Supporting information

Synthesis, Growth and Characterization of a Third-order Nonlinear Optical Crystal Based on the Borate Ester with Sodium Supporting its Structural Framework

Zhihua Sun,[†] Tianliang Chen,[†] Ning-ning Cai,[‡] Jing-wei Chen,[§] Lina Li,[†] Yan Wang,[†] Junhua Luo,^{*,†} and Maochun Hong[†]

[†] Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China [‡] State Key Laboratory of Crystal Materials and Institute of Crystal Materials, Shandong University, Jinan 250100, China

[§] Department of Optics, Shandong University, Jinan 250100, China

* To whom correspondence should be addressed. E-mail: sunzhihua@fjirsm.ac.cn. Tel: +86-591-83730955; Fax: +86-591-83730955

Element analysis: Calculated results are H: 3.96 B: 3.04 C: 53.97 O: 32.57 Na: 6.46; Experimental results are H: 4.02 B: 2.97 C: 54.20 O: 32.06 Na: 6.05 NMR spectral data: ¹³C NMR (D₂O, 298 K, TMS): 179.8, 177.9, 139.3, 137.5, 129.1, 129.0,

128.6, 127.1, 126.7, 126.6, 78.3, 78.1, 73.9;

¹H NMR (D₂O, 298 K, TMS): 7.47-7.37 (m, 5H), 5.45, 5.09 (m, 1H)

X-ray Crystallography

X-ray powder diffraction (XRPD) was used to characterize the grown bulk crystals. Experimental XRPD patterns have been proved to be well consistent with calculated values derived from the single-crystal data by the mercury program, which are shown in Figure S3. The detailed experimental values and indices are given in Table S2.

Tables

	Bond length		Bond length		Bond length	
B1-O1	1.456(3)	B1-O2	1.497(5)	B2-O10	1.441(3)	
B1-O4	1.430(3)	B2-O7	1.438(5)	B2-O11	1.492(3)	
B1-O5	1.498(3)	B2-O8	1.511(5)	B2-O7	1.440(3)	
Na1-O3	2.309(2)	Na1-O14	2.315(4)	Na3-O1	2.515(3)	
Na1-O5	2.759(3)	Na2-O1	2.370(2)	Na3-O10	2.269(3)	
Na1-O6	2.3960(2)	Na2-O7	2.363(3)	Na3-O13	2.338(7)	
Na1-O9	2.4376(2)	Na2-O10	2.611(3)	Na3-O14	2.222(7)	
Na1-O12	2.4966(2)	Na2-O13	2.403(6)	Na3-O7	2.363(3)	
Na1-O13	2.443(8)	Na2-O14	2.315(4)			
	Bond angle		Bond angle		Bond angle	
O4-B1-O1	113.71(19)	O7-B2-O8	104.39(19)	O14-Na1-O13	69.86(18)	
O4-B1-O2	113.98(19)	O8-B2-O10	113.98(19)	O13-Na2-O14	90.7(2)	
O1-B1-O2	104.3(2)	O8-B2-O11	106.5(2)	O10-Na2-O13	101.9(2)	
O4-B1-O5	105.2(2)	O3-Na1-O6	83.22(7)	O9-Na2-O14	81.69(12)	
O1-B1-O5	112.94(19)	O6-Na1-O12	112.24(6)	O10-Na2-O14	79.68(12)	
O2-B1-O5	106.71(13)	O12-Na1-O9	79.35(6)	O10-Na2-O15	100.79(17)	
O7-B2-O10	113.7(2)	O14-Na1-O3	88.14(16)	O14-Na2-O1	168.65(16)	
O11-B2-O7	113.91(18)	O12-Na1-O14	64.45(13)	O14-Na3-O1	117.8(2)	
O10-B2-O11	104.41(19)	O5-Na1-O14	133.40(14)	O14-Na3-O7	126.3(2)	

 Table S1.
 Selected bond lengths [Å] and angles [deg] for LMBNa crystal.

Table S2 The experimental d values (observed), 2 θ (observed and calculated) and their diffraction indices for LMBNa crystal

h	k	1	$2\theta_{obs}$	$2\theta_{cal}$	\mathbf{d}_{obs}	h	k	1	$2\theta_{obs}$	$2\theta_{cal}$	d_{obs}
0	0	2	7.448	7.448	11.8592	4	1	-4			
1	0	1		7.495		0	2	4	25.720	25.720	3.4609
1	0	-3		11.089		3	2	-2	26.666	26.666	3.3403
0	0	3	11.182	11.182	7.9061	1	1	6		16.766	
2	0	0		11.184		4	1	2	27.654	27.654	3.2232
2	0	-2	11.672	11.672	7.5759	1	2	-5		27.671	
1	1	-1	11.903	11.903	7.4294	2	2	-5		28.378	
2	0	1		12.702		3	0	5	28.452	28.452	3.1346
0	1	2	12.779	12.779	6.9218	3	2	-4		28.544	
1	1	1		12.806		5	1	-5	29.388	29.388	3.0367
1	1	-2	13.129	13.129	6.7378	5	1	-1		29.388	
0	0	4		14.929		5	1	-5		29.452	
2	1	-1	14.977	14.996	5.9104	5	1	0		29.455	
2	0	2	14.996	15.023	5.9032	3	2	-5		30.171	
1	1	-3	15.204	15.204	5.8229	1	2	-6	30.218	30.218	2.9552
0	1	3		15.273		4	2	-2		30.256	
2	1	0		15.274		1	1	7		30.261	
3	1	-1	19.284	19.284	4.5992	4	2	-1		30.304	
3	0	-4		19.305		0	2	6		30.825	
3	1	-2	19.502	19.502	4.5482	4	2	0	30.827	30.827	2.8982
3	1	0	19.790	19.790	4.4827	5	1	-5		31.302	
3	1	-3	20.422	20.422	4.3452	5	1	1	31.303	31.303	2.8553
2	1	3	20.680	20.680	4.2916	2	0	7		31.349	
0	2	1	21.161	21.161	4.1950	4	1	4	32.118	32.118	2.7846
0	0	6	22.473	22.473	3.9531	1	0	8		32.141	
4	0	0		22.476		3	1	-8		32.173	
1	2	2		23.348		3	2	-6		32.179	
1	1	5	23.401	23.401	3.7983	4	2	-5		32.888	
2	1	4		23.448		5	1	-6		32.894	
1	1	-6	24.062	24.062	3.6956	5	1	2	32.905	32.895	2.7198
4	1	-2		24.108		2	2	-7		33.285	
2	2	1	24.467	24.467	3.6353	6	0	-4		33.296	
1	0	-7	25.351	25.351	3.5105	2	3	-1	33.353	33.353	2.6843
2	0	-7		25.674		3	1	6		33.424	

Figures

Figure S1. Solubility curve of LMBNa crystal in water

Figure S2. The grown LMBNa crystal with high quality.

Figure S3. Experimental and calculated X-ray powder diffraction patterns.

Figure S4. FT-IR spectra of LMBNa, H₃BO₃ and L-mandelic acid (L-Ma).

Figure S5. Schematic diagram of the samples for measuring the dielectric costant.

Figure S6. Dielectric constant vs temperature along different crystallographic directions at 1 MHz.