Binuclear Iron Boronyl Carbonyls

Yu Chang,^a Qian-Shu Li,^{*a,b} Yaoming Xie,^c R. Bruce King,^{*a,c} and Henry F. Schaefer III^c

^aCenter for Computational Quantum Chemistry, South China Normal University, Guangzhou, 510631 China ^bInstitute of Chemical Physics, Beijing Institute of Technology, Beijing 100081, China ^cDepartment of Chemistry and Center for Computational Chemistry University of Georgia, Athens, Georgia 30602, USA e-mails: rbking@chem.uga.edu and gsli@scnu.edu.cn

Supporting Information

Table S1. Atomic charges and Wiberg bond indices for $Fe_2(BO)_2(CO)_8$ by the BP86 method

Table S2. Atomic charges and Wiberg bond indices for $Fe_2(BO)_2(CO)_8$ by the B3LYP method

Table S3. The total energies (*E* in Hartree), relative energies (ΔE in kcal/mol), and the number of imaginary vibrational frequencies (Nimag) for the Fe(BO)₂(CO)₃ and Fe(CO)₅ structures.

Table S4-S5. Theoretical Cartesian coordinates (in Å) for the two structures of $Fe(BO)(CO)_4$ using the B3LYP/DZP and BP86/DZP methods

Table S6. Theoretical Cartesian coordinates (in Å) for the $Fe(BO)_2(CO)_3$ structure using the B3LYP/DZP and BP86/DZP methods

Table S7. Theoretical Cartesian coordinates (in Å) for the $Fe(CO)_5$ structure using the B3LYP/DZP and BP86/DZP methods.

Table S8-S19. Theoretical Cartesian coordinates (in Å) for the twelve structures of $Fe_2(BO)_2$ (CO)₈ using the B3LYP/DZP and BP86/DZP methods

Table S20-S21. Theoretical harmonic vibrational frequencies (in cm⁻¹) for the two structures of $Fe(BO)(CO)_4$ using the B3LYP/DZP and BP86/DZP methods.

Table S22. Theoretical harmonic vibrational frequencies (in cm⁻¹) for the $Fe(BO)_2(CO)_3$ structure using the B3LYP/DZP and BP86/DZP methods.

Table S23. Theoretical harmonic vibrational frequencies (in cm^{-1}) for the Fe(CO)₅ structure using the B3LYP/DZP and BP86/DZP methods.

Table S24-S35. Theoretical harmonic vibrational frequencies (in cm⁻¹) for the twelve structures of $Fe_2(BO)_2(CO)_8$ using the B3LYP/DZP and BP86/DZP methods

Complete Gaussian 03 reference (Reference 25)

structure	Natural charge	Wiberg	Fe-Fe	Formal
	on Fe_1/Fe_2	bond index	distance (Å)	Fe-Fe bond order
28-1S (C ₂)	-0.608/-0.608	0.13	2.878	1
28-2S (C _s)	-0.631/ -0.662	0.11	2.837	1
28-3S (C ₂)	-0.597/-0.597	0.14	2.887	1
28-4S (C _{2h})	-0.568/-0.568	0.15	2.976	1
28-5S (C ₁)	-0.381/-0.777	0.02	4.009	0
28-6S (D ₂)	-0.671/-0.671	0.11	2.811	1
28-7S (C _{2v})	-0.566/ -0.566	0.15	3.059	1
28-8S (C _s)	-0.501/-0.762	0.09	2.776	1
28-9S (C _{2v})	-0.646/-0.646	0.08	2.693	1
28-10S (C _s)	-0.550/-0.480	0.06	4.923	0
28-11S (C _{2v})	-0.641/-0.641	0.08	2.764	1
28-12S (C _s)	-0.696/-0.534	0.11	2.909	1

Table S1.	Atomic charges and	Wiberg bond indexes	for Fe ₂ (BO) ₂ (CO) ₈ by	the BP86 method
-----------	--------------------	---------------------	--	-----------------

