Supporting Information

Novel Approach Toward Synthesis of Skeletally Diverse

Benzimidazole-pyrrolo[1,2-a]quinoxalines by S_NAr / Pictet-Spengler

Reaction Under Focused Microwave Irradiation

Barnali Maiti, Chung-Ming Sun*

Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300-10,

Taiwan

Email: cmsun@mail.nctu.edu.tw

Table of Contents

General Methods	S1
¹ H and ¹³ C NMR spectra of Compounds 10a-10rS2-S3	37
Crude HPLC Spectra of Compounds 10a-10r	55
IR Spectra of Compounds 10a-10r	73
LR and HR Mass spectra of Compounds 10a-10r	09
¹ H NMR stepwise intermediate spectra of Compounds 6i-10iS110-S11	4
X ray crystallographic data of compound 10hS115-S139)
General Procedure for the Synthesis of Polymer bound	
intermediate 6S140-S143	
¹ H and ¹³ C NMR,, Mass and IR spectra of Compounds 14-17	

General Procedure for the synthesis of compounds 11-17...S160-S164

General Methods

Dichloromethane and chloroform was distilled from calcium hydride before use. All reactions were performed under an inert atmosphere with unpurified reagents and dry solvents. Analytical thin-layer chromatography (TLC) was performed using 0.25 mm silica gel-coated Kieselgel 60 F254 plates. Flash chromatography was performed using the indicated solvent and silica gel 60 (Merck, 230-400 mesh). All the microwave experiments were conducted in a Biotage initiator sealed vessel under optimized reaction conditions of power and pressure. ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded on a Bruker DRX-300 spectrometer. Chemical shifts are reported in parts per million (ppm) on the δ scale from an internal standard. High-resolution mass spectra (HRMS) were recorded on a JEOL TMS-HX 110 mass spectrometer. Analytical HPLC analyses were recorded with UV detection at λ =254nm (column: Sphereclone 5µ Si (250 x 4.6 mm).

¹³C NMR spectrum (75 MHz) of compound 10a in CDCl₃

¹HNMR spectrum (300 MHz) of compound 10b in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 10b in CDCl₃

¹HNMR spectrum (300 MHz) of compound 10c in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 10c in CDCl₃

¹HNMR spectrum (300 MHz) of compound 10d in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 10d in CDCl₃

¹HNMR spectrum (300 MHz) of compound 10e in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 10e in CDCl₃

¹HNMR spectrum (300 MHz) of compound 10f in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 10f in CDCl₃

¹HNMR spectrum (300 MHz) of compound 10g in CDCl₃

S14

¹³C NMR spectrum (75 MHz) of compound 10g in CDCl₃

¹HNMR spectrum (300 MHz) of compound 10h in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 10h in CDCl₃

¹HNMR spectrum (300 MHz) of compound 10i in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 10i in CDCl₃

¹HNMR spectrum (300 MHz) of compound 10j in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 10j in CDCl₃

S21

¹HNMR spectrum (300 MHz) of compound 10k in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 10k in CDCl₃

¹HNMR spectrum (300 MHz) of compound 10l in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 10l in CDCl₃

¹HNMR spectrum (300 MHz) of compound 10m in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 10m in CDCl₃

S28

¹³C NMR spectrum (75 MHz) of compound 10n in CDCl₃

¹HNMR spectrum (300 MHz) of compound 100 in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 100 in CDCl₃

¹HNMR spectrum (300 MHz) of compound 10p in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 10p in CDCl₃

¹HNMR spectrum (300 MHz) of compound 10q in CDCl₃

¹³C NMR spectrum (75 MHz) of compound 10q in CDCl₃
Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2011

¹HNMR spectrum (300 MHz) of compound 10r in CDCl₃

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2011

¹³C NMR spectrum (75 MHz) of compound 10r in CDCl₃

Result Table (Uncal - C: Documents and Settings)User My Documents Barnali BMPQ (BMPQ1)

	Reten. Time	Area	Height	Area	Height	W05
	[min]	[mV.s]	[mV]	[%]	[%]	[min]
1	6.360	14.039	0.715	0.0	0.1	0.34
2	6.784	12.285	1.172	0.0	0.1	0.16
3	9.592	1012.364	57.906	3.3	5.8	0.26
4	12.012	108.684	3.228	0.3	0.3	0.42
5	14.088	28214.612	901.293	90.7	90.5	0.46
6	18.164	1620.693	29.851	5.2	3.0	0.66
7	21.040	108.541	1.504	0.3	0.2	1.06
	Total	31091.219	995.669	100.0	100.0	

Crude HPLC Spectra of Compounds 10a

Result Table (Uncal - C: Documents and Settings)User/My Documents/Barnali/BMPQ/BMPQ2)

	Reten. Time	Area	Height	Area	Height	W05
	[min]	[mV.s]	[mV]	[%]	[%]	[min]
1	6.860	2.202	0.232	0.0	0.0	0.15
2	7.200	2.942	0.270	0.0	0.0	0.16
3	9.256	4.230	0.222	0.0	0.0	0.20
4	9.824	118.044	6.802	0.6	0.8	0.26
5	10.524	27.639	1.323	0.1	0.2	0.39
6	11.084	101.455	7.106	0.5	0.8	0.23
7	11.828	20176.711	838.575	98.7	96.1	0.34
	Total	20433.223	854.529	100.0	100.0	

Crude HPLC Spectra of Compounds 10b

Result Table (Unc	I - C: Documents and Settings User My	Documents\Barnali\BMPQ3b)
-------------------	---------------------------------------	---------------------------

		Reten, Time	Area	Height	Area	Height	W05
		[min]	[mV.s]	[mV]	[%]	[%]	[min]
	1	6.892	337.924	19.551	1.2	1.8	0.24
1	2	7.220	915.612	71.819	3.3	6.7	0.17
1	3	7.844	174.690	8.327	0.6	0.8	0.44
	4	8.292	169.756	7.077	0.6	0.7	0.49
	5	8.888	280.636	8.162	1.0	0.8	0.79
	6	9.716	604.420	26.551	2.2	2.5	0.28
1	7	10.572	209.948	5.300	0.8	0.5	0.80
1	8	12.084	24144.714	911.319	87.9	85.2	0.38

Crude HPLC Spectra of Compounds 10c

	Reten. Time	Area	Height	Area	Height	W05
	[min]	[mV.s]	[mV]	[%]	[%]	[min]
1	6.352	9.195	0.426	0.1	0.1	0.36
2	7.088	23.992	1.476	0.2	0.2	0.22
3	7.748	4.677	0.430	0.0	0.1	0.17
4	8.420	10.067	0.714	0.1	0.1	0.24
5	8.904	70.781	3.705	0.5	0.5	0.28
6	9.636	681.882	41.721	5.1	6.0	0.26
7	10.428	12429.524	646.151	92.1	92.2	0.28
8	13.644	44.309	1.506	0.3	0.2	0.47

Crude HPLC Spectra of Compounds 10d

		Reten. Time	Area	Height	Area	Height	W05
		[min]	[mV.s]	[mV]	[%]	[%]	[min]
	1	9.568	42.762	2.906	4.6	8.2	0.22
1	2	13.076	21.693	0.582	2.3	1.6	0.57
1	3	14.152	863.858	31.818	93.1	90.1	0.38
		Total	928.312	35.306	100.0	100.0	

Result Table (Uncal - C: Documents and Settings/User/My Documents/Barnalibbb/BMPQ/BM-PQ-5)

Crude HPLC Spectra of Compounds 10e

Result Table (Uncal - C: Documents and Settings|User|My Documents|Barnalibbb|BMPQ|BM-PQ-6)

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W 05 [min]
1	8.220	3.924	0.225	0.3	0.3	0.29
2	9.220	955.024	57.614	74.9	85.8	0.23
3	10.772	14.575	0.640	1.1	1.0	0.33
4	12.088	7.819	0.375	0.6	0.6	0.33
5	12.652	18.904	0.846	1.5	1.3	0.34
6	14.940	78.358	2.454	6.1	3.7	0.41
7	15.868	54.661	1.802	4.3	2.7	0.44
8	18.156	21.663	0.620	1.7	0.9	0.50

Crude HPLC Spectra of Compounds 10f

			-		· ·		
1		Reten. Time	Area	Height	Area	Height	W05
		[min]	[mV.s]	[mV]	[%]	[%]	[min]
	1	9.560	44.229	2.898	7.9	13.2	0.22
1	2	14.284	517.539	19.052	92.1	86.8	0.38
1		Total	561.768	21.950	100.0	100.0	

Result Table (Uncal-	 C: Documents and Settings User My 	Documents Barnalibbb BMPC	2 BM-PQ-7
----------------------	---	---------------------------	-----------

Crude HPLC Spectra of Compounds 10g

Result Table (Uncal - C: Documents and Settings User My Documents Barnalibbb BMPQ BM-PQ-8)

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]
1	5.548	0.282	0.048	0.0	0.1	0.05
2	9.640	22.762	1.182	1.7	2.3	0.22
3	11.992	1021.803	44.328	76.3	85.5	0.32
4	14.844	41.233	1.126	3.1	2.2	0.52
5	15.848	38.360	1.012	2.9	2.0	0.57
6	22.620	214.426	4.128	16.0	8.0	0.72
	Total	1338.866	51.824	100.0	100.0	

