Supplementary Material

Combining topochemical [2+2] photoreactions and hydrothermal isomerisation for the regioselective and quantitative preparation of *rtct*pyridylcyclobutanes

Yennifer Hill, Maholy Linares and Alexander Briceño,*

Instituto Venezolano de Investigaciones Científicas, (IVIC), Apartado 21827, Caracas, 1020-A, Venezuela. Laboratorio de Síntesis y Caracterización de Nuevos Materiales, Centro de Química.

1. Experimental Section

2. List of Figures

Figure 1. Ball and stick representation of the pyridylcyclobutanes found in the structure of **5** (*rtct*-4,4'-tpcb (a)), **6** (*rtct*-2,4'-tpcb-ht (b)) and **7** (*rcct*-4-Cl-dpcb-ht)

Figure 2. ¹H NMR spectrum of the starting *rctt*-pyridylciclobutanes *rctt*-2,2'-tpcb (a), *rctt*-4,4'-tpcb (b), *rctt*-2,4'-tpcb-ht(c), *rctt*-2,4'-tpcb-hh (d).

Figure S3. (a) ¹H-NMR spectrum of the mixture of products (*rctt-* and *rtct-* 2,2'-tpcb isomers) obtained from the reflux with $MnCl_2 \cdot 4H_2O$. (b) ¹H-NMR spectrum of the mixture of products (*rctt-* and *rtct-* 2,2'-tpcb isomers) obtained from the reflux with $AlCl_3 \cdot 6H_2O$.

Figure S4. (a) ¹H-NMR spectrum of the isomer *rctt*-4,4'-tpcb obtained from the reflux with MnCl₂·4H₂O. (b) ¹H-NMR spectrum of the mixture of products (*rctt*- and *rcct*- 4,4'-tpcb isomers) obtained from the reflux with AlCl₃·6H₂O.

Figure S5. (a) ¹H-NMR spectrum of the mixture of products (*rctt-* and *rcct-* 2,4'-tpcb-ht isomers) obtained from the reflux with $MnCl_2 \cdot 4H_2O$. (b) ¹H-NMR spectrum of the mixture of products (*rctt-*, *rttt* and *rcct-* 2,4'-tpcb-ht isomers) obtained from the reflux with AlCl₃ · 6H₂O.

Figure S6. a) ¹H-NMR spectrum of the mixture of products (*rctt-* and *rcct-* 2,4'-tpcb-hh isomers) obtained from the reflux with $MnCl_2 \cdot 4H_2O$. (b) ¹H-NMR spectrum of the mixture of products (*rctt-*, and *rcct* 2,4'-tpcb-hh isomers) obtained from the reflux with $AlCl_3 \cdot 6H_2O$.

Figure S7. Comparative ¹H-NMR spectrum of the *rctt*-2,2'-tpcb isomer before (a) and after the heating upon hydrothermal conditions either with bta or $AlCl_3 \cdot 6H_2O$. Representative ¹H-NMR spectrum of the *rtct*-2,2'-tpcb isomer (b).

Figure S8. Comparative ¹H-NMR spectrum of the *rctt*-4,4'-tpcb isomer before (a) and after the heating upon hydrothermal conditions either with bta or $AlCl_3 \cdot 6H_2O$. Representative ¹H-NMR spectrum of the *rtct*-4,4'-tpcb isomer (b).

Figure S9. Comparative ¹H-NMR spectrum of the *rctt*-2,4'-tpcb-ht isomer before (a) and after the heating upon hydrothermal conditions either with bta or $AlCl_3 \cdot 6H_2O$. Representative ¹H-NMR spectrum of the *rtct*-2,4'-tpcb-ht isomer (b).

Figure S10. Comparative ¹H-NMR spectrum of the *rctt*-2,4'-tpcb-ht isomer before (a) and after the heating upon hydrothermal conditions either with bta or $AlCl_3 \cdot 6H_2O$. Representative ¹H-NMR spectrum of the *rtct*-2,4'-tpcb-hh isomer (b).

Figure S11. Comparative ¹H-NMR spectrum of the irradiated sample of $(bta^{2-}) \cdot 2(4-Cl-HStb^+)$, containing *rctt*-1,3-bis(4-pyridyl)-2,4-bis(4-chlorophenyl)cyclobutane head-to-tail (*rctt*-4-Cl-dpcb-ht) before (a). ¹H-NMR spectrum of the mixture of products (*rctt*-, and isomers) obtained after the heating upon hydrothermal conditions with bta (b). T = template (bta); * = *rctt*-isomer)

1. Experimental Section

All reagents were obtained from commercial sources and used without further purification. The ¹H NMR spectra were recorded on a Bruker AVANCE-300 Spectrometer in CDCl₃.

