0)	1032(0)	3233(0)	3158(0)
	673(0)	652(0)	1110(0)	1086(0)	3234(7)	3158(18)
	685(5)	656(2)	1142(0)	1111(1)	3242(37)	3168(39)
	699(1)	680(2)	1172(0)	1139(0)	3242(0)	3168(0)
	718(0)	687(0)	1182(1)	1142(0)	3255(0)	3177(0)
	718(153)	687(148)	1208(0)	1214(0)	3255(1)	3177(2)

Table S113 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure Ni-7T of $(C_8H_6)_2Ni$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
25(0)	31(0)	771(20)	744(12)	1268(23)	1232(18)
58(0)	47(0)	779(0)	746(0)	1273(16)	1241(5)
65(2)	50(3)	782(32)	749(32)	1313(1)	1265(30)
85(0)	93(0)	794(2)	765(3)	1318(44)	1273(0)
141(0)	149(1)	841(11)	808(15)	1328(0)	1292(10)
183(2)	177(3)	849(0)	813(0)	1349(14)	1295(4)
189(0)	203(0)	854(0)	821(0)	1378(9)	1339(1)
246(0)	243(20)	860(4)	826(1)	1400(7)	1361(10)
252(19)	257(0)	867(3)	835(0)	1408(4)	1371(2)
299(2)	305(3)	875(1)	836(0)	1427(5)	1387(1)
328(3)	327(2)	879(5)	840(2)	1446(8)	1400(1)
357(0)	358(0)	885(0)	844(0)	1488(116)	1449(62)
387(0)	395(5)	887(1)	855(6)	1505(7)	1469(21)
435(2)	424(1)	896(0)	871(0)	1510(44)	1470(15)
435(9)	426(8)	963(9)	960(0)	1530(0)	1502(1)
503(13)	507(10)	1003(24)	983(13)	3216(2)	3142(3)
564(0)	544(4)	1006(18)	983(16)	3217(5)	3143(4)
564(9)	545(0)	1018(2)	1001(1)	3230(0)	3152(0)
573(1)	550(0)	1036(2)	1004(13)	3231(0)	3153(1)
596(5)	609(1)	1041(31)	1009(24)	3233(17)	3158(1)
661(0)	641(2)	1072(8)	1035(9)	3233(1)	3158(3)
662(2)	649(0)	1076(1)	1040(3)	3236(1)	3160(1)
674(17)	652(13)	1120(6)	1092(3)	3236(4)	3160(21)
684(3)	654(3)	1130(25)	1107(5)	3248(4)	3172(5)
697(1)	680(0)	1177(0)	1139(0)	3248(9)	3172(12)
718(125)	687(113)	1181(0)	1142(0)	3253(1)	3175(3)
727(0)	696(0)	1238(14)	1227(3)	3253(3)	3175(4)

Table S114 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Ni-8T** of $(C_8H_6)_2Ni$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
-86(0)	-14(0)	777(43)	746(0)	1271(76)	1245(45)
-25(0)	52(0)	784(0)	747(34)	1294(5)	1248(7)
53(0)	69(2)	786(2)	748(3)	1295(0)	1250(0)
81(2)	96(0)	796(7)	768(6)	1297(25)	1267(4)
131(0)	140(0)	839(27)	808(25)	1338(2)	1289(0)
132(0)	169(3)	851(2)	821(0)	1341(0)	1307(18)
167(2)	202(1)	854(0)	824(0)	1349(12)	1323(0)
197(0)	239(22)	864(0)	829(0)	1399(30)	1359(22)
244(20)	253(1)	875(0)	829(0)	1401(0)	1371(0)
245(2)	311(2)	876(0)	841(0)	1445(3)	1393(0)
292(0)	321(1)	876(0)	845(0)	1447(2)	1395(0)
330(1)	357(0)	881(1)	854(0)	1480(104)	1453(84)
351(0)	393(7)	888(2)	865(3)	1486(3)	1459(2)
370(1)	423(0)	896(2)	876(0)	1493(140)	1469(44)
434(0)	424(9)	903(1)	941(0)	1523(0)	1490(0)
435(9)	539(6)	1021(0)	989(0)	3218(1)	3143(3)
558(0)	544(0)	1023(3)	992(4)	3219(1)	3144(2)
561(1)	545(26)	1025(7)	997(5)	3227(0)	3150(1)
565(41)	548(0)	1031(88)	1002(60)	3228(1)	3151(2)
567(5)	568(0)	1033(0)	1015(0)	3232(0)	3154(0)
652(0)	635(1)	1063(13)	1030(13)	3232(1)	3155(7)
669(0)	652(0)	1065(11)	1033(8)	3233(0)	3160(0)
675(0)	656(2)	1118(0)	1093(1)	3233(17)	3160(16)
683(0)	656(0)	1141(0)	1111(0)	3243(9)	3169(10)
694(0)	674(0)	1170(0)	1139(0)	3243(15)	3169(15)
710(137)	682(127)	1182(0)	1142(0)	3253(1)	3174(2)
717(0)	688(0)	1206(0)	1207(0)	3254(2)	3176(5)

Table S115 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Ni-9T** of $(C_8H_6)_2Ni$