Crude HPLC Spectra of Compounds 10h

	Result Table (Uncal - D: DOCUMENTS BARNALI23BMPQBM-PQ-9)									
Reten. Time Area Height Area Height [min] [mV.s] [mV] [%] [%]							W05 [min]			
	1	9.632	32.720	2.288	0.3	0.8	0.22			
	2	18.816	3.115	0.108	0.0	0.0	0.53			
	3	22.112	12521.821	286.273	99.7	99.2	0.62			
		Total	12557.656	288.669	100.0	100.0				

Crude HPLC Spectra of Compounds 10i

Result Table (Uncal - C: Documents and Settings User My Documents Barnalibbb BMPQ BM-PQ-10)									
	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W 05 [min]			
1	9.580	23.152	1.362	2.0	3.9	0.22			
2	18.048	1118.414	33.413	98.0	96.1	0.47			
	Total	1141.567	34.775	100.0	100.0				

Crude HPLC Spectra of Compounds 10j

Result 18	Result rable (oncar - c. pocuments and Setangalose (Ny Documents) barraibbb (bin-PQ-11)									
	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]				
1	6.520	29.174	1.594	1.2	2.0	0.21				
2	9.780	8.158	0.278	0.3	0.3	0.23				
3	12.696	15.695	0.661	0.6	0.8	0.36				
4	14.996	55.430	2.527	2.2	3.2	0.35				
5	15.868	2305.682	73.488	92.7	91.6	0.44				
6	18.256	74.332	1.644	3.0	2.1	0.66				
	Total	2488.472	80.193	100.0	100.0					

Party & Table (Unsel - C) Destimants and Catting all User My, Destimants Remarks by RMDO (RM DO 11)

Crude HPLC Spectra of Compounds 10k

Result Table	(Uncal - C:	Documents and	Settings User	My Documents	Barnalibbb	BMPO	BM-PC)-12	9
						_			

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W 05 [min]
1	6.500	12.799	0.838	1.0	2.5	0.21
2	9.728	30.263	1.906	2.5	5.7	0.23
3	12.656	8.256	0.360	0.7	1.1	0.31
4	14.952	54.471	1.602	4.4	4.8	0.46
5	18.040	1076.216	27.969	87.7	84.1	0.53
6	22.132	45.651	0.570	3.7	1.7	1.04
	Total	1227.655	33.244	100.0	100.0	

Crude HPLC Spectra of Compounds 101

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W05 [min]
1	9.644	9.624	0.706	9.0	18.7	0.22
2	11.848	4.163	0.240	3.9	6.4	0.26
3	14.780	93.377	2.826	87.1	74.9	0.43
	Total	107.163	3.772	100.0	100.0	

Result Table (Uncal - C:\DOCUMENT5 AND SETTING5\USER\MY DOCUMENT5\BARNALIBBB\BMPQ\BM-PQ-13)

Crude HPLC Spectra of Compounds 10m

Result Table	(Uncal -	C: Documents and	Settings User M	y Documents\Barnalibbb\BMPQ	2\BM-PQ-:	14)
--------------	----------	------------------	-----------------	-----------------------------	-----------	-----

	Reten. Time	Area	Height	Area	Height	W05
	[min]	[mV.s]	[mV]	[%]	[%]	[min]
1	6.192	2.875	0.182	0.1	0.2	0.24
2	7.060	8.003	0.687	0.4	0.8	0.18
3	9.712	14.533	0.926	0.7	1.1	0.23
4	10.572	4.449	0.301	0.2	0.3	0.24
5	12.560	1810.996	77.123	83.2	88.5	0.33
6	15.824	335.780	7.914	15.4	9.1	0.60
	Total	2176.636	87.133	100.0	100.0	

Crude HPLC Spectra of Compounds 10n

_					-	-	
		Reten. Time	Area	Height	Area	Height	W05
		[min]	[mV.s]	[mV]	[%]	[%]	[min]
	1	7.416	433.877	33.306	92.1	94.9	0.16
1	2	9.384	31.917	1.468	6.8	4.2	0.24
1	3	11.228	5.079	0.328	1.1	0.9	0.25
		Total	470.873	35.102	100.0	100.0	

Result Table (Uncal - D:\Documents \Barnali23\BMPQ\CRUDE-1)

Crude HPLC Spectra of Compounds 100

	Result Table (Uncal - D: Documents Barnali23 BMPQ BM-PQ-16)								
Reten. Time Area Height Area Height W [min] [mV.s] [mV] [%] [%] [m									
	1	9.356	29.230	1.554	3.9	3.9	0.26		
	2	10.804	696.300	38.174	94.0	95.4	0.26		
	3	17.644	15.163	0.286	2.0	0.7	0.54		
		Total	740.693	40.013	100.0	100.0			

Crude HPLC Spectra of Compounds 10p

Result Table (Uncal - D; Ubocuments Barnali23 BMPQ BM-PQ-17)									
	Reten. Time Area Height Area Height W05 [min] [mV.s] [mV] [%] [%] [min]								
1	6.728	34.020	1.323	2.8	2.3	0.25			
2	10.200	1076.661	53.601	88.4	92.9	0.28			
3	11.804	52.935	1.940	4.3	3.4	0.38			
4	14.560	54.854	0.805	4.5	1.4	0.43			
	Total	1218.470	57.669	100.0	100.0				

test successory and we

- -

Crude HPLC Spectra of Compounds 10q

Result Table (Uncal - D: Documents |Barnali23|BMPQ |BM-PQ-18)

	Reten. Time [min]	Area [mV.s]	Height [mV]	Area [%]	Height [%]	W 05 [min]
1	9.888	70.440	4.181	12.2	13.0	0.24
2	10.456	43.981	3.207	7.6	10.0	0.22
3	10.840	463.854	24.786	80.2	77.0	0.27
	Total	578.274	32.174	100.0	100.0	

Crude HPLC Spectra of Compounds 10r S55

IR spectra of Compounds 10a

IR spectra of Compounds 10b

IR spectra of Compounds 10c

IR spectra of Compounds 10d

Supplementary Material (ESI) for New Journal of Chemistry This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2011

IR spectra of Compounds 10e

IR spectra of Compounds 10f

S62

IR spectra of Compounds 10h

IR spectra of Compounds 10i

IR spectra of Compounds 10j

IR spectra of Compounds 10k

IR spectra of Compounds 101

IR spectra of Compounds 10m

IR spectra of Compounds 10n

IR spectra of Compounds 100

IR spectra of Compounds 10p

IR spectra of Compounds 10q

IR spectra of Compounds 10r

LR Mass spectra of Compounds 10a

/d=/Data/yu/BMPQ1/2/pdata/1 Administrator Thu Nov 20 15:41:15 2008

HR Mass spectra of Compounds 10a S75

/d=/Data/yu/BMPQ2/2/pdata/1 Administrator Thu Nov 20 15:43:20 2008

HR Mass spectra of Compounds 10b

LR Mass spectra of Compounds 10c

/d=/Data/yu/BMPQ3/2/pdata/1 Administrator Thu Nov 20 15:45:50 2008

HR Mass spectra of Compounds 10c

LR Mass spectra of Compounds 10d

/d=/Data/yu/BMPQ4/2/pdata/1 Administrator Thu Nov 20 15:47:48 2008

HR Mass spectra of Compounds 10d **S**81

LR Mass spectra of Compounds 10e S82

/d=/Data/yu/bmpq5/3/pdata/1 Administrator Wed Nov 19 14:27:46 2008

HR Mass spectra of Compounds 10e

LR Mass spectra of Compounds 10f

S84

/d=/Data/yu/bmpq6/2/pdata/1 Administrator Wed Nov 19 14:34:37 2008

HR Mass spectra of Compounds 10f S85

S86

/d=/Data/yu/bmpq7/1/pdata/1 Administrator Wed Nov 19 14:43:00 2008

HR Mass spectra of Compounds 10g S87

S88

/d=/Data/yu/bmpq8/1/pdata/1 Administrator Wed Nov 19 14:47:51 2008

HR Mass spectra of Compounds 10h

LR Mass spectra of Compounds 10i

/d=/Data/yu/bmpq9/1/pdata/1 Administrator Wed Nov 19 14:53:49 2008

HR Mass spectra of Compounds 10i

LR Mass spectra of Compounds 10j

/d=/Data/yu/bmpq10/4/pdata/1 Administrator Wed Nov 19 15:05:56 2008

HR Mass spectra of Compounds 10j S93

LR Mass spectra of Compounds 10k

/d=/Data/yu/bmpq11/1/pdata/1 Administrator Thu Jan 15 13:09:25 2009

HR Mass spectra of Compounds 10k

S96

/d=/Data/yu/bmpq12/1/pdata/1 Administrator Thu Jan 15 13:16:08 2009

HR Mass spectra of Compounds 101

S98

/d=/Data/yu/pq13/1/pdata/1 Administrator Thu Jan 15 13:26:00 2009

HR Mass spectra of Compounds 10m

LR Mass spectra of Compounds 10n

/d=/Data/yu/pq14/1/pdata/1 Administrator Thu Jan 15 13:30:17 2009

HR Mass spectra of Compounds 10n S101

LR Mass spectra of Compounds 100 S102

/d=/Data/yu/pq15/1/pdata/1 Administrator Thu Jan 15 13:35:46 2009

HR Mass spectra of Compounds 100

LR Mass spectra of Compounds 10p S104

/d=/Data/yu/pq16/1/pdata/1 Administrator Thu Jan 15 13:41:36 2009

HR Mass spectra of Compounds 10p S105

LR Mass spectra of Compounds 10q S106

/d=/Data/yu/pq17/1/pdata/1 Administrator Thu Jan 15 13:49:32 2009

HR Mass spectra of Compounds 10q S107

LR Mass spectra of Compounds 10r S108

/d=/Data/yu/pq18/1/pdata/1 Administrator Thu Jan 15 13:56:07 2009

HR Mass spectra of Compounds 10r

¹HNMR spectrum (300 MHz) of intermediate compound 6i in CDCl₃

¹HNMR spectrum (300 MHz) of intermediate compound 7i in CDCl₃

¹HNMR spectrum (300 MHz) of intermediate compound 8i in CDCl₃

¹HNMR spectrum (300 MHz) of intermediate compound 9i in CDCl₃

¹HNMR spectrum (300 MHz) of final compound 10i in CDCl₃

S114

ORTEP diagram of Methyl

2-(4-ethyl-5'*H*-spiro[cyclohexane-1,4'-pyrrolo[1,2-*a*]quinoxalin]-7'-yl)

