Supporting information.

Crystal structure of **1** at 150 K: Crystal data of **1**: $C_{76}H_{62}Cl_8CrFeN_8$, $M_r = 1478.79$, triclinic, P $\overline{1}$, a = 10.5331(12), b = 12.3100(11), c = 14.9616(13) Å, $\alpha = 98.283(7)$, $\beta = 110.587(9)$, $\gamma = 106.472(9)^{\circ}$, V = 1676.1(3) Å³, Z = 1, $\rho_{calcd} = 1.465$ g·cm⁻³, T = 150(2) K, data/parameters/ restrains 17996/ 522/ 455, $R_1 = 0.0974$, $wR_2 = 0.2338$, GO.F = 1.071 The intensity data for **1** were collected on an Oxford diffractions "Gemini-R" CCD diffractometer with graphite monochromated MoK_{α} radiation at low temperatures using an Oxford Instrument Cryojet system. Raw data reduction to F² was carried out using CrysAlisPro, Oxford Diffraction Ltd. The structures were solved by direct method and refined by the full-matrix least-squares method against F² using SHELX-97.¹ Non-hydrogen atoms were refined in the anisotropic approximation. Positions of hydrogen atoms were calculated geometrically. Subsequently, the positions of H atoms were refined by the "riding" model with U_{iso} = 1.2U_{eq} of the connected nonhydrogen atom or as ideal CH₃ groups with U_{iso} = 1.5U_{eq}. To keep the structure and thermal parameters of the disordered units close to real one we use SAME and DELU instruction in SHELXL what provides large enough number of restrains.

References.

(1) SHELX97, Sheldrick, G.M. University of Göttingen, Germany, 1997.

Components	Cp* ₂ Cr	Fe ^{II} Pc	$C_6H_4Cl_2$	1
Cp*2Cr	418w 549w 1021s 1060w 1375s 1413w 1448w	101		436w 548w 1025w - 1380m -
Fe ^u Pc		434w 515w 572w 688w 733s 757s 780m 820w 877w 893w 909w 1002w 1083s 1118s 1163m 1288m 1331s 1422s 1466w 1495w 1512w		440w 518w 572w 688w 728s 754s* 770w - 873w 893w 911w 1001w 1090m 1119s* 1165m 1289w 1331w 1423s 1482w 1506m
C ₆ H ₄ Cl ₂			657w 748s 1030m 1122m 1453m	658w 754s* 1034m 1119s* 1455m

Table S1. IR-spectra of starting compounds and complex 1.

Peculiarities of crystal structure.

Figure 1S. View of crystal structure of **1.** Two chains from the $Cp*_2Cr^+$ and Fe^IPc^- ions are shown in the direction parallel to the *c*-axis (a); the b-axis (b) and to the diagonal for the *bc* plane (c).

Figure 2S. The dependence of isothermal magnetization, M(H) vs applied magnetic field (H) at 2K.