B3LYP	BP86	B3LYP	BP86	B3LYP	BP86
51(0)	42(0)	785(28)	752(22)	1255(0)	1208(0)
140(0)	137(0)	789(45)	755(39)	1285(5)	1244(6)
162(0)	158(0)	804(2)	767(0)	1301(0)	1254(0)
170(1)	160(0)	816(1)	781(0)	1327(0)	1283(1)
194(1)	186(0)	854(15)	814(11)	1334(7)	1294(8)
200(0)	192(2)	860(15)	819(13)	1371(6)	1327(1)
229(0)	223(0)	870(2)	834(4)	1372(3)	1332(11)
274(0)	271(2)	883(1)	845(1)	1404(3)	1358(1)
314(2)	303(2)	906(2)	872(1)	1408(2)	1367(1)
346(27)	334(11)	909(1)	874(1)	1466(0)	1416(1)
378(1)	369(1)	928(7)	878(1)	1466(1)	1417(0)
390(0)	381(0)	931(3)	879(7)	1503(3)	1460(2)
434(4)	420(4)	946(8)	917(7)	1505(2)	1460(3)
468(9)	452(7)	971(3)	942(3)	1587(1)	1519(1)
484(4)	459(6)	1013(0)	979(0)	1588(3)	1520(5)
577(2)	553(2)	1015(6)	981(5)	3072(5)	2999(5)
599(0)	563(1)	1031(3)	1000(4)	3087(46)	3013(46)
637(0)	614(0)	1035(28)	1004(28)	3208(2)	3133(2)
638(0)	624(0)	1067(0)	1033(0)	3212(4)	3137(4)
659(1)	630(3)	1077(6)	1046(7)	3230(0)	3154(0)
671(3)	648(6)	1127(1)	1092(1)	3231(2)	3156(3)
695(4)	655(1)	1132(2)	1092(1)	3232(0)	3156(1)
695(0)	664(1)	1167(4)	1122(6)	3237(16)	3160(18)
715(49)	686(49)	1189(0)	1143(0)	3240(0)	3165(0)
758(7)	723(12)	1190(4)	1145(4)	3243(4)	3166(7)
759(57)	725(39)	1243(3)	1191(0)	3252(2)	3177(4)
772(14)	739(8)	1244(0)	1198(4)	3253(3)	3177(4)

Table S116 Harmonic vibrational frequencies (in cm⁻¹) and infrared intensities (in parentheses, in km/mol) for the structure **Ni-10T** of $(C_8H_6)_2Ni$

	Ti-	$-1S(C_1)$		Ti-2S	(\mathbf{C}_2)		Ti-3 S	(\mathbf{D}_2)
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
TiC1	2.402	2.394	TiC1	2.388	2.382	TiC1	2.385	2.385
TiC2	2.413	2.411	TiC2	2.453	2.449	TiC2	2.603	2.599
TiC3	2.261	2.268	TiC3	2.298	2.304	TiC3	2.475	2.472
TiC4	2.172	2.175	TiC4	2.160	2.165	TiC4	2.183	2.186
TiC5	2.276	2.270	TiC5	2.218	2.216	TiC5	2.183	2.186
TiC6	2.551	2.547	TiC6	2.419	2.412	TiC6	2.385	2.385
TiC7	3.070	3.058	TiC7	2.797	2.790	TiC7	2.603	2.599
TiC8	2.948	2.933	TiC8	2.697	2.688	TiC8	2.475	2.472
TiC9	2.321	2.311	TiC9	2.298	2.304	TiC9	2.475	2.472
TiC10	2.473	2.465	TiC10	2.453	2.449	TiC10	2.603	2.599
TiC11	2.374	2.370	TiC11	2.388	2.382	TiC11	2.385	2.385
TiC12	2.171	2.173	TiC12	2.218	2.216	TiC12	2.183	2.186
TiC13	2.150	2.155	TiC13	2.160	2.165	TiC13	2.183	2.183
TiC14	2.490	2.492	TiC14	2.697	2.688	TiC14	2.475	2.472
TiC15	2.591	2.593	TiC15	2.797	2.790	TiC15	2.603	2.599
TiC16	2.359	2.363	TiC16	2.419	2.422	TiC16	2.385	2.385

Table S117. The Ti-C bond distances for the optimized $(C_8H_6)_2T_i$ Structures

	Ti-4	4S(D _{2d})		Ti-5T	$\Gamma(\mathbf{C}_{\mathbf{s}})$		Ti-6T	(C ₂)
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
TiC1	2.453	2.453	TiC1	2.375	2.349	TiC1	2.361	2.320
TiC2	2.570	2.563	TiC2	2.353	2.326	TiC2	2.366	2.326
TiC3	2.453	2.453	TiC3	2.375	2.349	TiC3	2.398	2.354
TiC4	2.172	2.174	TiC4	2.398	2.373	TiC4	2.391	2.345
TiC5	2.172	2.174	TiC5	2.398	2.373	TiC5	2.344	2.300
TiC6	2.453	2.453	TiC6	3.410	3.382	TiC6	3.363	3.338
TiC7	2.570	2.563	TiC7	3.882	3.856	TiC7	3.761	3.758
TiC8	2.453	2.453	TiC8	3.410	3.382	TiC8	3.271	3.267
TiC9	2.453	2.453	TiC9	2.370	2.359	TiC9	2.398	2.345
TiC10	2.570	2.563	TiC10	2.494	2.475	TiC10	2.366	2.326
TiC11	2.453	2.453	TiC11	2.362	2.351	TiC11	2.361	2.320
TiC12	2.172	2.174	TiC12	2.147	2.146	TiC12	2.344	2.300
TiC13	2.172	2.174	TiC13	2.150	2.149	TiC13	2.391	2.345
TiC14	2.453	2.453	TiC14	2.362	2.351	TiC14	3.271	3.267
TiC15	2.570	2.563	TiC15	2.494	2.475	TiC15	3.761	3.758
TiC16	2.453	2.453	TiC16	2.370	2.359	TiC16	3.363	3.338