Table S2. Atomic charges and Wiberg bond indexes for Fe₂(BO)₂(CO)₈ by the B3LYP method

structure	Natural charge	Wiberg	Fe-Fe	Formal
	on Fe_1/Fe_2	bond index	distance (A)	Fe-Fe bond order
 28-1S (C ₂)	-0.589/-0.589	0.15	2.925	1
28-2S (C _s)	-0.627/-0.626	0.13	2.874	1
28-3S (C ₂)	-0.583/-0.583	0.16	2.931	1
28-4S (C _{2h})	-0.561/-0.561	0.17	3.039	1
28-5S (C ₁)	-0.352/-0.771	0.02	4.028	0
28-6S (D ₂)	-0.671/-0.671	0.11	2.821	1
28-7S (C _{2v})	-0.554/-0.554	0.17	3.059	1
28-8S (C _s)	-0.508/-0.628	0.12	2.992	1
28-9S (C _{2v})	-0.639/-0.639	0.08	2.725	1
28-10S (C _s)	-0.617/-0.393	0.02	4.896	0
28-11S (C _{2v})	-0.624/-0.624	0.08	2.714	1
 $28-12S(C_s)$	-0.630/-0.512	0.12	3.002	1

Table S3. The total energies (*E* in Hartree), relative energies (ΔE in kcal/mol), and the number of imaginary vibrational frequencies (Nimag) for the Fe(BO)₂(CO)₃ and Fe(CO)₅ structures.

BP86				B3L	YP			
-	Ε	Nimag	ΔE	$\langle S^2 \rangle$	Ε	Nimag	ΔE	$\langle S^2 \rangle$
$Fe(CO)_5(D_{3h})$ $Fe(BO)_2(CO)_3(C_s)$	-1830.83755 -1804.35862	0 0	0.0 0.0	0.00 0.00	-1830.58136 -1804.12782	0 0	0.00 0.00	0.00 0.00

	В	3LYP/DZP		BP86/DZP		
Fe	0.219752	0.045423	0.000000	0.228315	0.014367	0.000000
С	1.651959	-1.120704	0.000000	1.545851	-1.254824	0.000000
С	-1.134616	-1.218487	0.000000	-1.178297	-1.111586	0.000000
В	-1.076422	1.548092	0.000000	-0.938958	1.595688	0.000000
С	0.257300	0.424271	1.794793	0.273766	0.425460	1.767772
С	0.257300	0.424271	-1.794793	0.273766	0.425460	-1.767772
0	2.540478	-1.851754	0.000000	2.375800	-2.073231	0.000000
Ο	-2.002060	-1.974482	0.000000	-2.097982	-1.829651	0.000000
0	-1.868408	2.474159	0.000000	-1.666837	2.589199	0.000000
0	0.257300	0.677441	2.917091	0.273766	0.703151	2.900266
0	0.257300	0.677441	-2.917091	0.273766	0.703151	-2.900266

Table S4. Theoretical Cartesian coordinates (in Å) for the structure $14-1D(C_s)$ using the B3LYP/DZP and BP86/DZP methods

Table S5. Theoretical Cartesian coordinates (in Å) for the structure $14-2D(C_{2v})$ using the B3LYP/DZP and BP86/DZP methods

	B3	LYP/DZP	BP86/DZP			
Fe	0.000000	0.000000	0.339776	0.000000	0.000000	0.340601
С	0.000000	1.816669	0.710246	0.000000	1.779170	0.768984
С	-1.802292	0.000000	0.088390	-1.772196	0.000000	0.015937
С	0.000000	-1.816669	0.710246	0.000000	-1.779170	0.768984
С	1.802292	0.000000	0.088390	1.772196	0.000000	0.015937
В	0.000000	0.000000	-1.631808	0.000000	0.000000	-1.603216
0	0.000000	2.951106	0.900700	0.000000	2.918116	1.018473
0	-2.935411	0.000000	-0.116497	-2.910281	0.000000	-0.242290
0	0.000000	-2.951106	0.900700	0.000000	-2.918116	1.018473
0	2.935411	0.000000	-0.116497	2.910281	0.000000	-0.242290
0	0.000000	0.000000	-2.850750	0.000000	0.000000	-2.834693