-1-(2-methoxyethyl)-1*H*-benzimidazole-5-carboxylate (10h)

Identification code	101119lts	
Empirical formula	C30 H34 N4 O3	
Formula weight	498.61	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 12.3481(6) Å	α= 105.903(2)°.
	b = 15.7551(8) Å	β=108.938(2)°.
	c = 16.7496(9) Å	$\gamma = 93.046(2)^{\circ}$.
Volume	2927.8(3) Å ³	
Z	4	
Density (calculated)	1.131 Mg/m ³	
Absorption coefficient	0.074 mm ⁻¹	
F(000)	1064	
Crystal size	0.15 x 0.15 x 0.05 mm ³	
Theta range for data collection	1.77 to 26.42°.	
Index ranges	-15<=h<=15, -19<=k<=17, -20<=l<=18	
Reflections collected	43472	
Independent reflections	11900 [R(int) = 0.0937]	
Completeness to theta = 26.42°	98.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9486 and 0.6811	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	11900 / 20 / 717	
Goodness-of-fit on F ²	0.956	
Final R indices [I>2sigma(I)]	R1 = 0.0861, wR2 = 0.2406	
R indices (all data)	R1 = 0.1378, wR2 = 0.2707	
Largest diff. peak and hole	0.823 and -0.380 e.Å ⁻³	

Table 1. Crystal data and structure refinement for 10h

Table 2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å $^2x \ 10^3$) for 101119LTs. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)
C(1)	806(3)	3630(2)	1630(2)	54(1)
C(2)	1736(3)	4440(2)	1144(2)	57(1)
C(3)	2503(4)	4795(2)	825(2)	73(1)
C(4)	2306(5)	5590(3)	638(3)	79(1)
C(5)	1365(5)	6018(3)	752(3)	96(2)
C(6)	602(4)	5658(3)	1063(3)	87(2)
C(7)	791(4)	4862(2)	1244(2)	68(1)
C(10)	-701(3)	4603(3)	1901(3)	79(1)
C(11)	-202(4)	5285(3)	2818(3)	87(2)
C(12)	52(4)	4418(3)	3800(3)	92(2)
C(13)	492(3)	2923(2)	1979(2)	53(1)
C(14)	-623(3)	2436(3)	1642(2)	59(1)
C(15)	-851(3)	1775(2)	1990(2)	57(1)
C(16)	5(3)	1598(2)	2665(2)	53(1)
C(17)	-1241(3)	532(3)	3010(3)	70(1)
C(18)	-1020(3)	-12(3)	3519(3)	75(1)
C(19)	211(3)	80(3)	3930(3)	67(1)
C(20)	692(3)	687(2)	3639(2)	54(1)
C(21)	1925(3)	1011(2)	3781(2)	48(1)
C(22)	1137(3)	2085(2)	3006(2)	49(1)
C(23)	1361(3)	2736(2)	2646(2)	47(1)
C(24)	2719(3)	1033(2)	4704(2)	52(1)
C(25)	3997(3)	1273(2)	4848(2)	48(1)
C(26)	4364(3)	665(2)	4135(2)	46(1)
C(27)	3573(3)	639(2)	3215(2)	47(1)
C(28)	2299(3)	382(2)	3069(2)	49(1)
C(29)	5639(3)	953(2)	4314(2)	52(1)
C(30)	6133(3)	358(3)	3692(3)	66(1)
C(31)	4777(3)	6894(2)	6276(2)	42(1)
C(32)	5351(3)	6314(2)	5201(2)	44(1)
C(33)	6002(3)	6022(2)	4663(2)	51(1)
C(34)	5418(3)	5473(2)	3807(2)	57(1)
		S117		

C(35)	4213(3)	5209(2)	3486(2)	58(1)
C(36)	3563(3)	5488(2)	4012(2)	53(1)
C(37)	4157(3)	6046(2)	4872(2)	44(1)
C(40)	2598(3)	6279(2)	5548(2)	55(1)
C(41)	1829(3)	6853(3)	5106(3)	68(1)
C(42)	4(4)	7333(4)	4919(4)	127(2)
C(43)	4796(2)	7357(2)	7166(2)	44(1)
C(44)	5732(3)	7292(2)	7891(2)	45(1)
C(45)	5833(3)	7734(2)	8757(2)	51(1)
C(46)	7149(3)	8379(2)	10305(2)	51(1)
C(51)	5005(3)	8266(3)	8898(2)	72(1)
C(52)	4106(3)	8345(3)	8201(3)	81(1)
C(53)	3977(3)	7894(2)	7332(2)	60(1)
C(54)	7877(2)	9123(2)	10192(2)	45(1)
C(55)	8994(2)	8855(2)	10071(2)	46(1)
C(56)	9736(3)	8583(2)	10852(2)	50(1)
C(57)	9047(3)	7829(2)	10973(2)	63(1)
C(58)	7896(3)	8062(2)	11057(2)	63(1)
C(59)	10875(3)	8315(3)	10761(2)	66(1)
C(60)	11644(3)	9011(3)	10644(3)	80(1)
N(1)	1722(3)	3661(2)	1377(2)	56(1)
N(2)	207(3)	4332(2)	1557(2)	64(1)
N(3)	1975(2)	1927(2)	3713(2)	49(1)
N(4)	-197(2)	960(2)	3068(2)	54(1)
N(5)	5720(2)	6842(2)	6074(2)	43(1)
N(6)	3791(2)	6428(2)	5568(2)	45(1)
N(7)	6702(2)	7613(2)	9478(2)	54(1)
O(3)	593(2)	4954(2)	3438(2)	76(1)
O(6)	810(3)	6777(2)	5280(3)	106(1)
C(8)	2901(15)	5999(11)	334(12)	64(3)
C(9)	3645(8)	7225(6)	24(6)	74(2)
O(1)	2800(5)	6803(3)	317(4)	58(1)
O(2)	3529(6)	5546(5)	-34(5)	83(1)
C(8')	3339(12)	6008(11)	293(11)	64(3)
C(9')	5257(7)	6218(6)	307(6)	74(2)
O(1')	4347(5)	5783(3)	509(3)	58(1)
O(2')	3102(6)	6593(5) S118	-103(5)	83(1)

C(38)	6004(9)	5085(7)	3212(7)	50(2)
C(39)	5891(8)	4333(7)	1735(5)	72(2)
O(4)	5289(6)	4698(5)	2348(4)	59(2)
O(5)	7037(6)	5167(5)	3450(5)	63(2)
C(38')	6321(12)	5318(12)	3307(11)	50(2)
C(39')	6525(11)	4285(10)	2043(8)	72(2)
O(4')	5793(8)	4622(8)	2556(7)	59(2)
O(5')	7346(9)	5554(6)	3561(8)	63(2)
N(8)	5105(5)	8873(4)	9724(4)	36(1)
C(47)	6060(8)	8858(5)	10435(6)	36(2)
C(48)	5883(7)	9297(5)	11198(6)	44(2)
C(49)	4791(5)	9622(5)	10936(4)	44(1)
C(50)	4338(5)	9349(4)	10046(4)	44(1)
N(8')	5161(5)	8500(4)	9863(4)	36(1)
C(47')	6186(9)	8570(6)	10548(6)	36(2)
C(48')	6017(8)	8958(5)	11329(6)	44(2)
C(49')	4842(5)	9124(5)	11100(4)	44(1)
C(50')	4337(5)	8826(5)	10216(4)	44(1)

C(1)-N(1)	1.333(5)
C(1)-N(2)	1.375(4)
C(1)-C(13)	1.480(5)
C(2)-N(1)	1.388(5)
C(2)-C(3)	1.389(6)
C(2)-C(7)	1.407(5)
C(3)-C(4)	1.387(5)
C(3)-H(3)	0.9500
C(4)-C(8)	1.259(14)
C(4)-C(5)	1.414(7)
C(4)-C(8')	1.730(12)
C(5)-C(6)	1.380(7)
C(5)-H(5)	0.9500
C(6)-C(7)	1.383(6)
C(6)-H(6)	0.9500
C(7)-N(2)	1.383(6)
C(10)-N(2)	1.452(5)
C(10)-C(11)	1.518(5)
C(10)-H(10A)	0.9900
C(10)-H(10B)	0.9900
C(11)-O(3)	1.416(5)
C(11)-H(11A)	0.9900
C(11)-H(11B)	0.9900
C(12)-O(3)	1.418(5)
C(12)-H(12A)	0.9800
C(12)-H(12B)	0.9800
C(12)-H(12C)	0.9800
C(13)-C(23)	1.387(4)
C(13)-C(14)	1.395(5)
C(14)-C(15)	1.382(5)
C(14)-H(14)	0.9500
C(15)-C(16)	1.379(5)
C(15)-H(15)	0.9500
C(16)-N(4)	1.408(5)
C(16)-C(22)	1.413(4)

Table 3.	Bond lengths [Å] and angles [°] for	101119LTs.