	V-1D	(C ₁)		V-2D	(C ₂)		V-3D	(D ₂)
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
VC1	2.275	2.274	VC1	2.315	2.289	VC1	2.350	2.334
VC2	2.222	2.223	VC2	2.361	2.344	VC2	2.644	2.639
VC3	2.191	2.189	VC3	2.240	2.232	VC3	2.526	2.514
VC4	1.293	2.277	VC4	2.112	2.108	VC4	2.154	2.145
VC5	2.239	2.230	VC5	2.220	2206	VC5	2.154	2.145
VC6	3.312	3.301	VC6	2.450	2.446	VC6	2.350	2.334
VC7	3.385	3.826	VC7	2.986	2.991	VC7	2.644	2.639
VC8	3.425	3.410	VC8	2.882	2.876	VC8	2.526	2.514
VC9	2.276	2.260	VC9	2.315	2.289	VC9	2.526	2.514
VC10	2.406	2.378	VC10	2.361	2.344	VC10	2.644	2.639
VC11	2.292	2.275	VC11	2.240	2.232	VC11	2.350	2.334
VC12	2.085	2.082	VC12	2.112	2.108	VC12	2.154	2.145
VC13	2.082	2.079	VC13	2.220	2206	VC13	2.154	2.145
VC14	2.281	2.265	VC14	2.450	2.446	VC14	2.526	2.514
VC15	2.407	2.383	VC15	2.882	2.876	VC15	2.644	2.639
VC16	2.286	2.269	VC16	2.986	2.991	VC16	2.350	2.334

Table S118. The V-C bond distances for the optimized	(C ₈ H ₆) ₂ V Doublet Structures
--	--

	V 4D		V 5D(C)			
	v-4D	(\mathbb{C}_2)		v-5D	(C_s)	
	B3LYP	BP86		B3LYP	BP86	
VC1	2.189	2.223	VC1	2.148	2.189	
VC2	2.249	2.270	VC2	2.225	2.254	
VC3	2.316	2.305	VC3	2.367	2.331	
VC4	2.266	2.265	VC4	2.340	2.316	
VC5	2.144	2.176	VC5	2.132	2.159	
VC6	3.304	3.264	VC6	3.447	2.386	
VC7	3.694	3.660	VC7	3.817	3.765	
VC8	3.160	3.145	VC8	3.158	3.146	
VC9	2.316	2.305	VC9	2.148	2.189	
VC10	2.249	2.270	VC10	2.225	2.254	
VC11	2.189	2.223	VC11	2.367	2.331	
VC12	2.144	2.176	VC12	2.340	2.316	
VC13	2.266	2.265	VC13	2.132	2.159	
VC14	3.160	3.145	VC14	3.447	2.386	
VC15	3.694	3.660	VC15	3.817	3.765	
VC16	3.304	3.264	VC16	3.158	3.146	

	V-6Q	(C ₂)		V-7Q	(C _s)		V-8Q	(C ₁)
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
VC1	2.249	2.273	VC1	2.253	2.230	VC1	2.332	2.332
VC2	2.298	2.335	VC2	2.322	2.285	VC2	2.292	2.292
VC3	2.321	2.362	VC3	2.393	2.347	VC3	2.322	2.322
VC4	2.276	2.306	VC4	2.347	2.317	VC4	2.337	2.337
VC5	2.203	2.227	VC5	2.215	2.192	VC5	2.336	2.336
VC6	3.262	3.243	VC6	3.395	3.369	VC6	3.357	3.315
VC7	3.623	3.625	VC7	3.752	3.742	VC7	3.823	3.763
VC8	3.113	3.117	VC8	3.126	3.125	VC8	3.351	3.281
VC9	2.321	2.362	VC9	2.253	2.230	VC9	2.310	2.290
VC10	2.298	2.335	VC10	2.322	2.285	VC10	2.342	2.312
VC11	2.249	2.273	VC11	2.393	2.347	VC11	2.222	2.213
VC12	2.203	2.227	VC12	2.347	2.317	VC12	2.114	2.114
VC13	2.276	2.306	VC13	2.215	2.192	VC13	2.195	2.195
VC14	3.113	3.243	VC14	3.395	3.369	VC14	2.484	2.532
VC15	3.623	3.625	VC15	3.752	3.742	VC15	2.948	3.014
VC16	3.262	3.117	VC16	3.126	3.125	VC16	2.802	2.845

Table S119. The V-C bond distances for the optimized (C₈H₆)₂V Quartet Structures

	Cr-18	S(C _s)		Cr-27	$\Gamma(\mathbf{C}_2)$		Cr-31	C (C ₂)
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
CrC1	2.162	2.150	CrC1	2.144	2.124	CrC1	2.238	2.175
CrC2	2.070	2.065	CrC2	2.250	2.222	CrC2	2.212	2.184
CrC3	2.162	2.150	CrC3	2.301	2.270	CrC3	2.229	2.186
CrC4	2.401	2.410	CrC4	2.210	2.188	CrC4	2.264	2.220
CrC5	2.401	2.410	CrC5	2.083	2.066	CrC5	2.303	2.231
CrC6	3.497	3.519	CrC6	3.214	3.207	CrC6	3.255	3.201
CrC7	3.993	4.024	CrC7	3.571	3.584	CrC7	3.725	3.654
CrC8	3.497	3.519	CrC8	3.030	3.046	CrC8	3.288	3.203
CrC9	2.210	2.189	CrC9	2.301	2.270	CrC9	2.229	2.186
CrC10	2.313	2.280	CrC10	2.250	2.222	CrC10	2.212	2.184
CrC11	2.210	2.189	CrC11	2.144	2.124	CrC11	2.238	2.175
CrC12	2.030	2.031	CrC12	2.083	2.066	CrC12	2.308	2.231
CrC13	2.030	2.031	CrC13	2.210	2.188	CrC13	2.264	2.220
CrC14	2.201	2.188	CrC14	3.030	3.046	CrC14	3.288	3.203
CrC15	2.278	2.254	CrC15	3.571	3.584	CrC15	3.725	3.654
CrC16	2.201	2.188	CrC16	3.214	3.207	CrC16	3.255	3.201

Table S120. The Cr-C bond distances for the optimized $(C_8H_6)_2Cr$ Structure
--

