Supplementary Information

Antioxidant and anticancer activities of supramolecularly controlled magnetostructural halo-oximes of lawsone

Santosh B. Zaware ${ }^{\text {a }}$, Rajesh G. Gonnade ${ }^{\text {b }}$, Darbha Srinivas ${ }^{\text {c }}$, Ayesha Khan ${ }^{\text {d }}$, Sandhya Y. Rane ${ }^{*}$

This file replaces the previously published ESI file which contained incorrect CCDC deposition numbers.

Results and discussion

Crystal structure and supramolecular self-assembly

Table 1: Crystallographic data for halo-lawsone oximes

Compound	Chloro (1)	Bromo (2)	Iodo (3)
Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{ClNO}_{3} 0.5 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{BrNO}_{3} .0 .63 \mathrm{H}_{2} \mathrm{O}$	$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{INO}_{3} .2 \mathrm{H}_{2} \mathrm{O}$
Formula weight	232.63	278.07	351.09
Crystal system	Orthorhombic	Orthorhombic	Monoclinic
Space group	Pna21	Pna21	$P 2_{1} / n$
$a(\AA)$	20.874(13)	21.092(6)	15.892(3)
b (Å)	20.426(12)	20.588(6)	4.5575(9)
$c(\AA)$	4.638(3)	4.6388(13)	18.335(4)
$\beta\left({ }^{\circ}\right)$	90	90	110.667(3)
Volume (\AA^{3})	1978(2)	2014.3(10)	1242.5(4)
Z	8	8	4
$\mathrm{D}_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	1.562	1.834	1.877
$\mu\left(\mathrm{mm}^{-1}\right)$	0.376	4.073	2.586
$\mathrm{F}(000)$	952	1096	680
Crystal size (mm^{3})	$0.51 \times 0.04 \times 0.03$	$0.56 \times 0.08 \times 0.06$	$0.34 \times 0.12 \times 0.06$
Ab. correction	Multi-scan	Multi-scan	Multi-scan
$\mathrm{T}_{\text {min }}$	0.8312	0.2088	0.4734
$\mathrm{T}_{\text {max }}$	0.9888	0.7921	0.8603
$h, k, l(\min , \max)$	$\begin{aligned} & (-24,24),(-24,23), \\ & (-5,5) \end{aligned}$	$\begin{aligned} & (-19,25),(-24,17), \\ & (-5,4) \end{aligned}$	$\begin{aligned} & (-13,18),(-5,5), \\ & (-21,21) \end{aligned}$
Reflns collected	13938	9724	5759
Unique reflns	3496	3437	2180
Observed reflns	2773	2925	2008
R_int	0.0878	0.0389	0.0231
No. of parameters	289	290	178
No. of restraints	4	15	8
GoF on F^{2}	1.160	1.050	1.048
R_obs	0.0808	0.0425	0.0258
wR_{2} obs	0.1479	0.0962	0.0645
R_all	0.1048	0.0543	0.0280
wR_{2} all	0.1580	0.1019	0.0660
$\Delta \rho_{\max }, \Delta \rho_{\min }\left(\mathrm{e} . \AA^{-3}\right)$.	0.354 and -0.271	0.614and -0.340	0.556 and -0.264
CCDC deposition no	737076	737077	737078

The oxygen O 4 in $\mathbf{1}$ and O 5 in 2 of the water molecule accepts H -atom (H1A) from the oxime moiety and donates its H -atom to the carbonyl oxygen O3A of the next molecule A . The two adjacent molecules of A , which are bridged through water molecule, have almost perpendicular orientation in $\mathbf{1}$ as well as in $\mathbf{2}$ and same is the case with water molecule in $\mathbf{1}$. Another chain formed by molecule A and oxygen O4 runs parallel to the earlier chains in 2. In case of 1, the oxime group (N1B-O1B-H1B) donates its H-atom (H1B) to the water oxygen O4 and carbonyl oxygen O3B makes bifurcated $\mathrm{O}-\mathrm{H} . . . \mathrm{O}$ hydrogen bond by accepting two H -atoms, H2A and H4B from molecule A and water molecule, respectively. The $\pi \cdots \pi$ stacking between the two dissimilar rings resulted in the shifting of successive molecules along layer with the development of stepping in stacking of molecules. The adjacent layers of molecules A and B run in antiparallel fashion along the c-axis linked via longer but linear halogen bonding contact between the Cl1B atom and carbonyl oxygen O3A (Cl1B ...O3A $=3.332 \AA, \angle \mathrm{C} 3 \mathrm{~B}-\mathrm{Cl1B} \ldots \mathrm{O} 3 \mathrm{~A}$ $=156.2^{\circ}$) and weak C-H...Cl interactions involving C5A-H5A of molecule A and $\mathrm{Cl1B}$ of molecule B , thus forming bilayers. The neighbouring bilayers diagonal to the $a b$-plane are bridged through water molecule.