C(17)-C(18)	1.346(6)
C(17)-N(4)	1.384(4)
C(17)-H(17)	0.9500
C(18)-C(19)	1.431(5)
C(18)-H(18)	0.9500
C(19)-C(20)	1.374(5)
C(19)-H(19)	0.9500
C(20)-N(4)	1.377(4)
C(20)-C(21)	1.501(4)
C(21)-N(3)	1.478(4)
C(21)-C(24)	1.529(4)
C(21)-C(28)	1.541(4)
C(22)-C(23)	1.382(5)
C(22)-N(3)	1.389(4)
C(23)-H(23)	0.9500
C(24)-C(25)	1.526(4)
C(24)-H(24A)	0.9900
C(24)-H(24B)	0.9900
C(25)-C(26)	1.524(4)
C(25)-H(25A)	0.9900
C(25)-H(25B)	0.9900
C(26)-C(27)	1.521(4)
C(26)-C(29)	1.523(4)
C(26)-H(26)	1.0000
C(27)-C(28)	1.525(4)
C(27)-H(27A)	0.9900
C(27)-H(27B)	0.9900
C(28)-H(28A)	0.9900
C(28)-H(28B)	0.9900
C(29)-C(30)	1.508(5)
C(29)-H(29A)	0.9900
C(29)-H(29B)	0.9900
C(30)-H(30A)	0.9800
C(30)-H(30B)	0.9800
C(30)-H(30C)	0.9800
C(31)-N(5)	1.313(4)
C(31)-N(6)	1.385(4)

C(31)-C(43)	1.461(4)
C(32)-N(5)	1.377(4)
C(32)-C(37)	1.391(4)
C(32)-C(33)	1.397(4)
C(33)-C(34)	1.382(5)
C(33)-H(33)	0.9500
C(34)-C(35)	1.403(5)
C(34)-C(38)	1.439(11)
C(34)-C(38')	1.589(16)
C(35)-C(36)	1.377(5)
C(35)-H(35)	0.9500
C(36)-C(37)	1.391(4)
C(36)-H(36)	0.9500
C(37)-N(6)	1.383(4)
C(40)-N(6)	1.467(4)
C(40)-C(41)	1.506(5)
C(40)-H(40A)	0.9900
C(40)-H(40B)	0.9900
C(41)-O(6)	1.387(4)
C(41)-H(41A)	0.9900
C(41)-H(41B)	0.9900
C(42)-O(6)	1.454(6)
C(42)-H(42A)	0.9800
C(42)-H(42B)	0.9800
C(42)-H(42C)	0.9800
C(43)-C(53)	1.400(4)
C(43)-C(44)	1.411(4)
C(44)-C(45)	1.387(4)
C(44)-H(44)	0.9500
C(45)-C(51)	1.395(5)
C(45)-N(7)	1.397(4)
C(46)-C(47')	1.398(11)
C(46)-N(7)	1.482(4)
C(46)-C(58)	1.526(5)
C(46)-C(54)	1.530(5)
C(46)-C(47)	1.622(9)
C(51)-C(52)	1.366(6)

C(51)-N(8)	1.413(7)
C(51)-N(8')	1.499(7)
C(52)-C(53)	1.386(5)
C(52)-H(52)	0.9500
C(53)-H(53)	0.9500
C(54)-C(55)	1.522(4)
C(54)-H(54A)	0.9900
C(54)-H(54B)	0.9900
C(55)-C(56)	1.517(4)
C(55)-H(55A)	0.9900
C(55)-H(55B)	0.9900
C(56)-C(57)	1.522(5)
C(56)-C(59)	1.531(5)
C(56)-H(56)	1.0000
C(57)-C(58)	1.527(5)
C(57)-H(57A)	0.9900
C(57)-H(57B)	0.9900
C(58)-H(58A)	0.9900
C(58)-H(58B)	0.9900
C(59)-C(60)	1.506(6)
C(59)-H(59A)	0.9900
C(59)-H(59B)	0.9900
C(60)-H(60A)	0.9800
C(60)-H(60B)	0.9800
C(60)-H(60C)	0.9800
N(3)-H(3A)	0.8800
N(7)-H(7)	0.8800
C(8)-O(2)	1.272(12)
C(8)-O(1)	1.287(16)
C(9)-O(1)	1.487(9)
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(8')-O(2')	1.271(17)
C(8')-O(1')	1.276(15)
C(9')-O(1')	1.462(8)
C(9')-H(9'1)	0.9800

C(9')-H(9'2)	0.9800
C(9')-H(9'3)	0.9800
C(38)-O(5)	1.194(10)
C(38)-O(4)	1.370(10)
C(39)-O(4)	1.468(8)
C(39)-H(39A)	0.9800
C(39)-H(39B)	0.9800
C(39)-H(39C)	0.9800
C(38')-O(5')	1.198(12)
C(38')-O(4')	1.358(12)
C(39')-O(4')	1.464(11)
C(39')-H(39D)	0.9800
C(39')-H(39E)	0.9800
C(39')-H(39F)	0.9800
N(8)-C(47)	1.385(9)
N(8)-C(50)	1.392(8)
C(47)-C(48)	1.369(10)
C(48)-C(49)	1.444(9)
C(48)-H(48)	0.9500
C(49)-C(50)	1.342(8)
C(49)-H(49)	0.9500
C(50)-H(50)	0.9500
N(8')-C(47')	1.381(10)
N(8')-C(50')	1.389(8)
C(47')-C(48')	1.371(10)
C(48')-C(49')	1.434(10)
C(48')-H(48')	0.9500
C(49')-C(50')	1.338(8)
C(49')-H(49')	0.9500
C(50')-H(50')	0.9500
N(1)-C(1)-N(2)	113.2(4)
N(1)-C(1)-C(13)	123.1(3)
N(2)-C(1)-C(13)	123.7(3)
N(1)-C(2)-C(3)	128.9(3)
N(1)-C(2)-C(7)	110.1(4)
C(3)-C(2)-C(7)	120.9(4)
C(4)-C(3)-C(2)	116.7(4)

C(4)-C(3)-H(3)	121.6
C(2)-C(3)-H(3)	121.6
C(8)-C(4)-C(3)	125.4(8)
C(8)-C(4)-C(5)	112.5(8)
C(3)-C(4)-C(5)	122.1(5)
C(8)-C(4)-C(8')	12.3(12)
C(3)-C(4)-C(8')	113.5(7)
C(5)-C(4)-C(8')	124.3(6)
C(6)-C(5)-C(4)	120.8(4)
C(6)-C(5)-H(5)	119.6
C(4)-C(5)-H(5)	119.6
C(5)-C(6)-C(7)	117.2(5)
C(5)-C(6)-H(6)	121.4
C(7)-C(6)-H(6)	121.4
C(6)-C(7)-N(2)	132.0(4)
C(6)-C(7)-C(2)	122.2(5)
N(2)-C(7)-C(2)	105.8(3)
N(2)-C(10)-C(11)	111.2(3)
N(2)-C(10)-H(10A)	109.4
C(11)-C(10)-H(10A)	109.4
N(2)-C(10)-H(10B)	109.4
C(11)-C(10)-H(10B)	109.4
H(10A)-C(10)-H(10B)	108.0
O(3)-C(11)-C(10)	112.4(3)
O(3)-C(11)-H(11A)	109.1
C(10)-C(11)-H(11A)	109.1
O(3)-C(11)-H(11B)	109.1
C(10)-C(11)-H(11B)	109.1
H(11A)-C(11)-H(11B)	107.9
O(3)-C(12)-H(12A)	109.5
O(3)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12B)	109.5
O(3)-C(12)-H(12C)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
C(23)-C(13)-C(14)	120.2(4)
C(23)-C(13)-C(1)	117.5(3)