	Cr-4 7	$\Gamma(\mathbf{C}_2)$		Cr-5 7	Γ (C s)		Cr-6 8	5(C ₂)
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
CrC1	2.245	2.203	CrC1	2.105	2.090	CrC1	2.167	2.156
CrC2	2.214	2.196	CrC2	2.219	2.195	CrC2	2.250	2.227
CrC3	2.223	2.165	CrC3	2.339	2.305	CrC3	2.210	2.183
CrC4	2.268	2.199	CrC4	2.282	2.261	CrC4	2.166	2.144
CrC5	2.298	2.218	CrC5	2.078	2.061	CrC5	2.063	2.053
CrC6	3.268	3.164	CrC6	3.358	3.341	CrC6	2.966	2.972
CrC7	3.729	3.597	CrC7	3.701	3.701	CrC7	3.096	3.105
CrC8	3.279	3.146	CrC8	3.046	3.058	CrC8	2.470	2.448
CrC9	2.223	2.165	CrC9	2.105	2.090	CrC9	2.210	2.183
CrC10	2.214	2.196	CrC10	2.219	2.195	CrC10	2.250	2.227
CrC11	2.245	2.203	CrC11	2.339	2.305	CrC11	2.167	2.156
CrC12	2.298	2.218	CrC12	2.282	2.261	CrC12	2.063	2.053
CrC13	2.268	2.198	CrC13	2.078	2.061	CrC13	2.166	2.144
CrC14	3.279	3.146	CrC14	3.358	3.341	CrC14	2.470	2.448
CrC15	3.729	3.597	CrC15	3.701	3.701	CrC15	3.096	3.105
CrC16	3.268	3.164	CrC16	3.046	3.058	CrC16	2.966	2.972

	Mn-1I	$\mathbf{D}(\mathbf{C}_2)$		Mn-2	D(C _{2y})		Mn-3	D(C.)
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
MnC1	2.099	2.074	MnC1	2.157	2.096	MnC1	2.063	2.048
MnC2	2.211	2.180	MnC2	2.082	2.070	MnC2	2.178	2.124
MnC3	2.256	2.224	MnC3	2.157	2.096	MnC3	2.290	2.213
MnC4	2.160	2.135	MnC4	2.295	2.217	MnC4	2.229	2.191
MnC5	2.038	2.015	MnC5	2.295	2.217	MnC5	2.033	2.024
MnC6	3.156	3.145	MnC6	3.356	3.236	MnC6	3.306	3.280
MnC7	3.499	3.505	MnC7	3.839	3.706	MnC7	3.639	3.638
MnC8	2.953	2.960	MnC8	3.356	3.236	MnC8	2.974	2.994
MnC9	2.256	2.224	MnC9	2.157	2.096	MnC9	2.063	2.048
MnC10	2.211	2.180	MnC10	2.082	2.070	MnC10	2.178	2.124
MnC11	2.099	2.074	MnC11	2.157	2.096	MnC11	2.290	2.213
MnC12	2.038	2.015	MnC12	2.295	2.217	MnC12	2.229	2.191
MnC13	2.160	2.135	MnC13	2.295	2.217	MnC13	2.033	2.024
MnC14	2.953	2.960	MnC14	3.356	3.236	MnC14	3.306	3.280
MnC15	3.499	3.505	MnC15	3.839	3.706	MnC15	3.639	3.638
MnC16	3.156	3.145	MnC16	3.356	3.236	MnC16	2.974	2.994

Table 121. The Cr-C bond distances for the optimized (C₈H₆)₂Mn Structures

	Mn-4Q	$Q(C_{2v})$		Mn-50	Q(C1)		Mn-60	Q(C _s)
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
MnC1	2.144	2.117	MnC1	2.148	2.107	MnC1	2.182	2.097
MnC2	2.093	2.073	MnC2	2.167	2.106	MnC2	2.275	2.176
MnC3	2.144	2.117	MnC3	2.284	2.231	MnC3	2.422	2.392
MnC4	2.224	2.194	MnC4	2.441	2.435	MnC4	2.362	2.399
MnC5	2.224	2.194	MnC5	2.342	2.321	MnC5	2.106	2.092
MnC6	3.239	3.214	MnC6	3.460	3.473	MnC6	3.417	3.485
MnC7	3.703	3.681	MnC7	3.839	3.862	MnC7	3.734	3.807
MnC8	3.239	3.214	MnC8	3.274	3.282	MnC8	3.060	3.091
MnC9	2.144	2.117	MnC9	2.253	2.198	MnC9	2.182	2.097
MnC10	2.093	2.073	MnC10	2.277	2.239	MnC10	2.275	2.176
MnC11	2.144	2.117	MnC11	2.342	2.329	MnC11	2.422	2.392
MnC12	2.224	2.194	MnC12	2.293	2.264	MnC12	2.362	2.399
MnC13	2.224	2.194	MnC13	2.211	2.158	MnC13	2.106	2.092
MnC14	3.239	3.214	MnC14	3.227	3.220	MnC14	3.417	3.485
MnC15	3.703	3.681	MnC15	3.657	3.648	MnC15	3.734	3.807
MnC16	3.239	3.214	MnC16	3.213	3.178	MnC16	3.060	3.091

	Fe-1S	(C ₂)		Fe-2S	S(C _s)		Fe-3S	(C_{2v})
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
FeC1	2.052	2.035	FeC1	2.159	2.122	FeC1	2.066	2.057
FeC2	2.103	2.074	FeC2	2.093	2.065	FeC2	2.060	2.042
FeC3	2.125	2.092	FeC3	2.035	2.022	FeC3	2.066	2.057
FeC4	2.082	2.064	FeC4	1.989	1.975	FeC4	2.168	2.168
FeC5	2.003	1.989	FeC5	2.129	2.113	FeC5	2.168	2.168
FeC6	2.923	2.934	FeC6	2.935	2.943	FeC6	3.247	3.264
FeC7	3.466	3.477	FeC7	3.592	3.592	FeC7	3.733	3.759
FeC8	3.102	3.097	FeC8	3.233	3.200	FeC8	3.247	3.264
FeC9	2.125	2.092	FeC9	2.159	2.122	FeC9	2.066	2.057
FeC10	2.103	2.074	FeC10	2.093	2.065	FeC10	2.060	2.042
FeC11	2.052	2.035	FeC11	2.035	2.022	FeC11	2.066	2.057
FeC12	2.003	1.989	FeC12	1.989	1.975	FeC12	2.168	2.169
FeC13	2.082	2.064	FeC13	2.129	2.113	FeC13	2.168	2.169
FeC14	3.102	3.097	FeC14	2.935	2.943	FeC14	3.247	3.264
FeC15	3.466	3.477	FeC15	3.592	3.592	FeC15	3.733	3.759
FeC16	2.923	2.934	FeC16	3.233	3.200	FeC16	3.247	3.264