The geometries of the $\pi \cdots \pi$ interaction in both the molecules of $\mathbf{1}$ are comparable with the inter-centroid distances being $\mathrm{Cg} \cdots \mathrm{Cg}=3.588 \AA$ (symmetry code: $\mathrm{x}, \mathrm{y},-1+\mathrm{z}$) and $3.495 \AA$ (symmetry code: $\mathrm{x}, \mathrm{y}, 1+\mathrm{z}$) for molecules A and B , respectively. The two rings make a dihedral angle of 1.23° (molecule A) and 1.66° (molecule B) and the corresponding perpendicular distances from the centroid of one ring to the plane of other and vice versa are 3.385 and $3.408 \AA$ for molecule A and 3.435 and $3.438 \AA$ for molecule B.

The geometries of the $\pi \cdots \pi$ interaction in both the molecules of $\mathbf{2}$ are comparable with the inter-centroid distances being $\mathrm{Cg} \cdots \mathrm{Cg}=3.512 \AA$ (symmetry code: $\mathrm{x}, \mathrm{y}, 1+\mathrm{z}$) and $3.617 \AA$ (symmetry code: $\mathrm{x}, \mathrm{y},-1+\mathrm{z}$) for molecule A and B , respectively. The two rings make a dihedral angle of 1.39° (molecule A) and 1.22° (molecule B) and the corresponding perpendicular distances from the centroid of one ring to the plane of other are 3.457 and $3.458 \AA$ for molecule A and 3.397 and $3.423 \AA$ for molecule B. The $\pi \cdots \pi$ stacking between the two dissimilar rings resulted in the shifting of successive molecules along layer with the development of stepping in stacking of molecules. The adjacent stacked layers of molecules A and B along the c-axis are stitched via halogen bonding contact involving Br 1 A and carbonyl oxygen O3B and weak C H... Br contact between C5B-H5B of molecule B and Br 1 A of molecule A thus forming bilayers (Fig. 1).

The hydroxyl groups O1B-H1B and O2B-H2B donate their respective protons to the oxygen (O4 and O5) of the water molecules and carbonyl oxygen O3A. The C5B-H5B of the phenyl ring also makes almost linear $\mathrm{C}-\mathrm{H} . . . \mathrm{Br}$ contact with the bromine Br 1 A of molecule A . In turn, the atoms O2B, O3B and Br1A accept protons from the C5A-H5A, O5 and C8A-H8A to form C5A-H5A...O2B, O5 ..O3B and C8A-H8A...Br1B contacts.

Fig. 1. Linking of molecules along the c-axis via halogen bonding and aromatic $\pi \ldots \pi$ stacking interactions in 2.

In case of $\mathbf{3}$ the geometry of the $\pi \cdots \pi$ interaction is somewhat weak with the intercentroid distances being $\mathrm{Cg} \cdots \mathrm{Cg}=4.136(2) \AA$ (symmetry code: $\mathrm{x},-1+\mathrm{y}, \mathrm{z}$). The two rings make a dihedral angle of 2.53° and the corresponding perpendicular distances from the centroid of one ring to the plane of other and vice versa are 3.554 and $3.595 \AA$. The hydroxyl group (O1-H1A) of the oxime moiety of the host molecules also donates its H -atom to oxygen O 5 the other water molecule; in turn the water molecules O5 donates its H -atom (H5B) to the carbonyl oxygen O3 and accepts hydrogen atom H 4 B from the water molecule O 4 .

Fig. 2. Molecular packing viewed diagonal to $a c$-plane showing organization of the stacked layers of the host molecules through water molecules via O-H...O interactions in 3.

Molecular packing in other direction revealed the stacking of host molecules to form layered arrangement. These stack layers are bridged through water molecules via $\mathrm{O}-\mathrm{H} . . . \mathrm{O}$ interactions; both the water molecules are arranged in the channel across the crystallographic $2_{1^{-}}$ screw axis connected together via O-H...O interactions and also stitching the stacked layers of host molecules (Fig. 2).

Fig. 3. Linking of molecules in $\mathbf{3}$ along the c-axis via short I...I contact and aromatic $\pi \ldots \pi$ stacking interactions.

Table 2(a). Geometrical parameters for intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions in 1, Cl-LwOx $[\AA$ and deg.].

$\mathrm{D}-\mathrm{H} \ldots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{O}(4)-\mathrm{H}(4 \mathrm{~A}) \ldots \mathrm{Cl}(1 \mathrm{~A}) \# 1$	$0.82(5)$	$2.87(7)$	$3.464(6)$	$130(7)$
$\mathrm{C}(8 \mathrm{~B})-\mathrm{H}(8 \mathrm{~B}) \ldots \mathrm{Cl}(1 \mathrm{~A}) \# 2$	0.93	2.83	$3.607(7)$	141.6
$\mathrm{C}(5 \mathrm{~B})-\mathrm{H}(5 \mathrm{~B}) \ldots \mathrm{O}(2 \mathrm{~A}) \# 3$	0.93	2.54	$3.125(8)$	121.5
$\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A}) \ldots \mathrm{Cl}(1 \mathrm{~B})$	0.93	2.91	$3.564(7)$	128.9
$\mathrm{O}(4)-\mathrm{H}(9) \ldots \mathrm{O}(3 \mathrm{~A}) \# 1$	$0.82(5)$	$2.15(6)$	$2.861(8)$	$144(9)$
$\mathrm{O}(4)-\mathrm{H}(4 \mathrm{~B}) \ldots \mathrm{O}(3 \mathrm{~B}) \# 4$	$0.84(6)$	$2.25(5)$	$2.926(8)$	$138(7)$
$\mathrm{O}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(4) \# 5$	0.82	2.06	$2.794(8)$	149.0
$\mathrm{O}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B}) \ldots \mathrm{O}(1 \mathrm{~A}) \# 5$	0.82	2.34	$3.051(7)$	144.9
$\mathrm{O}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(4)$	0.82	2.10	$2.754(8)$	136.5
$\mathrm{O}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(3 \mathrm{~B}) \# 4$	0.82	2.26	$2.945(6)$	140.7