C(14)-C(13)-C(1)	122.2(3)
C(15)-C(14)-C(13)	119.2(3)
C(15)-C(14)-H(14)	120.4
C(13)-C(14)-H(14)	120.4
C(16)-C(15)-C(14)	120.9(3)
C(16)-C(15)-H(15)	119.6
C(14)-C(15)-H(15)	119.6
C(15)-C(16)-N(4)	123.0(3)
C(15)-C(16)-C(22)	120.3(4)
N(4)-C(16)-C(22)	116.7(3)
C(18)-C(17)-N(4)	108.6(3)
C(18)-C(17)-H(17)	125.7
N(4)-C(17)-H(17)	125.7
C(17)-C(18)-C(19)	107.9(4)
C(17)-C(18)-H(18)	126.1
C(19)-C(18)-H(18)	126.1
C(20)-C(19)-C(18)	106.9(4)
C(20)-C(19)-H(19)	126.6
C(18)-C(19)-H(19)	126.6
C(19)-C(20)-N(4)	108.1(3)
C(19)-C(20)-C(21)	132.2(3)
N(4)-C(20)-C(21)	119.6(3)
N(3)-C(21)-C(20)	107.3(3)
N(3)-C(21)-C(24)	109.3(3)
C(20)-C(21)-C(24)	110.2(3)
N(3)-C(21)-C(28)	111.0(3)
C(20)-C(21)-C(28)	109.4(3)
C(24)-C(21)-C(28)	109.7(3)
C(23)-C(22)-N(3)	121.8(3)
C(23)-C(22)-C(16)	118.5(3)
N(3)-C(22)-C(16)	119.6(3)
C(22)-C(23)-C(13)	120.9(3)
C(22)-C(23)-H(23)	119.5
C(13)-C(23)-H(23)	119.5
C(25)-C(24)-C(21)	112.2(3)
C(25)-C(24)-H(24A)	109.2
C(21)-C(24)-H(24A)	109.2

C(25)-C(24)-H(24B)	109.2
C(21)-C(24)-H(24B)	109.2
H(24A)-C(24)-H(24B)	107.9
C(26)-C(25)-C(24)	112.8(3)
C(26)-C(25)-H(25A)	109.0
C(24)-C(25)-H(25A)	109.0
C(26)-C(25)-H(25B)	109.0
C(24)-C(25)-H(25B)	109.0
H(25A)-C(25)-H(25B)	107.8
C(27)-C(26)-C(29)	113.2(3)
C(27)-C(26)-C(25)	110.7(3)
C(29)-C(26)-C(25)	109.8(3)
C(27)-C(26)-H(26)	107.7
C(29)-C(26)-H(26)	107.7
C(25)-C(26)-H(26)	107.7
C(26)-C(27)-C(28)	112.0(3)
C(26)-C(27)-H(27A)	109.2
C(28)-C(27)-H(27A)	109.2
C(26)-C(27)-H(27B)	109.2
C(28)-C(27)-H(27B)	109.2
H(27A)-C(27)-H(27B)	107.9
C(27)-C(28)-C(21)	112.0(2)
C(27)-C(28)-H(28A)	109.2
C(21)-C(28)-H(28A)	109.2
C(27)-C(28)-H(28B)	109.2
C(21)-C(28)-H(28B)	109.2
H(28A)-C(28)-H(28B)	107.9
C(30)-C(29)-C(26)	114.8(3)
C(30)-C(29)-H(29A)	108.6
C(26)-C(29)-H(29A)	108.6
C(30)-C(29)-H(29B)	108.6
C(26)-C(29)-H(29B)	108.6
H(29A)-C(29)-H(29B)	107.5
C(29)-C(30)-H(30A)	109.5
C(29)-C(30)-H(30B)	109.5
H(30A)-C(30)-H(30B)	109.5
C(29)-C(30)-H(30C)	109.5

H(30A)-C(30)-H(30C)	109.5
H(30B)-C(30)-H(30C)	109.5
N(5)-C(31)-N(6)	112.5(3)
N(5)-C(31)-C(43)	122.9(3)
N(6)-C(31)-C(43)	124.6(3)
N(5)-C(32)-C(37)	110.7(3)
N(5)-C(32)-C(33)	129.2(3)
C(37)-C(32)-C(33)	120.0(3)
C(34)-C(33)-C(32)	117.8(3)
C(34)-C(33)-H(33)	121.1
C(32)-C(33)-H(33)	121.1
C(33)-C(34)-C(35)	121.4(3)
C(33)-C(34)-C(38)	122.7(5)
C(35)-C(34)-C(38)	115.8(4)
C(33)-C(34)-C(38')	108.0(5)
C(35)-C(34)-C(38')	130.4(6)
C(38)-C(34)-C(38')	17.1(6)
C(36)-C(35)-C(34)	121.4(3)
C(36)-C(35)-H(35)	119.3
C(34)-C(35)-H(35)	119.3
C(35)-C(36)-C(37)	116.9(3)
C(35)-C(36)-H(36)	121.6
C(37)-C(36)-H(36)	121.6
N(6)-C(37)-C(32)	105.3(3)
N(6)-C(37)-C(36)	132.1(3)
C(32)-C(37)-C(36)	122.6(3)
N(6)-C(40)-C(41)	113.0(3)
N(6)-C(40)-H(40A)	109.0
C(41)-C(40)-H(40A)	109.0
N(6)-C(40)-H(40B)	109.0
C(41)-C(40)-H(40B)	109.0
H(40A)-C(40)-H(40B)	107.8
O(6)-C(41)-C(40)	107.2(3)
O(6)-C(41)-H(41A)	110.3
C(40)-C(41)-H(41A)	110.3
O(6)-C(41)-H(41B)	110.3
C(40)-C(41)-H(41B)	110.3

H(41A)-C(41)-H(41B)	108.5
O(6)-C(42)-H(42A)	109.5
O(6)-C(42)-H(42B)	109.5
H(42A)-C(42)-H(42B)	109.5
O(6)-C(42)-H(42C)	109.5
H(42A)-C(42)-H(42C)	109.5
H(42B)-C(42)-H(42C)	109.5
C(53)-C(43)-C(44)	118.9(3)
C(53)-C(43)-C(31)	123.6(3)
C(44)-C(43)-C(31)	117.4(3)
C(45)-C(44)-C(43)	121.0(3)
C(45)-C(44)-H(44)	119.5
C(43)-C(44)-H(44)	119.5
C(44)-C(45)-C(51)	118.6(3)
C(44)-C(45)-N(7)	121.3(3)
C(51)-C(45)-N(7)	120.0(3)
C(47')-C(46)-N(7)	105.5(4)
C(47')-C(46)-C(58)	102.5(4)
N(7)-C(46)-C(58)	109.1(3)
C(47')-C(46)-C(54)	119.1(4)
N(7)-C(46)-C(54)	110.8(3)
C(58)-C(46)-C(54)	109.3(3)
C(47')-C(46)-C(47)	19.2(5)
N(7)-C(46)-C(47)	108.0(4)
C(58)-C(46)-C(47)	118.0(4)
C(54)-C(46)-C(47)	101.5(4)
C(52)-C(51)-C(45)	120.9(3)
C(52)-C(51)-N(8)	113.7(4)
C(45)-C(51)-N(8)	124.6(4)
C(52)-C(51)-N(8')	130.0(4)
C(45)-C(51)-N(8')	107.6(4)
N(8)-C(51)-N(8')	27.1(2)
C(51)-C(52)-C(53)	121.4(3)
C(51)-C(52)-H(52)	119.3
C(53)-C(52)-H(52)	119.3
C(52)-C(53)-C(43)	119.2(3)
C(52)-C(53)-H(53)	120.4

C(43)-C(53)-H(53)	120.4
C(55)-C(54)-C(46)	112.8(3)
C(55)-C(54)-H(54A)	109.0
C(46)-C(54)-H(54A)	109.0
C(55)-C(54)-H(54B)	109.0
C(46)-C(54)-H(54B)	109.0
H(54A)-C(54)-H(54B)	107.8
C(56)-C(55)-C(54)	111.2(3)
C(56)-C(55)-H(55A)	109.4
C(54)-C(55)-H(55A)	109.4
C(56)-C(55)-H(55B)	109.4
C(54)-C(55)-H(55B)	109.4
H(55A)-C(55)-H(55B)	108.0
C(55)-C(56)-C(57)	109.8(3)
C(55)-C(56)-C(59)	112.9(3)
C(57)-C(56)-C(59)	110.5(3)
C(55)-C(56)-H(56)	107.8
C(57)-C(56)-H(56)	107.8
C(59)-C(56)-H(56)	107.8
C(56)-C(57)-C(58)	112.5(3)
C(56)-C(57)-H(57A)	109.1
C(58)-C(57)-H(57A)	109.1
C(56)-C(57)-H(57B)	109.1
C(58)-C(57)-H(57B)	109.1
H(57A)-C(57)-H(57B)	107.8
C(46)-C(58)-C(57)	113.8(3)
C(46)-C(58)-H(58A)	108.8
C(57)-C(58)-H(58A)	108.8
C(46)-C(58)-H(58B)	108.8
C(57)-C(58)-H(58B)	108.8
H(58A)-C(58)-H(58B)	107.7
C(60)-C(59)-C(56)	115.7(3)
C(60)-C(59)-H(59A)	108.3
C(56)-C(59)-H(59A)	108.3
C(60)-C(59)-H(59B)	108.3
C(56)-C(59)-H(59B)	108.3
H(59A)-C(59)-H(59B)	107.4

