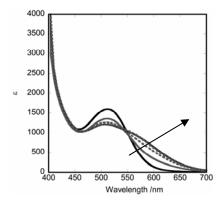

Supporting Information

Formation of Chiral Heterometallic Oligomers by Combination of Inert Ru(III) Tectons and Labile Ni(II) Connectors


Hisako Sato,** Aiko Nakao and Akihiko Yamagishi

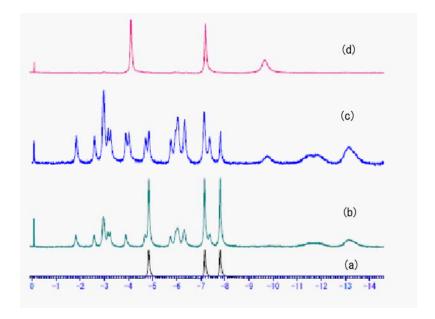
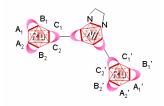
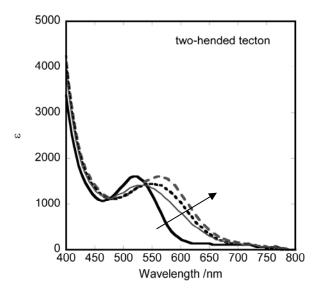

Figure S1. The vibrational circular dichroism spectra of chiral one-handed tecton, $[Ru(III)(acac)_2(taetH)]$ (left), and chiral two-handed tecton, $[Ru(III)(acac)(taetH)_2]$ (right). The solvent was CDCl₃. Dotted and solid curves denote the spectra of Λ- and Δ-enantiomers, respectively.

Figure S2. The ¹HNMR spectra of one-handed tecton (lower) and two-handed tecton (upper): one-handed tecton: [Ru(III)(acac)₂(taetH)], (CDCl₃) δ=-31.44 (2H, CH), -7.64(6H, CH₃), -7.24(6H, CH₃), -4.27(6H, CH₃), 1.73(6H, CH₃),15.90(H, OH); two-handed tecton, [Ru(III)(acac)(taetH)₂], (CDCl₃) δ=-36.74 (H, CH), -8.88 (6H, CH₃), -8.27 (6H, CH₃), 5.16 (6H, CH₃), 1.96 (6H, CH₃), 2.34 (6H, CH₃), 16.06 (2H, OH).

Figure S3. The UV-vis spectrum of a methanol solution of racemic $[Ru(III)(acac)_2(taetH)]$, when the various amounts of Ni(ClO₄)₂ were added in the presence of ten times excess of tmen.

Figure S4. The ¹HNMR spectra of a 4:1 (v/v) CDCl₃/CD₃OD solution containing one-handed tecton at a various amount of Ni(II) ion and the excess amount of tmen. The ratio of Ni/Ru was (a) 0, (b) 0.2, (c) 0.5 and (d) 1.2, respectively. The spectra contains the chemical shift region corresponding to the methyl protons of the Ru(III) complex and the methyl and methylene protons in the coordinated tmen.


Table S1. Interpretation of the splitting of ¹HNMR peaks due to the CH₃ protons in a trinuclear Ru-Ni-Ru complex, [{Ru(III)(acac)₂(taet)}₂Ni(II)(tmen)].


Racemic case

diastereomers	Relative	Number	Classification of methyl protons in a trimer
	abundance of	of split	as shown in the figure below
	diastereomeric	peaks ×	
	species	number	
	(no	of	
	stereoselectivity	methyl	
	assumed)	protons	
Δ - Λ - Δ	1	4×4	A ₁ =A ₁ ', A ₂ =A ₂ ',B ₁ =B ₁ ', B ₂ =B ₂ '
Λ – Δ – Λ	1		
Δ – Δ – Δ	1	4×4	$A_1^2 = A_1^2, A_2^2 = A_2^2, B_1^2 = B_1^2, B_2^2 = B_2^2$
Λ – Λ – Λ	1		
Δ – Δ – Λ	2	8×4	$A_1^3, A_1^{,3}, A_2^3, A_2^{,3}, B_1^2, B_1^{,2}, B_2^2, B_2^{,2}$
Λ – Λ – Δ	2		
Sum		16×4	

Enantiomeric case (Δ-case)

diastereomers	Relative	Number	Classification of methyl protons in a trimer
	abundance of	of split	as shown in the figure below
	diastereomeric	peaks ×	
	species	number	
	(no	of	
	stereoselectivity	methyl	
	assumed)	protons	
Δ – Λ – Δ	1	4×2	A ₁ =A ₁ ', A ₂ =A ₂ ',B ₁ =B ₁ ', B ₂ =B ₂ '
Δ – Δ – Δ	1	4×2	A ₁ =A ₁ ', A ₂ =A ₂ ',B ₁ =B ₁ ', B ₂ =B ₂ '
Sum		8×2	

Figure S5. The UV-vis spectra of a methanol/chloroform solution of racemic two-handed tecton, $[Ru(III)(acac)(taetH)_2]$, when the various amounts of $Ni(ClO_4)_2$ were added in the presence of ten times excess of tmen.

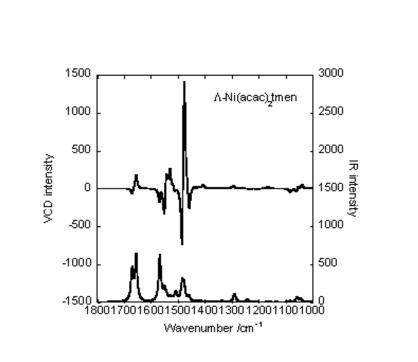


Figure S6. The calculated VCD and IR spectra of Λ -[Ni(acac)₂(tmen)]. The details in calculation are described in the text.