ELECTRONIC SUPPORTING INFORMATION

Synthesis of spin crossover nano-objects with different morphologies and properties

Alexey Tokarev,^a Lionel Salmon,^{a*} Yannick Guari,^b Gábor Molnár^a and Azzedine Bousseksou^{a*}

^a Laboratoire de Chimie de Coordination, CNRS & Université de Toulouse (UPS, INP), 31077 Toulouse, France

^b Institut Charles Gerhardt Montpellier, UMR5253, Chimie Moléculaire et Organisation du Solide, Université Montpellier II, Place E. Bataillon, 34095, Montpellier cedex 5, France.

Figure S1. Schematic representation of the polymeric spin crossover $[Fe(NH_2-trz)_3^{2+}]_n$ complex.

Figure S2. Volume- (a) and number-based (b) particle size distribution for the colloidal suspension 1a at 293 K obtained by DLS analysis. (Parameters used for the data analysis: viscosity = 43 cP, refractive index = 1.450).

Size (d.nm)

Figure S3. Volume- (a) and number-based (b) particle size distribution for the colloidal suspension 2a at 293 K obtained by DLS analysis. (Parameters used for the data analysis: viscosity = 47 cP, refractive index = 1.450).

Figure S4. Volume- (a) and number-based (b) particle size distribution for the colloidal suspension 3a at 293 K obtained by DLS analysis. (Parameters used for the data analysis: viscosity = 50 cP, refractive index = 1.450).

Figure S5. Volume- (a) and number-based (b) particle size distribution for the colloidal suspension **4a** at 293 K obtained by DLS analysis. (Parameters used for the data analysis: viscosity = 60 cP, refractive index = 1.450).

Figure S6. Volume- (a) and number-based (b) particle size distribution for the colloidal suspension 4a isothermally held and measured by DLS analysis at 313 K. (Parameters used for the data analysis: viscosity = 21 cP, refractive index = 1.450).

Figure S7. Volume- (a) and number-based (b) particle size distribution for the colloidal suspension **4a** measured by DLS analysis at 293 K after holding at 313 K. (Parameters used for the data analysis: viscosity = 60 cP, refractive index = 1.450).

Figure S8. Cryo-mycrotomy TEM images and the size distributions for 5a (A) and 6a (B).

Figure S9. Size distribution of the solid state nanoparticle samples obtained by TEM: top row - **1b** (left), **2b** (middle) and **3b** (right), bottom row - **4b** (left), **5b** (middle) and **6b** (right)

 $T = 5 \ ^{\circ}C \ T = 20 \ ^{\circ}C$

Figure S10. Photographs of the gel obtained from sample 4a.

Figure S11. Temperature dependence of the magnetization for the surfactant-free fibres (red) and the solid state nanoparticles **4b** (blue) recorded in the cooling and heating modes at 1 K min⁻¹ following a first heating to 370 K (dehydration). Both compounds were obtained from the microemulsion **4**.

Figure S12. IR spectra of the surfactant-free fibers (top), microcrystalline powder (middle) and the nanoparticles of **4b** (bottom).

Figure S13. SEM images of sample 1b

Figure S14. X-ray powder diffraction patterns for the microcrystalline powder at 293 K (top), sample **4b** at 293 K (middle) and sample **4b** at 350 K (bottom).

Figure S15. TEM images of [Fe(Htrz)₂(trz)](BF₄) nanoparticles and their size distribution

Figure S16. TEM image of [Fe(NH₂trz)₃]Cl₂ nanoparticles and their size distribution