C(59)-C(60)-H(60A)	109.5
C(59)-C(60)-H(60B)	109.5
H(60A)-C(60)-H(60B)	109.5
C(59)-C(60)-H(60C)	109.5
H(60A)-C(60)-H(60C)	109.5
H(60B)-C(60)-H(60C)	109.5
C(1)-N(1)-C(2)	104.6(3)
C(1)-N(2)-C(7)	106.3(3)
C(1)-N(2)-C(10)	128.6(4)
C(7)-N(2)-C(10)	123.9(3)
C(22)-N(3)-C(21)	118.2(2)
C(22)-N(3)-H(3A)	120.9
C(21)-N(3)-H(3A)	120.9
C(20)-N(4)-C(17)	108.6(3)
C(20)-N(4)-C(16)	122.3(3)
C(17)-N(4)-C(16)	129.0(3)
C(31)-N(5)-C(32)	105.2(2)
C(37)-N(6)-C(31)	106.3(2)
C(37)-N(6)-C(40)	124.9(2)
C(31)-N(6)-C(40)	128.6(3)
C(45)-N(7)-C(46)	117.2(3)
C(45)-N(7)-H(7)	121.4
C(46)-N(7)-H(7)	121.4
C(11)-O(3)-C(12)	113.4(3)
C(41)-O(6)-C(42)	112.8(4)
C(4)-C(8)-O(2)	116.3(13)
C(4)-C(8)-O(1)	122.1(9)
O(2)-C(8)-O(1)	121.2(11)
C(8)-O(1)-C(9)	115.6(7)
O(2')-C(8')-O(1')	121.7(10)
O(2')-C(8')-C(4)	118.5(9)
O(1')-C(8')-C(4)	119.5(12)
O(1')-C(9')-H(9'1)	109.5
O(1')-C(9')-H(9'2)	109.5
H(9'1)-C(9')-H(9'2)	109.5
O(1')-C(9')-H(9'3)	109.5
H(9'1)-C(9')-H(9'3)	109.5

H(9'2)-C(9')-H(9'3)	109.5
C(8')-O(1')-C(9')	119.2(9)
O(5)-C(38)-O(4)	123.5(9)
O(5)-C(38)-C(34)	121.7(8)
O(4)-C(38)-C(34)	114.5(8)
C(38)-O(4)-C(39)	114.5(6)
O(5')-C(38')-O(4')	120.2(13)
O(5')-C(38')-C(34)	131.6(12)
O(4')-C(38')-C(34)	105.9(8)
O(4')-C(39')-H(39D)	109.5
O(4')-C(39')-H(39E)	109.5
H(39D)-C(39')-H(39E)	109.5
O(4')-C(39')-H(39F)	109.5
H(39D)-C(39')-H(39F)	109.5
H(39E)-C(39')-H(39F)	109.5
C(38')-O(4')-C(39')	115.5(10)
C(47)-N(8)-C(50)	108.9(6)
C(47)-N(8)-C(51)	115.1(5)
C(50)-N(8)-C(51)	134.1(5)
C(48)-C(47)-N(8)	107.9(7)
C(48)-C(47)-C(46)	129.8(7)
N(8)-C(47)-C(46)	122.3(7)
C(47)-C(48)-C(49)	106.9(7)
C(47)-C(48)-H(48)	126.6
C(49)-C(48)-H(48)	126.6
C(50)-C(49)-C(48)	108.1(6)
C(50)-C(49)-H(49)	126.0
C(48)-C(49)-H(49)	126.0
C(49)-C(50)-N(8)	108.2(6)
C(49)-C(50)-H(50)	125.9
N(8)-C(50)-H(50)	125.9
C(47')-N(8')-C(50')	109.0(6)
C(47')-N(8')-C(51)	125.9(6)
C(50')-N(8')-C(51)	124.3(5)
C(48')-C(47')-N(8')	107.6(8)
C(48')-C(47')-C(46)	135.4(8)
N(8')-C(47')-C(46)	116.1(7)

C(47')-C(48')-C(49')	107.0(7)
C(47')-C(48')-H(48')	126.5
C(49')-C(48')-H(48')	126.5
C(50')-C(49')-C(48')	108.3(6)
C(50')-C(49')-H(49')	125.8
C(48')-C(49')-H(49')	125.8
C(49')-C(50')-N(8')	108.1(6)
C(49')-C(50')-H(50')	126.0
N(8')-C(50')-H(50')	126.0

Symmetry transformations used to generate equivalent atoms:

Table 4.Anisotropic displacement parameters $(Å ^2x \ 10^3)$ for 101119LTs. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2 [h^2 \ a^{*2} U^{11} + ... + 2 \ h \ k \ a^* \ b^* \ U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	51(2)	53(2)	38(2)	-3(2)	0(2)	20(2)
C(2)	77(2)	44(2)	34(2)	0(1)	6(2)	20(2)
C(3)	122(4)	50(2)	43(2)	10(2)	24(2)	30(2)
C(4)	117(4)	45(2)	46(2)	8(2)	-2(2)	7(2)
C(5)	124(4)	38(2)	72(3)	6(2)	-26(3)	13(3)
C(6)	91(3)	42(2)	76(3)	-6(2)	-20(3)	18(2)
C(7)	76(3)	44(2)	45(2)	-9(2)	-12(2)	21(2)
C(10)	49(2)	60(2)	90(3)	-13(2)	2(2)	23(2)
C(11)	55(2)	71(3)	101(3)	-25(2)	28(2)	6(2)
C(12)	73(3)	96(3)	88(3)	-23(3)	50(3)	-14(2)
C(13)	48(2)	52(2)	42(2)	-6(2)	10(2)	14(2)
C(14)	45(2)	69(2)	42(2)	-5(2)	4(2)	22(2)
C(15)	40(2)	64(2)	50(2)	0(2)	8(2)	8(2)
C(16)	35(2)	65(2)	46(2)	-1(2)	12(2)	8(2)
C(17)	39(2)	87(3)	66(3)	3(2)	17(2)	1(2)
C(18)	53(2)	91(3)	83(3)	23(3)	33(2)	0(2)
C(19)	53(2)	83(3)	64(2)	16(2)	25(2)	2(2)
C(20)	38(2)	69(2)	49(2)	6(2)	18(2)	4(2)
C(21)	42(2)	55(2)	41(2)	6(1)	15(1)	3(1)
C(22)	39(2)	56(2)	39(2)	-5(2)	14(1)	7(1)
C(23)	39(2)	52(2)	37(2)	-4(1)	11(1)	9(1)
C(24)	46(2)	64(2)	41(2)	8(2)	16(2)	6(2)
C(25)	41(2)	56(2)	38(2)	6(1)	10(1)	4(1)
C(26)	44(2)	45(2)	45(2)	9(1)	16(1)	6(1)
C(27)	44(2)	47(2)	47(2)	7(1)	19(2)	8(1)
C(28)	43(2)	58(2)	39(2)	8(1)	14(1)	5(2)
C(29)	43(2)	55(2)	57(2)	17(2)	14(2)	9(2)
C(30)	52(2)	77(3)	81(3)	27(2)	33(2)	22(2)
C(31)	39(2)	42(2)	42(2)	6(1)	15(1)	7(1)
C(32)	52(2)	43(2)	38(2)	11(1)	18(1)	15(1)
C(33)	56(2)	58(2)	44(2)	15(2)	24(2)	23(2)
C(34)	78(3)	51(2)	47(2)	12(2)	28(2)	25(2)

C(35)	84(3)	42(2)	38(2)	2(1)	18(2)	6(2)
C(36)	60(2)	44(2)	45(2)	4(1)	13(2)	4(2)
C(37)	50(2)	37(2)	42(2)	9(1)	15(1)	4(1)
C(40)	43(2)	57(2)	51(2)	-1(2)	16(2)	-6(2)
C(41)	38(2)	94(3)	63(2)	11(2)	19(2)	8(2)
C(42)	80(3)	144(5)	123(5)	-9(4)	29(3)	54(3)
C(43)	36(2)	45(2)	44(2)	-1(1)	16(1)	-2(1)
C(44)	41(2)	41(2)	49(2)	-1(1)	23(2)	-3(1)
C(45)	40(2)	56(2)	44(2)	-4(2)	18(2)	-15(2)
C(46)	48(2)	56(2)	37(2)	-4(1)	16(2)	-8(2)
C(51)	29(2)	110(3)	48(2)	-24(2)	17(2)	-6(2)
C(52)	34(2)	107(3)	59(2)	-32(2)	11(2)	7(2)
C(53)	36(2)	71(2)	50(2)	-10(2)	12(2)	4(2)
C(54)	37(2)	45(2)	44(2)	0(1)	13(1)	3(1)
C(55)	36(2)	46(2)	50(2)	4(1)	16(1)	4(1)
C(56)	48(2)	47(2)	41(2)	0(1)	10(2)	11(1)
C(57)	86(3)	46(2)	43(2)	3(2)	15(2)	5(2)
C(58)	78(3)	57(2)	42(2)	2(2)	20(2)	-12(2)
C(59)	66(2)	76(2)	43(2)	2(2)	10(2)	40(2)
C(60)	40(2)	110(3)	65(3)	-13(2)	19(2)	10(2)
N(1)	75(2)	47(2)	39(2)	6(1)	16(1)	22(1)
N(2)	66(2)	44(2)	50(2)	-10(1)	0(2)	19(1)
N(3)	35(1)	59(2)	35(1)	-2(1)	4(1)	6(1)
N(4)	36(2)	68(2)	49(2)	3(1)	17(1)	0(1)
N(5)	41(1)	45(1)	40(1)	5(1)	15(1)	9(1)
N(6)	45(2)	41(1)	42(1)	-1(1)	17(1)	0(1)
N(7)	55(2)	49(2)	44(2)	0(1)	17(1)	-12(1)
O(3)	52(2)	85(2)	64(2)	-21(1)	23(1)	-8(1)
O(6)	70(2)	101(2)	134(3)	7(2)	44(2)	5(2)
C(8)	106(11)	55(3)	51(3)	10(2)	52(6)	43(6)
C(9)	78(4)	70(4)	82(4)	27(3)	37(3)	-2(3)
O(1)	68(2)	50(2)	59(2)	13(2)	30(2)	-2(2)
O(2)	89(3)	81(3)	88(4)	33(3)	39(3)	6(3)
C(8')	106(11)	55(3)	51(3)	10(2)	52(6)	43(6)
C(9')	78(4)	70(4)	82(4)	27(3)	37(3)	-2(3)
O(1')	68(2)	50(2)	59(2)	13(2)	30(2)	-2(2)
O(2')	89(3)	81(3)	88(4)	33(3)	39(3)	6(3)
			S 1	35		

