Supporting Information

Gilles Argouarch, Romain Veillard, Thierry Roisnel, Anissa Amar, Abdou Boucekkine, Anu Singh, Isabelle Ledoux* and Frédéric Paul*

Donor-substituted Triaryl-1,3,5-Triazinanes-2,4,6-Triones: Octupolar NLO-phores with a Remarkable Transparency–Nonlinearity Trade-off

Including:

1. NLO Measurements	p. S	2
2. Crystal data and structure refinement for 4	p. S	3

1. NLO Measurements

The first hyperpolarizabilities were determined by performing hyper-Raleigh scattering (HRS) experiments in CH₂Cl₂ solutions. This technique is based on the analysis of the incoherent light scattered second-harmonic signal from an isotropic medium. The scattered nonlinear intensity $I^{2\omega}$ can be expressed as $I^{2\omega} = C(N_S\langle\beta_S^2\rangle + N\langle\beta_S^2\rangle)(I^{\omega})^2$ for a solution containing *N* chromophores dissolved in N_S solvent molecules (concentrations expressed per milliliter of solution), where the *C* coefficient represents geometrical factors and experimental terms. The brackets refer to orientationally averaged β values. The *C* scaling factor is empirically deduced by a calibration experiment using a reference.

HRS measurements were conducted with a single-mode Nd:YAG laser emitting pulses of 10-MW peak power and 10-ns duration at 10-Hz repetition rate. The incident intensity I^{ω} is monitored by a half-wave plate and a Glan polarizer. A fraction of the incident beam is extracted from the main beam by a glass plate and sent onto a reference NPP frequency doubling calibrated powder. The fundamental beam is focused in a cell which contains the solution. The scattered harmonic signal is then collected at a right angle on a second photomultiplier after spectral selection through an interferential filter with 3-nm spectral resolution. For measurements performed in chloroform, the solvent was taken as reference, with a $\langle \beta_s^2 \rangle^{1/2}$ value of 0.19 10⁻³⁰ esu at 1.064 µm. For measurements effected in dichloromethane, ethyl violet was taken as an external reference standard with a $\langle \beta_s^2 \rangle^{1/2}$ value of 170 10⁻³⁰ esu at 1.907 µm. In both cases, *ca.* 10⁻³ M solutions were used. Note that the excitation wavelength was chosen so as not to allow two-photon excitation of any of the chromophores examined, *i.e.* at a much longer wavelength than twice the their absorption wavelength. The experimental accuracy is estimated to be \pm 15%.

2. Crystal data and structure refinement for 4

Empirical formula	$C_{27}H_{15}N_{3}O_{3}$
Formula weight	429.42
Temperature	100(2) K
Wavelength	0.71073 Å
Crystal system, space group	Trigonal, R 3 c
Unit cell dimensions	a = 13.5264(13) Å alpha = 90 deg.
	b = 13.526 Å beta = 90 deg.
	c = 24.608(2) Å gamma = 120 deg.
Volume	3899.2(5) Å ³
Z, Calculated density	6, 1.097 Mg/m ³
Absorption coefficient	0.073 mm ⁻¹
F(000)	1332
Crystal size	$0.25\times0.23\times0.15~mm$
Theta range for data collectio	n 3.01 to 27.48 deg.
Limiting indices	-16<=h<=17, -17<=k<=16, -25<=l<=31
Reflections collected / unique	e 7587 / 1002 [R(int) = 0.0576]
Completeness to theta $= 27.4$	8 99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.989 and 0.975
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1002 / 1 / 100
Goodness-of-fit on F^2	1.162
Final R indices [I>2sigma(I)]	R1 = 0.0693, wR2 = 0.1716
R indices (all data)	R1 = 0.0720, wR2 = 0.1732
Absolute structure parameter	-10(10)
Largest diff. peak and hole	0.326 and -0.320 e.Å ⁻³

	.	_		
	х у	Z	U(eq)	
C(1)	6523(4)	1102(5)	5364(2)	36(1)
C(2)	5566(4)	931(4)	5309(2)	25(1)
C(3)	4414(3)	716(3)	5224(2)	25(1)
C(4)	4067(4)	852(4)	4725(2)	25(1)
C(5)	2953(3)	654(3)	4622(2)	22(1)
C(6)	3648(3)	358(4)	5659(2)	24(1)
C(7)	2538(4)	158(3)	5587(2)	24(1)
C(8)	2223(3)	322(3)	5072(2)	17(1)
N(9)	1079(3)	149(3)	4991(2)	19(1)
C(10)	966(3)	1123(3)	5012(2)	17(1)
O(10)	1777(2)	2072(2)	5053(1)	22(1)

Atomic coordinates (\times 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for 4. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