Table S122. The Fe-C bond distances for the optimized (C₈H₆)₂Fe Singlet Structures

Table S123. The Fe-C bond distances for the optimized $(C_8H_6)_2$ Fe Triplet Structures

	Fe-4T	(C_{2h})		Fe-5T	(C_{2v})		Fe-6T	(C ₁)		Fe-71	$\Gamma(C_s)$
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
FeC1	3.221	3.219	FeC1	2.093	2.069	FeC1	2.102	2.053	FeC1	2.171	2.136
FeC2	3.699	3.684	FeC2	2.065	2.043	FeC2	2.228	2.159	FeC2	2.214	2.111
FeC3	3.221	3.219	FeC3	2.093	2.069	FeC3	2.344	2.287	FeC3	2.357	2.245
FeC4	2.163	2.144	FeC4	2.148	2.126	FeC4	2.333	2.331	FeC4	2.269	2.139
FeC5	2.163	2.144	FeC5	2.148	2.126	FeC5	2.091	2.059	FeC5	2.119	2.155
FeC6	2.092	2.073	FeC6	3.185	3.185	FeC6	3.301	3.328	FeC6	3.330	3.318
FeC7	2.064	2.045	FeC7	3.654	3.662	FeC7	3.592	3.362	FeC7	3.670	3.703
FeC8	2.092	2.073	FeC8	3.185	3.185	FeC8	2.977	3.011	FeC8	3.026	3.088
FeC9	2.092	2.073	FeC9	2.093	2.069	FeC9	2.351	2.300	FeC9	2.171	2.136
FeC10	2.064	2.045	FeC10	2.065	2.043	FeC10	2.267	2.223	FeC10	2.214	2.111
FeC11	2.092	2.073	FeC11	2.093	2.069	FeC11	2.195	2.167	FeC11	2.357	2.245
FeC12	2.163	2.144	FeC12	2.148	2.126	FeC12	2.068	2.036	FeC12	2.269	2.139
FeC13	2.163	2.144	FeC13	2.148	2.126	FeC13	2.196	2.144	FeC13	2.119	2.155
FeC14	3.221	3.219	FeC14	3.185	3.185	FeC14	2.974	2.978	FeC14	3.330	3.318
FeC15	3.699	3.684	FeC15	3.654	3.662	FeC15	3.508	3.502	FeC15	3.670	3.703
FeC16	3.221	3.219	FeC16	3.185	3.185	FeC16	3.176	3.164	FeC16	3.026	3.088

	Co-1E	D (C ₂)		Co-2D	(C_{2v})		Co-3E	$\mathbf{O}(\mathbf{C}_2)$
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
CoC1	2.067	2.045	CoC1	2.083	2.060	CoC1	2.114	2.086
CoC2	2.018	2.006	CoC2	2.016	2.010	CoC2	2.161	2.103
CoC3	2.066	2.060	CoC3	2.083	2.060	CoC3	2.248	2.183
CoC4	2.158	2.167	CoC4	2.206	2.196	CoC4	2.198	2.173
CoC5	2.202	2.197	CoC5	2.206	2.196	CoC5	2.015	2.000
CoC6	3.321	3.247	CoC6	3.296	3.289	CoC6	3.186	3.180
CoC7	3.728	3.743	CoC7	3.780	3.773	CoC7	3.502	3.513
CoC8	3.171	3.277	CoC8	3.296	3.289	CoC8	2.933	2.944
CoC9	2.066	2.060	CoC9	2.083	2.060	CoC9	2.148	2.183
CoC10	2.018	2.006	CoC10	2.016	2.010	CoC10	2.161	2.103
CoC11	2.067	2.045	CoC11	2.083	2.060	CoC11	2.114	2.086
CoC12	2.202	2.197	CoC12	2.206	2.196	CoC12	2.015	2.000
CoC13	2.158	2.167	CoC13	2.206	2.196	CoC13	2.198	2.173
CoC14	3.271	3.277	CoC14	3.296	3.289	CoC14	2.933	2.944
CoC15	3.728	3.743	CoC15	3.780	3.773	CoC15	3.502	3.153
CoC16	3.321	3.247	CoC16	3.296	3.289	CoC16	3.186	3.180

Table S124.	The Co-C bond	distances for the o	ptimized (C8	8H6)2Co Doublet	Structures
-------------	---------------	---------------------	--------------	-----------------	------------

	Co-4D	(C_{2h})		Co-5I	D(C _s)
	B3LYP	BP86		B3LYP	BP86
CoC1	2.083	2.057	CoC1	2.124	2.088
CoC2	2.026	2.010	CoC2	2.140	2.086
CoC3	2.083	2.057	CoC3	2.269	2.206
CoC4	2.182	2.167	CoC4	2.206	2.186
CoC5	2.182	2.167	CoC5	2.032	2.016
CoC6	3.268	3.271	CoC6	3.284	3.277
CoC7	3.751	3.761	CoC7	3.626	3.634
CoC8	3.268	3.271	CoC8	2.962	2.970
CoC9	2.083	2.057	CoC9	2.124	2.088
CoC10	2.026	2.010	CoC10	2.140	2.086
CoC11	2.083	2.057	CoC11	2.269	2.206
CoC12	2.182	2.167	CoC12	2.206	2.186
CoC13	2.182	2.167	CoC13	2.032	2.016
CoC14	3.268	3.271	CoC14	3.284	3.277
CoC15	3.751	3.761	CoC15	3.626	3.634
CoC16	3.268	3.271	CoC16	2.962	2.970