C(38)	62(6)	40(6)	47(3)	5(4)	29(4)	-2(4)
C(39)	82(6)	81(4)	53(5)	1(4)	41(5)	8(6)
O(4)	63(5)	64(2)	44(3)	-3(2)	26(3)	2(4)
O(5)	65(4)	69(5)	55(3)	4(4)	33(3)	13(3)
C(38')	62(6)	40(6)	47(3)	5(4)	29(4)	-2(4)
C(39')	82(6)	81(4)	53(5)	1(4)	41(5)	8(6)
O(4')	63(5)	64(2)	44(3)	-3(2)	26(3)	2(4)
O(5')	65(4)	69(5)	55(3)	4(4)	33(3)	13(3)
N(8)	34(2)	39(3)	35(2)	10(2)	14(2)	9(2)
C(47)	37(3)	30(5)	38(3)	5(3)	13(2)	-4(3)
C(48)	41(3)	46(5)	38(3)	5(3)	13(2)	-1(3)
C(49)	41(2)	48(3)	39(3)	2(2)	20(2)	3(3)
C(50)	35(2)	48(3)	43(3)	3(2)	16(2)	5(3)
N(8')	34(2)	39(3)	35(2)	10(2)	14(2)	9(2)
C(47')	37(3)	30(5)	38(3)	5(3)	13(2)	-4(3)
C(48')	41(3)	46(5)	38(3)	5(3)	13(2)	-1(3)
C(49')	41(2)	48(3)	39(3)	2(2)	20(2)	3(3)
C(50')	35(2)	48(3)	43(3)	3(2)	16(2)	5(3)

Table 5. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å 2 x 10 3) for 101119LTs.

	Х	У	Z	U(eq)
H(3)	3131	4507	739	88
H(5)	1257	6560	614	115
H(6)	-27	5945	1150	105
H(10A)	-1132	4072	1932	95
H(10B)	-1253	4863	1493	95
H(11A)	196	5827	2779	104
H(11B)	-842	5459	3031	104
H(12A)	-465	4753	4057	139
H(12B)	645	4258	4264	139
H(12C)	-399	3874	3331	139
H(14)	-1218	2558	1180	71
H(15)	-1607	1439	1761	69
H(17)	-1989	610	2669	84
H(18)	-1581	-390	3593	90
H(19)	618	-221	4327	81
H(23)	2122	3061	2859	57
H(24A)	2516	1477	5157	62
H(24B)	2591	440	4783	62
H(25A)	4146	1899	4854	58
H(25B)	4475	1233	5435	58
H(26)	4278	46	4179	55
H(27A)	3785	201	2763	56
H(27B)	3689	1233	3137	56
H(28A)	2167	-238	3082	58
H(28B)	1815	403	2476	58
H(29A)	5739	1566	4274	63
H(29B)	6094	976	4928	63
H(30A)	6008	-258	3704	100
H(30B)	6966	564	3881	100
H(30C)	5745	379	3088	100
H(33)	6818	6196	4879	61
		\$137		

H(35)	3837	4831	2894	69
H(36)	2748	5308	3798	64
H(40A)	2612	6406	6164	66
H(40B)	2265	5643	5229	66
H(41A)	2214	7483	5345	81
H(41B)	1664	6646	4458	81
H(42A)	364	7962	5185	190
H(42B)	-702	7249	5054	190
H(42C)	-193	7162	4274	190
H(44)	6302	6941	7784	54
H(52)	3557	8717	8314	97
H(53)	3341	7949	6854	72
H(54A)	7411	9289	9669	54
H(54B)	8071	9656	10720	54
H(55A)	8804	8349	9519	56
H(55B)	9435	9363	10012	56
H(56)	9933	9109	11397	60
H(57A)	9516	7692	11513	75
H(57B)	8894	7287	10460	75
H(58A)	7453	7528	11073	76
H(58B)	8055	8536	11627	76
H(59A)	11317	8160	11297	80
H(59B)	10689	7770	10246	80
H(60A)	11257	9117	10077	120
H(60B)	12378	8799	10649	120
H(60C)	11798	9568	11130	120
H(3A)	2520	2361	4110	58
H(7)	6973	7104	9442	64
H(9A)	4420	7097	308	111
H(9B)	3653	7872	192	111
H(9C)	3419	6983	-622	111
H(9'1)	5215	5899	-296	111
H(9'2)	6016	6208	732	111
H(9'3)	5147	6838	349	111
H(39A)	6247	4821	1600	108
H(39B)	5334	3918	1185	108
H(39C)	6494	4015	2010	108
		S138		

H(39D)	6711	4733	1781	108
H(39E)	6110	3732	1569	108
H(39F)	7243	4165	2434	108
H(48)	6383	9374	11788	53
H(49)	4453	9968	11325	53
H(50)	3617	9463	9696	53
H(48')	6572	9091	11910	53
H(49')	4483	9399	11507	53
H(50')	3552	8835	9888	53

Scheme 5. Synthetic scheme for the polymer Polymer Bound

Benzimidazole Derivatives 6.

General Procedure for the Preparation of Polymer Bound Benzimidazole Derivatives 6.

Polyethylene glycol **1A** (PEG 4000) (1.0 g, 0.25 mmol, 1.0 equiv) dissolved in (5 mL) of dichloromethane was added to a solution of 4-fluoro-3-nitrobenzoic acid **1B** (0.11 g, 0.60 mmol, 2.4 equiv) in dichloromethane (5 mL) in the presence of N,N'-dicyclohexylcarbodiimide (DCC) (0.144 g, 0.70 mmol, 2.4 equiv) and N,N'-dimethylamino pyridine (DMAP) (3 mg). The reaction mixture was stirred at room temperature for 10 mins and subsequently irradiated in sealed microwave biotage vial (10 ml) at 85 °C for 15 mins. After completion of the reaction, the insoluble

dicyclohexyl urea (DCU) was filtered through filter paper. The reaction mixtures were precipitated by slow addition of cold ether and precipitated polymer conjugate 1C was filtered through fritted funnel. The crude product was washed successively with cold ether (50 mL \times 3) to remove the undesired impurity and dried for further steps. To the polymer conjugate 1C (1.1 gm, 0.25 mmol, 1.0 equiv) dissolved in (6 mL) of dichloromethane was added isobutyl amine (0.07 gm, 1.01 mmol, 4.0 equiv). The reaction mixture was stirred at room temperature and subsequently irradiated under sealed microwave vial (10 ml) at 75 °C for 15 mins to obtain the polymer bound conjugates 1D. After completion of the reaction, the reaction mixtures were precipitated by slow addition of cold ether and precipitated polymer conjugate **1D** was filtered through fritted funnel. The crude product was washed successively with ether (50 mL \times 3) to remove the undesired impurity and dried for further steps. Subsequently to the polymer conjugate **1D** (1.2 gm, 0.27 mmol, 1.0 equiv) dissolved in (6 mL) of methanol was added Zn (0.26 gm, 4.05 mmol, 15.0 equiv) and ammonium formate (0.17 gm, 2.70 mmol, 10.0 equiv). The reaction mixture was stirred at room temperature and subsequently irradiated in sealed microwave vial (10 ml) at 65 °C for 12 mins to obtain the polymer bound conjugates 1E. After completion, the mixtures were filtered with Celite

to remove zinc and the filtrate was collected and concentrated under reduced pressure. Then dichloromethane (25 mL) was added to precipitate ammonium formate, and the mixture was again passed through a thin layer of Celite to remove ammonium formate and dried. Polymer bound o-phenylene diamine **1E** (1.0 g, 0.23 mmol, 1.0 equiv) dissolved in (5 mL) of dichloromethane was added to a solution of 4-fluoro-3-nitrobenzoic acid (0.11 g, 0.60 mmol, 2.6 equiv) in dichloromethane (5 mL) in the presence of N, N'-dicyclohexylcarbodiimide (DCC) (0.12 g, 0.60 mmol, 2.6 equiv) and N,N'- dimethylamino pyridine (DMAP) (2 mg). The reaction mixture was stirred at room temperature and subsequently irradiated in sealed microwave vial (10 ml) for 85 °C 15 mins to obtain the polymer bound amide conjugates 3. After completion of the reaction, the suspensible dicyclohexyl urea (DCU) was filtered through filter paper. The reaction mixtures were precipitated by slow addition of cold ether and precipitated amide conjugate 1F was filtered through fritted funnel. The crude product was washed successively with ether (50 mL \times 3) to remove the undesired impurity and dried for further steps. To a solution of 1F in 1, 2-dichloroethane, trifluoroacetic acid (0.5 mL) and MgSO4 (0.5 g) were added and irradiated under sealed microwave vial (10 ml) 100 °C for 15 mins. After completion of the reaction, MgSO4 was removed through celite. The reaction mixtures were

precipitated by slow addition of excess of cold ether (100 mL) and filtered

through a fritted funnel to obtain the compound **6a** in high purity in quantitative yields