Synthesis of *rctt*-pyridylcyclobutanes (tpcb)

The cyclobutane derivatives were prepared from controlled [2+2] cycloaddition reactions in the solid state of *trans*-bis(2-pyiridyl)ethylene (**2,2'-bpe**), *trans*-bis(4-pyridyl)ethylene (**4,4'-bpe**), *trans*-1-(2-pyridyl)-2-(4-pyridyl)ethylene (**2,4'-bpe**) and 4-Chorostilbazole (**4-Cl-Stb**), according to previously published procedures (see reference section). The different photoproducts obtained were characterised before the hydrothermal reaction by NMR spectroscopy: *rctt*-**2,2'-tpcb** ¹H NMR (300 MHz, CDCl₃), $\delta_{\rm H}$ (ppm), *J*(Hz): 8.42(4H_a, ddd, J_{ab} =4.9, J_{ac} =1.8, J_{ad} =0.9), 7.33(4H_b, td, J_{bc} =7.7, J_{bd} = 1.8), 6.9(4H_c, ddd, J_{cd} = 7.8) 7.07(4H_d, dd,), and 5.13(4H_e, s); *rctt*-**4,4'-tpcb** (300 MHz, CDCl₃), $\delta_{\rm H}$ (ppm), *J*(Hz): 8.45(8H_a, dd, J_{ab} =4.5), 7.00(8H_b, dd), and 4.48(4H_c, s); *rctt*-**2,4'-tpcb-ht** (300 MHz, CDCl₃), $\delta_{\rm H}$ (ppm), *J*(Hz): 8.43(2H_a, ddd, J_{ab} =4.8, J_{ac} =1.7, J_{ad} =0.9), 8.29(4H_e, ddd, J_{ef} =6.0), 7.42(2H_c, td, J_{bc} =7.7), 7-6.96(8H_{b,d,f}, m, J_{bd} =1.8, J_{dc} =7.5), 4.86(2H_g, td, J_{gh} =8.7) and 4.71(2H_h, td); *rctt*-**2,4'-tpcb-hh** (300 MHz, CDCl₃), $\delta_{\rm H}$ (ppm), *J*(Hz): 8.44(2H_a, ddd, J_{ab} =4.6, J_{ac} =1.7), 8.34(4H_e, ddd, J_{ef} =6.0), 7.39(2H_b, td, J_{bc} =7.7), 7.04(4H_f, dd), 6.97-6.94(4H_{c,d} m), 4.94(2H_g, td, J_{gh} =6.4) and 4.60(2H_h, td); *rctt*-4.Cl-dpcb-ht: [*rctt*-1,3-bis(4-pyridyl)-2,4-bis(4chlorophenyl) cyclobutane head-to-tail] (300 MHz, DMSO), $\delta_{\rm H}$ (ppm), *J*(Hz): 8.38(4H_a, d, $J_{\rm ab}$ =4.7), 8.02(2H, s, template (bta)), 7.27(4H_c, d, $J_{\rm cd}$ =6.1) 7.21(8H_{b,d}, s), and 4.57(4H_{e,d}, m).

General procedure for the isomerisation of *rctt*-pyridylcyclobutanes derivatives (tpcb) under reflux in presence of metal salts (MnCl₂·4H₂O and AlCl₃·6H₂O).

A round-bottom flask was charged with the different *rctt*-tpcb (60 mg) dissolved in methanol (10 mL), and combined with $MnCl_2 \cdot 4H_2O$ (55 mg) or $AlCl_3 \cdot 6H_2O$ (66 mg) in 1:2 molar ratio previously dissolved in water (20 mL), respectively. The mixture was refluxed (T=80-82°C) for 24 h and after slow cooling to room temperature. The products were extracted with CH_2Cl_2 and characterised by ¹H-NMR spectroscopy.