	Co-6	2(C ₂)		Co-7Q	(C _{2h})		Co-8Q	(C_{2v})		Co-90	Q(C _s)
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
CoC1	2.245	2.203	CoC1	2.136	2.101	CoC1	2.144	2.100	CoC1	2.199	2.174
CoC2	2.223	2.139	CoC2	2.140	2.100	CoC2	2.177	2.130	CoC2	2.226	2.136
CoC3	2.299	2.248	CoC3	2.136	2.101	CoC3	2.144	2.100	CoC3	2.360	2.281
CoC4	2.348	2.359	CoC4	2.255	2.236	CoC4	2.203	2.189	CoC4	2.403	2.410
CoC5	2.282	2.294	CoC5	2.255	2.236	CoC5	2.203	2.189	CoC5	2.251	2.283
CoC6	3.322	3.368	CoC6	3.305	3.306	CoC6	3.237	3.253	CoC6	3.467	3.519
CoC7	3.694	3.765	CoC7	3.793	3.803	CoC7	3.718	3.746	CoC7	3.832	3.914
CoC8	3.184	3.246	CoC8	3.305	3.306	CoC8	3.237	3.253	CoC8	3.175	3.256
CoC9	2.299	2.248	CoC9	2.136	2.101	CoC9	2.144	2.100	CoC9	2.199	2.174
CoC10	2.223	2.139	CoC10	2.140	2.100	CoC10	2.177	2.130	CoC10	2.226	2.136
CoC11	2.245	2.203	CoC11	2.136	2.101	CoC11	2.144	2.100	CoC11	2.360	2.281
CoC12	2.282	2.294	CoC12	2.255	2.236	CoC12	2.203	2.189	CoC12	2.403	2.410
CoC13	2.348	2.359	CoC13	2.255	2.236	CoC13	2.203	2.189	CoC13	2.251	2.283
CoC14	3.184	3.246	CoC14	3.305	3.306	CoC14	3.237	3.253	CoC14	3.467	3.519
CoC15	3.694	3.765	CoC15	3.793	3.803	CoC15	3.718	3.746	CoC15	3.832	3.914
CoC16	3.322	3.368	CoC16	3.305	3.306	CoC16	3.237	3.253	CoC16	3.175	3.256

Table S125. The Co-C bond distances for the optimized (C₈H₆)₂Co Quartet Structures

Table S126. The Ni-C bond distances for the optimized $(C_8H_6)_2$ Ni Singlet Structures

	Ni-S(C _{2v})		Ni-2S	(C ₂)		Ni-3S	(C ₂)		Ni-4S	(C_1)
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
NiC1	2.098	2.092	NiC1	2.086	2.078	NiC1	2.031	2.004	NiC1	1.964	1.932
NiC2	2.009	2.008	NiC2	2.009	2.006	NiC2	2.211	2.171	NiC2	2.251	2.210
NiC3	2.098	2.092	NiC3	2.067	2.071	NiC3	2.560	2.539	NiC3	2.796	2.799
NiC4	2.265	2.256	NiC4	2.286	2.292	NiC4	2.464	2.466	NiC4	2.692	2.715
NiC5	2.265	2.256	NiC5	2.341	2.323	NiC5	2.001	2.006	NiC5	2.005	2.006
NiC6	3.294	3.292	NiC6	3.396	3.409	NiC6	3.438	3.451	NiC6	3.737	3.801
NiC7	3.752	3.753	NiC7	3.917	3.925	NiC7	3.635	3.654	NiC7	3.909	3.935
NiC8	3.294	3.292	NiC8	3.438	3.434	NiC8	2.956	2.972	NiC8	2.973	2.984
NiC9	2.098	2.092	NiC9	2.067	2.071	NiC9	2.560	2.539	NiC9	2.201	2.132
NiC10	2.009	2.008	NiC10	2.009	2.006	NiC10	2.211	2.171	NiC10	2.232	2.153
NiC11	2.098	2.092	NiC11	2.086	2.078	NiC11	2.031	2.004	NiC11	2.261	2.221
NiC12	2.265	2.256	NiC12	2.341	2.323	NiC12	2.011	2.006	NiC12	2.183	2.185
NiC13	2.265	2.256	NiC13	2.286	2.292	NiC13	2.464	2.466	NiC13	2.014	2.013
NiC14	3.294	3.292	NiC14	3.438	3.434	NiC14	2.956	2.972	NiC14	3.236	3.263
NiC15	3.752	3.753	NiC15	3.917	3.925	NiC15	3.635	3.654	NiC15	3.587	3.627
NiC16	3.294	3.292	NiC16	3.396	3.409	NiC16	3.438	3.451	NiC16	2.958	2.978

	Ni-5T	(C ₂)		Ni-6T	(C ₂)		Ni-7T	(C _{2h})
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
NiC1	2.158	2.123	NiC1	2.143	2.099	NiC1	2.139	2.105
NiC2	2.221	2.175	NiC2	2.072	2.038	NiC2	2.072	2.037
NiC3	2.305	2.274	NiC3	2.139	2.114	NiC3	2.139	2.105
NiC4	2.279	2.269	NiC4	2.341	2.342	NiC4	2.343	2.347
NiC5	2.168	2.150	NiC5	2.340	2.337	NiC5	2.343	2.347
NiC6	3.248	3.252	NiC6	3.419	3.443	NiC6	3.429	3.455
NiC7	3.584	3.598	NiC7	3.927	3.958	NiC7	3.930	3.966
NiC8	3.046	3.051	NiC8	3.435	3.452	NiC8	3.429	3.347
NiC9	2.305	2.274	NiC9	2.143	2.099	NiC9	2.139	2.105
NiC10	2.221	2.175	NiC10	2.072	2.038	NiC10	2.072	2.037
NiC11	2.158	2.123	NiC11	2.139	2.114	NiC11	2.139	2.105
NiC12	2.168	2.156	NiC12	2.341	2.342	NiC12	2.343	2.347
NiC13	2.279	2.269	NiC13	2.340	2.337	NiC13	2.343	2.347
NiC14	3.046	3.051	NiC14	3.435	3.452	NiC14	3.429	3.455
NiC15	3.584	3.598	NiC15	3.927	3.958	NiC15	3.930	3.966
NiC16	3.248	3.252	NiC16	3.419	3.443	NiC16	3.429	3.347