C(1)-C(2)	1.203(6)	
C(1)-H(1)	0.9500	
C(2)-C(3)	1.450(6)	
C(3)-C(4)	1.359(7)	
C(3)-C(6)	1.398(6)	
C(4)-C(5)	1.415(6)	
C(4)-H(4)	0.9500	
C(5)-C(8)	1.401(6)	
C(5)-H(5)	0.9500	
C(6)-C(7)	1.398(6)	
C(6)-H(6)	0.9500	
C(7)-C(8)	1.388(6)	
C(7)-H(7)	0.9500	
C(8)-N(9)	1.460(5)	
N(9)-C(10)#1	1.396(5)	
N(9)-C(10)	1.401(5)	
C(10)-O(10)	1.206(5)	
C(10)-N(9)#2	1.396(5)	
C(2)-C(1)-H(1)	180.0	
C(1)-C(2)-C(3)	178.2(6)	
C(4)-C(3)-C(6)	119.5(4)	
C(4)-C(3)-C(2)	120.8(4)	
C(6)-C(3)-C(2)	119.7(4)	
C(3)-C(4)-C(5)	123.0(4)	
C(3)-C(4)-H(4)	118.5	
C(5)-C(4)-H(4)	118.5	
C(8)-C(5)-C(4)	115.5(4)	
C(8)-C(5)-H(5)	122.2	
C(4)-C(5)-H(5)	122.2	

Bond lengths [Å] and angles [deg] for 4.

C(7)-C(6)-C(3)	120.5(4)
C(7)-C(6)-H(6)	119.8
C(3)-C(6)-H(6)	119.8
C(8)-C(7)-C(6)	118.1(4)
C(8)-C(7)-H(7)	120.9
C(6)-C(7)-H(7)	120.9
C(7)-C(8)-C(5)	123.3(4)
C(7)-C(8)-N(9)	119.0(4)
C(5)-C(8)-N(9)	117.6(4)
C(10)#1-N(9)-C(10)	123.8(4)
C(10)#1-N(9)-C(8)	118.0(3)
C(10)-N(9)-C(8)	116.8(3)
O(10)-C(10)-N(9)#2	121.7(3)
O(10)-C(10)-N(9)	122.3(4)
N(9)#2-C(10)-N(9)	115.9(4)

Symmetry transformations used to generate equivalent atoms:

#1 -x+y,-x,z #2 -y,x-y,z

Anisotropic displacement parameters (Å $^2 \times 10^3)$ for 4.

The anisotropic displacement factor exponent takes the form: -2 pi² [$h^2 a^{*2} U11 + ... + 2 h k a^* b^* U_{12}$]

	U11	U22	U33	U23	U13	U12
C (1)	17(2)	46(3)	48(3)	13(2)	2(2)	18(2)
C(2)	18(2)	30(2)	28(2)	8(2)	4(2)	12(2)
C(3)	16(2)	17(2)	44(3)	3(2)	0(2)	11(2)
C(4)	20(2)	23(2)	27(2)	1(2)	9(2)	7(2)
C(5)	20(2)	16(2)	28(2)	3(2)	5(2)	8(2)
C(6)	17(2)	25(2)	28(2)	6(2)	1(2)	10(2)
C(7)	18(2)	20(2)	36(2)	2(2)	6(2)	11(2)
C(8)	10(2)	8(2)	31(2)	-3(2)	-2(1)	4(1)
N(9)	14(2)	18(2)	27(2)	4(1)	2(1)	9(1)
C(10)	16(2)	12(2)	23(2)	-1(1)	-4(2)	8(2)
O(10)	17(1)	16(1)	31(2)	4(1)	3(1)	6(1)

Torsion angles [deg] for 4.

C(1)-C(2)-C(3)-C(4)	-26(16)
C(1)-C(2)-C(3)-C(6)	153(16)
C(6)-C(3)-C(4)-C(5)	0.4(6)
C(2)-C(3)-C(4)-C(5)	-180.0(4)
C(3)-C(4)-C(5)-C(8)	1.0(6)
C(4)-C(3)-C(6)-C(7)	-1.0(6)
C(2)-C(3)-C(6)-C(7)	179.3(4)
C(3)-C(6)-C(7)-C(8)	0.2(6)
C(6)-C(7)-C(8)-C(5)	1.4(6)
C(6)-C(7)-C(8)-N(9)	-178.3(4)
C(4)-C(5)-C(8)-C(7)	-1.9(6)
C(4)-C(5)-C(8)-N(9)	177.7(3)
C(7)-C(8)-N(9)-C(10)#1	-70.8(5)
C(5)-C(8)-N(9)-C(10)#1	109.6(4)
C(7)-C(8)-N(9)-C(10)	96.3(4)
C(5)-C(8)-N(9)-C(10)	-83.4(4)
C(10)#1-N(9)-C(10)-O(10)	171.7(3)
C(8)-N(9)-C(10)-O(10)	5.4(6)
C(10)#1-N(9)-C(10)-N(9)#2	-7.2(8)
C(8)-N(9)-C(10)-N(9)#2	-173.4(3)

Symmetry transformations used to generate equivalent atoms:

#1 -x+y,-x,z #2 -y,x-y,z