General procedure for the isomerisation of *rctt*-pyridylcyclobutanes derivatives (tpcb) under hydrothemal conditions

A mixture was prepared by adding of 1,2,4,5 benzenetetracarboxylic acid (bta, 46mg) or AlCl₃· $6H_2O$ (66mg) and each pyridyl compounds (50mg), respectively in 1:2 molar ratio in 10 mL of H₂O. These mixtures were heated at 140°C for 24-48h. Slow evaporation of the resulting solutions at room temperature gave crystals of good quality for X-ray single crystal analysis of 1-3. The crude product were extracted with CH₂Cl₂ or after the dissolution of solid phases in a NaOH solution (pH~ 12) and after the extraction with CH₂Cl₂ All the products were characterised by ¹H-NMR. (*rtct-2,2'-tpcb*): ¹H NMR (300 MHz, CDCl₃), $\delta_{\rm H}(\rm ppm), J(\rm Hz): 8.66(4H_a, ddd, J_{ab}=5.8, J_{ac}=1.9, J_{ad}=0.9), 7.54(4H_c, td), 7.19 (4H_b, td),$ $J_{bc}=7.1$, $J_{bd}=1.4$), 7.13(4H_d, d) and 4.37(4H_e, s). *rtct*-4,4'-tpcb: ¹H NMR (300 MHz, CDCl₃), $\delta_{\rm H}$ (ppm), J(Hz): 8.57(8H_a, dd, $J_{\rm ab}$ =6.0), 7.14(8H_b, dd) and 3.69(4H_c, s). *rtct*-2,4'**tpcb-ht:** ¹H NMR (300 MHz, CDCl₃), $\delta_{\rm H}$ (ppm), J(Hz): 8.68(2H_a, ddd, J_{ab}=4.5, J_{ac}=1.8, $J_{ad}=0.9$), 8.46(4H_e, dd, $J_{ef}=4.7$), 7.63(2H_c, ddd, $J_{bc}=7.7$), 7.24(4H_f, m), 7.19(2H_b, ddd, $J_{\rm bd}$ =1.2), 7.13(2H_d, ddd) 4.32(2H_g, t, $J_{\rm gh}$ =9.7) and 3.72(2H_h, t). *rtct*-2,4'-tpcb-hh: ¹H NMR (300 MHz, CDCl₃), $\delta_{\rm H}$ (ppm), J(Hz): 8.66(2H_a, dd, $J_{\rm ab}$ =4.5, $J_{\rm ac}$ =1.8), 8.50(4H_e, dd, $J_{\rm ef}$ =6.1), $7.54(2H_c, td, J_{cd}=7.7, J_{bc}=7.6), 7.24(4H_f, dd, J_{ef}=6.1), 7.15(2H_b, m, J_{bd}=1.0), 7.02(2H_d, d),$ 4.13(2 H_g , m) and 4.01(2 H_h , m). *rcct*-4-Cl-dpcb-ht: [*rcct*-1,3-bis(4-pyridyl)-2,4-bis(4chlorophenyl) cyclobutane] (300 MHz, DMSO), $\delta_{\rm H}$ (ppm), J(Hz): 8.30(4H_a, d, J_{ab}=5.8), 8.02(2H, s, template (bta)), 7.67(2H_e, d, J_{ef} =8.4), 7,40(2H_c, d, J_{cd} =8.5), 7.14(4H_b, d), $6.94(4H_{d,f}, s), 4.95(1H_{h}, t, J_{ac}=1.7, J_{hg}=11.8), 4.58(1H_{i}, t, J_{ig}=9.0), and 4.36(2H_{g}, t).$

Crystal structure determination. Intensity data were recorded at room temperature on a Rigaku AFC-7S diffractometer equipped with a CCD bidimensional detector using monochromated Mo(K α) radiation ($\lambda = 0.710$ Å3. An empirical absorption correction (multi-scan) was applied using the package CrystalClear. The structures were solved by Direct Methods and refined by full-matrix least-squares on F^2 using the SHELXTL-PLUS package. Hydrogen atoms on C and N atoms were placed at fixed positions using the HFIX instruction, except for the structure 5, which were found from the Difference Fourier map. All the H atoms were refined with isotropic displacement parameters set to $1.2 \times U$ eq of the attached atom. In the crystal structure of **5** water molecules were found disordered. Attempts were made to model this disorder or split it into two positions, but were unsuccessful. PLATON/SQUEZZE routine was used to correct the data for the presence of disordered solvent. A potential solvent volume of 2132 $Å^3$ was found. The stoichiometry of the solvent was calculated to be approximately 5 molecules of water per formula unit, which results in a total of 837 electrons per unit cell. In the crystal structure $\frac{6}{5}$ and $\frac{7}{5}$, the water molecules found with partial population of 0.64 and 0.31 for $\frac{6}{6}$ and $\frac{7}{2}$, respectively. The H atoms on the water molecules were not located in the density map in the structure of 7.