Symmetry transformations used to generate equivalent atoms:
$\# 1-\mathrm{x}+3 / 2, \mathrm{y}+1 / 2, \mathrm{z}+1 / 2 \quad \# 2 \mathrm{x}-1 / 2,-\mathrm{y}+1 / 2, \mathrm{z} \quad \# 3-\mathrm{x}+3 / 2, \mathrm{y}-1 / 2, \mathrm{z}+1 / 2 \quad \# 4-\mathrm{x}+3 / 2, \mathrm{y}+1 / 2, \mathrm{z}-1 / 2 \quad \# 5-\mathrm{x}+1,-\mathrm{y}+1, \mathrm{z}+1 / 2$
Table 2(b). Geometrical parameters for intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ interactions in 2, $\mathrm{Br}-\mathrm{LwOx}[\AA$ and deg.].

D-H...A	d(D-H)	d(H...A)	d(D...A)	$<(\mathrm{DHA})$
$\mathrm{O}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(5)$	0.85	2.05	$2.71(2)$	134.9
$\mathrm{O}(1 \mathrm{~B})-\mathrm{H}(1 \mathrm{~B}) \ldots \mathrm{O}(4) \# 1$	0.85	2.07	$2.818(8)$	145.7
$\mathrm{O}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(5) \# 2$	0.82	1.76	$2.487(19)$	147.0
$\mathrm{O}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(4) \# 2$	0.82	2.16	$2.879(9)$	146.2
$\mathrm{O}(2 \mathrm{~B})-\mathrm{H}(2 \mathrm{~B}) \ldots \mathrm{O}(3 \mathrm{~A}) \# 3$	0.82	2.25	$2.910(5)$	138.1
$\mathrm{O}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(1 \mathrm{~B}) \# 4$	0.82	2.33	$3.021(6)$	142.8

Symmetry transformations used to generate equivalent atoms:
\#1 x,y,z-1 \#2 -x+1,-y+1,z-1/2 \#3-x+3/2,y-1/2,z-1/2 \#4-x+1,-y+1,z+1/2

Table 2(c). Geometrical parameters for intermolecular O-H $\cdots \mathrm{O}$ interactions in 3 (I-LwOx) [\AA and deg.].

D-H...A	d(D-H)	d(H...A)	d(D...A)	$<(\mathrm{DHA})$
$\mathrm{O}(5)-\mathrm{H}(5 \mathrm{~B}) \ldots \mathrm{O}(3) \# 1$	$0.800(19)$	$1.98(2)$	$2.775(4)$	$172(4)$
$\mathrm{O}(5)-\mathrm{H}(5 \mathrm{~A}) \ldots \mathrm{O}(4) \# 2$	$0.810(18)$	$1.97(2)$	$2.764(4)$	$169(4)$
$\mathrm{O}(4)-\mathrm{H}(4 \mathrm{~B}) \ldots \mathrm{O}(5) \# 3$	$0.824(19)$	$2.08(2)$	$2.883(4)$	$166(4)$
$\mathrm{O}(4)-\mathrm{H}(4 \mathrm{~A}) \ldots \mathrm{O}(2) \# 4$	$0.812(19)$	$2.17(2)$	$2.949(4)$	$160(4)$
$\mathrm{O}(1)-\mathrm{H}(1 \mathrm{~A}) \ldots \mathrm{O}(5) \# 4$	$0.810(19)$	$1.85(2)$	$2.648(3)$	$167(4)$
$\mathrm{O}(2)-\mathrm{H}(2 \mathrm{~A}) \ldots \mathrm{O}(4))+5$	$0.792(18)$	$2.10(2)$	$2.815(4)$	$151(4)$

[^0]```
#1-x+2,-y+1,-z+1 #2 -x+1,-y+2,-z+1 #3-x+1,-y+1,-z+1 #4 -x+3/2,y+1/2,-z+1/2 #5 x+1/2,-y+3/2,z-1/2
```



Fig. 4: DPPH chemical assay:(a) Scavenging of DPPH radical in terms of \% Inhibition vs. conc. $(\mu \mathrm{M})(\mathrm{b}) \mathrm{IC}_{50}$ concentration $(\mu \mathrm{M})$ vs. compounds (Std, 1, 2 and 3).


[^0]:    Symmetry transformations used to generate equivalent atoms:

