Supporting Information

An unusual three-dimensional self-penetrating network derived from cross-linking of twofold interpenetrating nets via ligand-unsupported Ag–Ag bonds: synthesis, structure, luminescence, and theoretical study †

Xue-Zhi Song,^{ab} Chao Qin,^a Wei Guan,^a Shu-Yan Song^{*a} and Hong-Jie Zhang^{*a}

- Figure S1: PXRD patterns of 1.
- Figure S2: TG and DSC curves of compound 1.
- Figure S3: IR spectrum of compound 1.
- Figure S4: ¹H NMR spectrum of H₂L ligand.
- Figure S5: View of the asymmetric unit of H₂L ligand.
- Figure S6: Schematic view of the disordered part of H₂L ligand.
- Figure S7: Hydrogen bonds in H₂L ligand.
- Table S1: Crystallographic data for H₂L.
- Table S2: Hydrogen bonds for H₂L.
- Text S1: Description and discussion of H₂L crystal structure.

Fig. S1. PXRD patterns of **1**: simulated, as-synthesized, treated at 90 °C and 120 °C, respectively.

Fig. S2. TG and DSC curves of compound 1.

Fig. S3. IR spectrum of compound 1.

Fig. S4. ¹H NMR spectrum of H₂L ligand.

Fig. S5. View of the asymmetric unit of H_2L ligand.

Fig. S6. Schematic view of the disordered part of H₂L ligand.

Fig. S7. Hydrogen bonds in H₂L ligand.

	H ₂ L			
Empirical formula	$C_{12}H_{10}N_2O_4$			
Μ	246.22			
T/K	123(2)			
λ / Å	0.71073			
crystal system	monoclinic			
space group	$P2_{1}/n$			
<i>a</i> / Å	7.6395(4)			
<i>b</i> / Å	21.1972(11)			
<i>c</i> / Å	9.8455(5)			
α / deg	90			
β / deg	97.6830(10)			
γ/ deg	90			
$V/ \text{\AA}^3$	1580.03(14)			
Z	6			
μ/mm^{-1}	0.119			
$R1^a \left[I > 2\sigma(I) \right]$	0.0630			
$wR2^{b} [I > 2\sigma(I)]$	0.1343			
GOF on F^2	1.118			
${}^{a}R_{1} = \Sigma F_{0} - F_{c} / \Sigma F_{0} ; {}^{b}wR_{2} = \Sigma [w(F_{0}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{0}^{2})^{2}]^{1/2}$				

Table S1: Crystallographic data for H₂L.

D-HA	<i>d</i> (D-H)/Å	<i>d</i> (HA)/Å	<i>d</i> (DA)/Å	<(DHA)/deg
N(2)-H(2N)O(5)	0.92(4)	2.06(4)	2.944(4)	161(4)
N(3)-H(3A)O(1)#1	0.899(11)	2.104(17)	2.995(4)	171(7)
N(3)-H(3B)O(2)#2	0.901(10)	2.003(18)	2.896(4)	170(7)
N(1)-H(1N)O(6)#3	0.96(4)	1.93(4)	2.879(4)	170(4)

Table S2: Hydrogen bonds for H₂L.

Symmetry transformations used to generate equivalent atoms: #1 = -x+3/2, y-1/2, -z+3/2; #2 = -x+1, -y+2, -z+2; #3 = -x+1/2, y+1/2, -z+3/2.

Text S1: Description and discussion of H₂L crystal structure.

There are two independent molecules of H_2L , one of which lies disordered about an inversion center. We drew a picture in order to show this disorder clearly (Fig. S6). In the crystal, the regular H_2L molecule interacted with two adjacent disordered H_2L molecules through N-H...O hydrogen bonds. While one disordered H_2L molecule and four adjacent regular H_2L molecules are maintained together through four disordered H atoms arising from the disordered H_2L ligand with the oxygen atoms from regular H_2L . The hydrogen bonds are shown in Fig. S7 and listed in Table S2.