Table S127. The Ni-C bond distances for the optimized (C₈H₆)₂Ni Singlet Structures

	Ni-8T	C(C₂)		Ni-9T	(C_{2v})		Ni-10	Γ(C _s)
	B3LYP	BP86		B3LYP	BP86		B3LYP	BP86
NiC1	2.115	2.097	NiC1	2.154	2.117	NiC1	2.148	2.109
NiC2	2.099	2.064	NiC2	2.096	2.071	NiC2	2.226	2.176
NiC3	2.188	2.134	NiC3	2.154	2.117	NiC3	2.341	2.298
NiC4	2.333	2.322	NiC4	2.332	2.316	NiC4	2.325	2.316
NiC5	2.274	2.286	NiC5	2.332	2.316	NiC5	2.160	2.147
NiC6	3.395	3.407	NiC6	3.421	3.419	NiC6	3.395	3.398
NiC7	3.867	3.895	NiC7	3.922	3.927	NiC7	3.737	3.753
NiC8	3.356	3.382	NiC8	3.421	3.419	NiC8	3.069	3.078
NiC9	2.188	2.134	NiC9	2.154	2.117	NiC9	2.148	2.109
NiC10	2.199	2.064	NiC10	2.096	2.071	NiC10	2.226	2.176
NiC11	2.115	2.097	NiC11	2.154	2.117	NiC11	2.341	2.298
NiC12	2.274	2.286	NiC12	2.332	2.316	NiC12	2.325	2.316
NiC13	2.333	2.322	NiC13	2.332	2.316	NiC13	2.160	2.147
NiC14	3.356	3.382	NiC14	3.421	3.419	NiC14	3.395	3.398
NiC15	3.867	3.895	NiC15	3.922	3.927	NiC15	3.737	3.753
NiC16	3.395	3.407	NiC16	3.421	3.419	NiC16	3.069	3.078

Table S128. The Wiberg bond index (WBI) values for all the M-C distances of the global minima of $(\text{pentalene})_2 M$ (M = Ti - Ni).

		Ti-I	S (C ₁)				V-1	$D(C_1)$	
	Bond di	stances	WBI v	alues		Bond dis	stances	WBI v	values
	B3LYP	BP86	B3LYP	BP86		B3LYP	BP86	B3LYP	BP86
TiC1	2.402	2.394	0.3490	0.3563	VC1	2.275	2.274	0.4195	0.4146
TiC2	2.413	2.411	0.2901	0.2973	VC2	2.222	2.223	0.3771	0.3869
TiC3	2.261	2.268	0.4291	0.4287	VC3	2.191	2.189	0.4820	0.4910
TiC4	2.172	2.175	0.2665	0.2759	VC4	1.293	2.277	0.3199	0.3339
TiC5	2.276	2.270	0.3225	0.3319	VC5	2.239	2.230	0.2486	0.2806
TiC6	2.551	2.547	0.4325	0.4328	VC6	3.312	3.301	0.0848	0.0934
TiC7	3.070	3.058	0.0955	0.1018	VC7	3.385	3.826	0.0532	0.0546
TiC8	2.948	2.933	0.1577	0.1693	VC8	3.425	3.410	0.0882	0.0849
TiC9	2.321	2.311	0.4154	0.4187	VC9	2.276	2.260	0.4252	0.4444
TiC10	2.473	2.465	0.2704	0.2817	VC10	2.406	2.378	0.2918	0.3188
TiC11	2.374	2.370	0.3687	0.3735	VC11	2.292	2.275	0.3982	0.4145
TiC12	2.171	2.173	0.3228	0.3329	VC12	2.085	2.082	0.3494	0.3682
TiC13	2.150	2.155	0.2886	0.2962	VC13	2.082	2.079	0.3625	0.3820
TiC14	2.490	2.492	0.2908	0.2946	VC14	2.281	2.265	0.4005	0.4177
TiC15	2.591	2.593	0.2163	0.2211	VC15	2.407	2.383	0.2786	0.3004
TiC16	2.359	2.363	0.4235	0.4249	VC16	2.286	2.269	0.4134	0.4355

		Cr-1	IS(C _s)				Mn-1	D(C ₂)	
	Bond dis	stances	WBI v	alues		Bond dis	stances	WBI v	alues
	B3LYP	BP86	B3LYP	BP86		B3LYP	BP86	B3LYP	BP86
CrC1	2.162	2.150	0.4642	0.4903	MnC1	2.099	2.074	0.3419	0.4127
CrC2	2.070	2.065	0.5268	0.5400	MnC2	2.211	2.180	0.3075	0.3245
CrC3	2.162	2.150	0.4642	0.4903	MnC3	2.256	2.224	0.3076	0.2961
CrC4	2.401	2.410	0.2815	0.2788	MnC4	2.160	2.135	0.2993	0.3405
CrC5	2.401	2.410	0.2815	0.2788	MnC5	2.038	2.015	0.3609	0.4314
CrC6	3.497	3.519	0.0481	0.0536	MnC6	3.156	3.145	0.0234	0.0267
CrC7	3.993	4.024	0.0936	0.1030	MnC7	3.499	3.505	0.0288	0.0387
CrC8	3.497	3.519	0.0481	0.0536	MnC8	2.953	2.960	0.0227	0.0278
CrC9	2.210	2.189	0.4513	0.4737	MnC9	2.256	2.224	0.3076	0.2916
CrC10	2.313	2.280	0.3284	0.3954	MnC10	2.211	2.180	0.3075	0.3245
CrC11	2.210	2.189	0.4513	0.4737	MnC11	2.099	2.074	0.3419	0.4127
CrC12	2.030	2.031	0.4023	0.4159	MnC12	2.038	2.015	0.3609	0.4314
CrC13	2.030	2.031	0.4023	0.4159	MnC13	2.160	2.135	0.2993	0.4505
CrC14	2.201	2.188	0.4338	0.4527	MnC14	2.953	2.960	0.0227	0.0278
CrC15	2.278	2.254	0.3426	0.3651	MnC15	3.499	3.505	0.0288	0.0387
CrC16	2.201	2.188	0.4338	0.4527	MnC16	3.156	3.145	0.0234	0.0267