Figure 1. Ball and stick representation of the pyridylcyclobutanes found in the structure of **5** (*rtct*-4,4'-tpcb (a)), **6** (*rtct*-2,4'-tpcb-ht (b)) and **7** (*rcct*-4-Cl-dpcb-ht)

Figure 2. ¹H NMR spectrum of the starting *rctt*-pyridylciclobutanes *rctt*-2,2'-tpcb (a), *rctt*-4,4'-tpcb (b), *rctt*-2,4'-tpcb-ht(c), *rctt*-2,4'-tpcb-hh (d).

Figure S3. (a) ¹H-NMR spectrum of the mixture of products (*rctt-* and *rtct-* 2,2'-tpcb isomers) obtained from the reflux with $MnCl_2 \cdot 4H_2O$. (b) ¹H-NMR spectrum of the mixture of products (*rctt-* and *rtct-* 2,2'-tpcb isomers) obtained from the reflux with $AlCl_3 \cdot 6H_2O$.

Figure S4. (a) ¹H-NMR spectrum of the isomer *rctt*-4,4'-tpcb obtained from the reflux with $MnCl_2 \cdot 4H_2O$. (b) ¹H-NMR spectrum of the mixture of products (*rctt*- and *rcct*- 4,4'-tpcb isomers) obtained from the reflux with $AlCl_3 \cdot 6H_2O$.

Figure S5. (a) ¹H-NMR spectrum of the mixture of products (*rctt-* and *rcct-* 2,4'-tpcb-ht isomers) obtained from the reflux with $MnCl_2 \cdot 4H_2O$. (b) ¹H-NMR spectrum of the mixture of products (*rctt-*, *rttt* and *rcct-* 2,4'-tpcb-ht isomers) obtained from the reflux with AlCl₃·6H₂O.

Figure S6. a) ¹H-NMR spectrum of the mixture of products (*rctt-* and *rcct-* 2,4'-tpcb-hh isomers) obtained from the reflux with $MnCl_2 \cdot 4H_2O$. (b) ¹H-NMR spectrum of the mixture of products (*rctt-*, and *rcct* 2,4'-tpcb-hh isomers) obtained from the reflux with $AlCl_3 \cdot 6H_2O$.

Figure S7. Comparative ¹H-NMR spectrum of the *rctt*-2,2'-tpcb isomer before (a) and after the heating upon hydrothermal conditions either with bta or $AlCl_3 \cdot 6H_2O$. Representative ¹H-NMR spectrum of the *rtct*-2,2'-tpcb isomer (b).

Figure S8. Comparative ¹H-NMR spectrum of the *rctt*-4,4'-tpcb isomer before (a) and after the heating upon hydrothermal conditions either with bta or $AlCl_3 \cdot 6H_2O$. Representative ¹H-NMR spectrum of the *rtct*-4,4'-tpcb isomer (b).

Figure S9. Comparative ¹H-NMR spectrum of the *rctt*-2,4'-tpcb-ht isomer before (a) and after the heating upon hydrothermal conditions either with bta or $AlCl_3 \cdot 6H_2O$. Representative ¹H-NMR spectrum of the *rtct*-2,4'-tpcb-ht isomer (b).

Figure S10. Comparative ¹H-NMR spectrum of the *rctt*-2,4'-tpcb-ht isomer before (a) and after the heating upon hydrothermal conditions either with bta or $AlCl_3 \cdot 6H_2O$. Representative ¹H-NMR spectrum of the *rtct*-2,4'-tpcb-hh isomer (b).

Figure S11. Comparative ¹H-NMR spectrum of the irradiated sample of $(bta^{2-}) \cdot 2(4-Cl-HStb^+)$, containing *rctt*-1,3-bis(4-pyridyl)-2,4-bis(4-chlorophenyl)cyclobutane head-to-tail (*rctt*-4-Cl-dpcb-ht) before (a). ¹H-NMR spectrum of the mixture of products (*rctt*-, and *rcct*-4-Cl-dpcb-ht isomers) obtained after the heating upon hydrothermal conditions with bta (b). T = template (bta); * = *rctt*-isomer)

