Electronic Supplementary Information Bis-porphyrin copolymers covalently linked by pyridinium spacers obtained by electropolymerization from βoctaethylporphyrins and pyridyl-substituted porphyrins

Yun Xia,^a Delphine Schaming,^a Rana Farha,^{b,c} Michel Goldmann^{b,d} and Laurent Ruhlmann*^{a,e}

^a Laboratoire de Chimie Physique, UMR 8000 CNRS/Université Paris-Sud 11, Faculté des Sciences døOrsay, Bâtiment 349, 91405 Orsay, France.

^b Institut des NanoSciences de Paris, UMR 7588 CNRS/Université Paris 6, 4 place Jussieu, boîte courrier 840, 75252 Paris, France.

^c Laboratoire døAnalyse et Contrôle des Systèmes Complexes, ECE Paris Ecole døIngénieurs, 37 quai de Grenelle, 75015 Paris, France.

^d Université Paris Descartes, 45 rue des Saint Pères, 75006 Paris, France. ^e Laboratoire døElectrochimie et de Chimie-Physique du Corps Solide, UMR 7177 CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67081 Strasbourg, France.

Scheme S1. $E(EC_NEC_B)_n E$ mechanism proposed for the electropolymerization of ZnOEP with trans-H₂Py₂Ph₂P.

Figure S1. Cyclic voltammograms of ZnOEP, cis-H₂Py₂Ph₂P, trans-H₂Py₂Ph₂P, H₂Py₃PhP and H₂Py₄P in CH₃CN/1,2-C₂H₄Cl₂ (1:4) with 0.1 M NEt₄PF₆. c = 0.25 mM. Working electrode: glassy carbon; scan rate: 0.1 V s⁻¹.

Figure S2. Cyclic voltammograms of ZnOEP, cis-H₂Py₂Ph₂P, trans-H₂Py₂Ph₂P, H₂Py₃PhP and H₂Py₄P in CH₃CN/1,2-C₂H₄Cl₂ (1:4) with 0.1 M NEt₄PF₆. c = 0.25 mM. Working electrode: ITO; S = 1 cm²; scan rate: 0.1 V s⁻¹.

Figure S3. Cyclic voltammograms recorded during the electropolymerization of trans-H₂Py₂Ph₂P in the presence of ZnOEP(Cl)₂ in CH₃CN/1,2-C₂H₄Cl₂ (1:4) with 0.1 M NEt₄PF₆. working electrode: ITO; S = 1 cm²; scan rate: 0.1 V s⁻¹.

Scheme S2. Tentative representation of copolymers: (A) $poly-H_2Py_3PhP-ZnOEP$ and (B) $poly-H_2Py_4P-ZnOEP$.

Figure S4. Atomic force micrographs and normalized UV-visible absorption spectra of ITO electrodes (black lines) modified with (A) poly-trans- $H_2Py_2Ph_2P$ -ZnOEP, (B) poly-trans- $H_2Py_2Ph_2P$ -ZnOEP(Cl)₂, (C) poly- H_2Py_3PhP -ZnOEP and (D) poly- H_2Py_4P -ZnOEP (red lines: absorption spectra of the monomers ZnOEP or ZnOEP(Cl)₂ according to the copolymer (in 1,2- $C_2H_4Cl_2$) and blue lines: absorption spectra of the pendant pyridyl porphyrin monomers used for each copolymer (in 1,2- $C_2H_4Cl_2$)).