¹H NMR Spectrum of Compound 14 in CDCl₃

¹³C NMR Spectrum of Compound 14 in CDCl₃

Supplementary Material (ESI) for New Journal of Chemistry

This journal is (c) The Royal Society of Chemistry and The Centre National de la Recherche Scientifique, 2011

LR Mass Spectrum of Compound 14

S146

IR Spectrum of Compound 14

S147

¹H NMR Spectrum of Compound 15 in CDCl₃

¹³C NMR Spectrum of Compound 14 in CDCl₃

LR Mass Spectrum of Compound 15 in CDCl₃

IR Spectrum of Compound 15

¹H NMR Spectrum of Compound 16 in CDCl₃

LR Mass Spectrum of Compound 16 in CDCl₃

IR Spectrum of Compound 16 in CDCl₃

S156

LR Mass Spectrum of Compound 17 in CDCl₃

IR Spectrum of Compound 17 in CDCl₃

General Procedure for the Preparation Polymer Bound of 1-isobutyl-2-(3-nitro-4-(1H-indole-1-yl)phenyl)-1H-benzo[d]imidazole-5-carboxyl Indole (0.24 g, 2.14 mmol, 5 equiv) and Cs_2CO_3 (0.69 g, 2.14 mmol, 5 equiv) ate 11. was added to the solution of **6a** (2.0 g, 0.43 mmol, 1 equiv) in dimethyl formamide (10 mL) in a 20 mL microwave vial. The vial was sealed and the reaction mixtures were irradiated in a microwave reactor at 135 °C for 10 minutes to obtain the polymer conjugate 11. After being cooled to room temperature, the reaction mixtures were precipitated by slow addition of cold ether and precipitated pyrrole bound polymer conjugates **11** were filtered through fritted funnel. The crude product was washed in succession with ether (100 mL \times 3) to remove the undesired impurity and dried for next steps.

General Procedure for the Preparation of Polymer Bound 2-(3-amino-4-(1H-indole-1-yl)phenyl)-1-isobutyl

-1H-benzo[d]imidazole-5-carboxylate 12. To a solution of 11 (2.00 g, 0.41 mmol) in methanol (10 ml), zinc dust (0.53 g, 8.20 mmol, 20.0 equiv) and ammonium formate (0.27 g, 4.10 mmol, and 10.0 equiv) were added in a 20 mL microwave vial. The vial was sealed and the reaction mixtures were irradiated in a microwave reactor at 60 °C for 10 minutes. After being cooled to ambient temperature, the reaction

mixtures were then subjected to centrifugation for removal of Zn and filtered through fritted funnel and the supernatant liquid was concentrated by rotary evaporation. Dichloromethane (10 mL) was then added to salt out ammonium formate. The reaction mixtures were filtered through fritted funnel again to remove ammonium formate to obtain the polymer bound 2-(3-amino-4-(1H-indole-1-yl)phenyl)-1-isobutyl-1H-benzo[d]imidazole-5-carboxylat e **12.**

General Procedure Preparation Polymer for the of Bound 2-(4,4-dialkyl-4,5-dihydropyrrolo[1,2-a]quinoxalin-7-yl)-1-methyl-1H-benzo[d]i midazole-5-carboxylate 13. То a stirred solution of polymer bound 2-(3-amino-4-(1H-indole-1-yl)phenyl)-1-isobutyl-1H-benzo[d]imidazole-5-carboxylat e conjugates **12** in CHCl₃ (10 mL), 4-methylcyclohexanone (1.05 mmol, 5.0 equiv), trifluoro acetic acid (TFA) 0.05 ml and MgSO₄ (20 mg) were added in 20 mL microwave vial. The vial was sealed and the reaction mixtures were irradiated in a microwave reactor at 85 °C for 12 minutes. After cooling to room tempaeratue, the crude product mixtures were purified by precipitation with cold ether (100 mL×3) and dried to obtain the conjugate 13 in high purity.

General Procedure for the Cleavage of Polymer Bound Substituted alkyl 2-(4,4-alkyl-4,5-dihydropyrrolo[1,2-a]quinoxalin-7-yl)-1-methyl-1H-benzo[d]imi dazole-5-carboxylate 14. To a solution of conjugates 13 in methanol (20 mL), KCN (100 mg) was added and stirred for 24 hours at room temperature. After completion of the reaction, excess of cold ether (100 mL) was added, the polymer was filtered off and filtrate was subjected to evaporation. The residue was dried under vacuum, and and was purified by silica gel column and eluted with a mixture of ethyl acetate and hexane (1:4) to get the title compounds 14 as a pale yellow solid in 94 % vield.

General Procedure for the synthesis of methyl 2-(12b-methyl-1,2,3,12b-tetrahydrodipyrrolo[1,2-*a*:2,1-*c*]quinoxalin-6-yl)-1-isobu tyl-1*H*-benzo[*d*]imidazole-5-carboxylate 15.

To a stirred solution of polymer bound 2-(3-amino-4-(1H-pyrrol-1-yl)phenyl)-1-isobutyl-1H-benzo[d]imidazole-5-carboxylat e conjugates 8a (1.5 gm, 0.32 mm, 1.0 equiv) in MeOH (10 mL), pent-4-yn-1-ol (0.08 gm, 0.95 mmol, 3.0 equiv), PtCl₄ (5.3 mg, 5 mol-%) were added in 50 mL flask under argon atmosphere. The mixture was stirred at at 100 °C for 24 h. After completion of the reaction time, reaction mixture was filtered through celite pad. The crude product mixtures were purified by precipitation with cold ether (100 mL×3) and dried to obtain the polymer bound conjugate **15** in high purity. To a solution of conjugates **15** in methanol (20 mL), KCN (100 mg) was added and stirred for 24 hours at room temperature. After completion of the reaction, excess of cold ether (100 mL) was added, the polymer was filtered off and filtrate was subjected to evaporation. The residue was dried under vacuum. The residue was purified by flash silica gel column chromatography as a white solid in 81 % yield.

General Procedure for the synthesis of methyl 1-isobutyl-2-(10-phenyl-15b*H*-isoquino[2,1-*a*]pyrrolo[2,1-*c*]quinoxalin-7-yl)-1*H*-b enzimidazole-5-carboxylate 16.

То stirred solution of polymer bound a 2-(3-amino-4-(1H-pyrrol-1-yl)phenyl)-1-isobutyl-1H-benzo[d]imidazole-5-carboxylat (1.5 gm, 0.32 mm, 1.0 equiv) in DCE (10 mL), e conjugates 8a 2-(phenylethynyl)benzaldehyde (0.19 gm, 0.95 mmol, 3.0 equiv), AuCl (3.6 mg, 5 mol-%) were added in 50 mL flask under nitrogen atmosphere. The mixture was stirred at room temperature for 12 h. After completion of the reaction time, reaction mixture was filtered through celite pad. The crude product mixtures were purified by precipitation with cold ether (100 mL×3) and dried to obtain the polymer bound conjugate 16 in high purity. To a solution of conjugates 15 in methanol (20 mL), KCN (100 mg) was added and stirred for 24 hours at room temperature. After completion of the reaction, excess of cold ether (100 mL) was added, the polymer was filtered off and filtrate was subjected to evaporation. The residue was dried under vacuum. The

residue was purified by flash silica gel column chromatography as a pale yellow solid in 79 % yield.

General Procedure for the synthesis of methyl 1-isobutyl-2-(4-methyl-4-phenyl-4,5-dihydropyrrolo[1,2-a]quinoxalin-7-yl)-1H-be nzimidazole-5-carboxylate 17. To a stirred solution of polymer bound 2-(3-amino-4-(1H-pyrrol-1-yl)phenyl)-1-isobutyl-1H-benzo[d]imidazole-5-carboxylat conjugates 8a (1.5 gm, 0.32 mm, 1.0 equiv) in toluene (10 mL), phenyl e acetylene (0.10 gm, 0.95 mmol, 3.0 equiv), AgOTf (8.1 mg, 10 mol-%) were added in 50 mL flask under nitrogen atmosphere. The mixture was heated with stirring for 24 h. After completion of the reaction time, reaction mixture was filtered through celite pad. The crude product mixtures were purified by precipitation with cold ether (100 mL \times 3) and dried to obtain the polymer bound conjugate 17 in high purity. To a solution of conjugates 15 in methanol (20 mL), KCN (100 mg) was added and stirred for 24 hours at room temperature. After completion of the reaction, excess of cold ether (100 mL) was added, the polymer was filtered off and filtrate was subjected to evaporation. The residue was dried under vacuum. The residue was purified by flash silica gel column chromatography as a white solid in 65 % yield.