		Fe-1	S(C ₂)				Co-1	D (C ₂)	
	Bond dis	stances	WBI v	alues		Bond dis	stances	WBI v	values
	B3LYP	BP86	B3LYP	BP86		B3LYP	BP86	B3LYP	BP86
FeC1	2.052	2.035	0.3838	0.4078	CoC1	2.067	2.045	0.3609	0.3895
FeC2	2.103	2.074	0.3559	0.3883	CoC2	2.018	2.006	0.3664	0.3799
FeC3	2.125	2.092	0.3491	0.3872	CoC3	2.066	2.060	0.3314	0.3467
FeC4	2.082	2.064	0.3402	0.3603	CoC4	2.158	2.167	0.2635	0.2513
FeC5	2.003	1.989	0.3908	0.4179	CoC5	2.202	2.197	0.2155	0.2279
FeC6	2.923	2.934	0.0238	0.0259	CoC6	3.321	3.247	0.0376	0.0518
FeC7	3.466	3.477	0.0334	0.0458	CoC7	3.728	3.743	0.0513	0.0568
FeC8	3.102	3.097	0.0210	0.0246	CoC8	3.171	3.277	0.0481	0.0606
FeC9	2.125	2.092	0.3491	0.3872	CoC9	2.066	2.060	0.3314	0.3467
FeC10	2.103	2.074	0.3559	0.3883	CoC10	2.018	2.006	0.3664	0.3799
FeC11	2.052	2.035	0.3838	0.4078	CoC11	2.067	2.045	0.3609	0.3895
FeC12	2.003	1.989	0.3908	0.4179	CoC12	2.202	2.197	0.2155	0.2279
FeC13	2.082	2.064	0.3402	0.3603	CoC13	2.158	2.167	0.2635	0.2513
FeC14	3.102	3.097	0.0210	0.0246	CoC14	3.271	3.277	0.0481	0.0606
FeC15	3.466	3.477	0.0334	0.0458	CoC15	3.728	3.743	0.0531	0.0568
FeC16	2.923	2.934	0.0238	0.0259	CoC16	3.321	3.247	0.0376	0.0518

		Ni-S	(C _{2v})	
	Bond di	stances	WBI v	alues
	B3LYP	BP86	B3LYP	BP86
NiC1	2.098	2.092	0.2615	0.2722
NiC2	2.009	2.008	0.3273	0.3319
NiC3	2.098	2.092	0.2615	0.2722
NiC4	2.265	2.256	0.1762	0.1794
NiC5	2.265	2.256	0.1762	0.1794
NiC6	3.294	3.292	0.0616	0.0656
NiC7	3.752	3.753	0.0605	0.0615
NiC8	3.294	3.292	0.0616	0.0656
NiC9	2.098	2.092	0.2615	0.2722
NiC10	2.009	2.008	0.3273	0.3319
NiC11	2.098	2.092	0.2615	0.2722
NiC12	2.265	2.256	0.1762	0.1794
NiC13	2.265	2.256	0.1762	0.1794
NiC14	3.294	3.292	0.0616	0.0656
NiC15	3.752	3.753	0.0605	0.0615
NiC16	3.294	3.292	0.0616	0.0656

Complete Gaussian 09 reference (Reference 44)

M. J. Frisch; G. W. Trucks; H. B. Schlegel; G. E. Scuseria; M. A. Robb;
J. R.Cheeseman; G. Scalmani; V. Barone; B. Mennucci; G. A. Petersson; H. Nakatsuji;
M. Caricato; X. Li; H. P. Hratchian; A. F. Izmaylov; J. Bloino; G. Zheng;
J. L. Sonnenberg; M. Hada; M. Ehara; K. Toyota; R. Fukuda; J. Hasegawa; M. Ishida;
T. Nakajima; Y. Honda; O. Kitao; H. Nakai; T. Vreven; J. A. Montgomery; Jr.;
J. E. Peralta; F. Ogliaro; M. Bearpark; J. J. Heyd; E. Brothers; K. N. Kudin;
V. N. Staroverov; R. Kobayashi; J.Normand; K. Raghavachari; A. Rendell; J. C. Burant;
S. S. Iyengar; J. Tomasi; M.Cossi; N. Rega; J. M. Millam; M. Klene; J. E. Knox;
J. B. Cross; V. Bakken; C.Adamo; J. Jaramillo; R. Gomperts; R. E. Stratmann;
O. Yazyev; A. J. Austin; R.Cammi; C. Pomelli; J. W. Ochterski; R. L. Martin; K. Morokuma;
V. G. Zakrzewski; G. A. Voth; P. Salvador; J. J. Dannenberg; S. Dapprich; A. D. Daniels;
O. Farkas; J. B. Foresman; J. V. Ortiz; J. Cioslowski; and D. J. Fox, J. A. Gaussian 09, Revision

A.02, Gaussian, Inc., Wallingford CT, 2009.