		B3LYP/DZP			BP86/DZP	
Fe	-0.115654	0.000000	-0.443172	-0.115654	0.000000	-0.457591
В	1.843628	0.000000	-0.309408	1.843628	0.000000	-0.324960
С	0.132763	1.808527	-0.334772	0.132763	1.784732	-0.337928
С	-1.939486	0.000000	-0.444753	-1.939486	0.000000	-0.423966
С	0.132763	-1.808527	-0.334772	0.132763	-1.784732	-0.337928
В	-0.085873	0.000000	1.466884	-0.085873	0.000000	1.436681
0	3.074302	0.000000	-0.293092	3.074302	0.000000	-0.295698
0	0.328101	2.937877	-0.223512	0.328101	2.924878	-0.210305
0	-3.100220	0.000000	-0.391157	-3.100220	0.000000	-0.334635
0	0.328101	-2.937877	-0.223512	0.328101	-2.924878	-0.210305
0	-0.097533	0.000000	2.683880	-0.097533	0.000000	2.668156

Table S6. Theoretical Cartesian coordinates (in Å) for the $Fe(BO)_2(CO)_3$ structure using the B3LYP/DZP and BP86/DZP methods

Table S7. Theoretical Cartesian coordinates (in Å) for the $Fe(CO)_5$ structure using the B3LYP/DZP and BP86/DZP methods.

		B3LYP/DZP			BP86/DZP	
Fe	0.000000	0.000016	0.000000	0.000000	0.000137	0.000000
С	0.000000	-1.815688	0.000000	0.000000	1.805247	0.000000
С	0.000000	0.909214	-1.571817	0.000000	-0.904432	-1.562241
С	0.000000	0.909214	1.571817	0.000000	-0.904432	1.562241
С	-1.822518	-0.001157	0.000000	1.805386	0.001682	0.000000
С	1.822518	-0.001157	0.000000	-1.805386	0.001682	0.000000
0	0.000000	-2.971987	0.000000	0.000000	2.975377	0.000000
0	0.000000	1.488029	-2.572795	0.000000	-1.490859	-2.574794
0	0.000000	1.488029	2.572795	0.000000	-1.490859	2.574794
0	-2.974916	-0.002221	0.000000	2.972721	0.003043	0.000000
0	2.974916	-0.002221	0.000000	-2.972721	0.003043	0.000000

_		B3LYP/DZP			BP86/DZP	
Fe	0.126839	-1.456797	-0.042606	0.201791	-1.424927	-0.048440
Fe	-0.126839	1.456797	-0.042606	-0.201791	1.424927	-0.048440
С	1.694626	1.342015	0.689548	1.913523	-1.353381	-0.721338
С	-1.694626	-1.342015	0.689548	-1.913523	1.353381	-0.721338
С	-0.726450	-1.291458	-1.638031	0.685162	1.290489	-1.615820
С	0.726450	1.291458	-1.638031	0.105496	-3.204301	-0.012555
С	0.018333	3.247515	0.003085	0.685162	-1.309206	1.699793
С	-0.643896	1.333988	1.709688	-0.685162	-1.290489	-1.615820
С	0.643896	-1.333988	1.709688	-0.105496	3.204301	-0.012555
Ο	1.854640	-1.404668	-0.723617	2.990749	-1.402090	-1.154701
Ο	-0.018333	-3.247515	0.003085	-2.990749	1.402090	-1.154701
0	-1.854640	1.404668	-0.723617	-0.030797	4.367358	0.008748
Ο	-1.295107	-1.244697	-2.639331	0.030797	-4.367358	0.008748
Ο	1.295107	1.244697	-2.639331	0.959913	-1.328957	2.829978
Ο	-2.915164	1.449739	-1.158476	-1.284669	-1.283998	-2.616741
Ο	-0.931644	1.335020	2.821695	1.284669	1.283998	-2.616741
В	0.931644	-1.335020	2.821695	1.616514	1.356439	0.688165
В	2.915164	-1.449739	-1.158476	-1.616514	-1.356439	0.688165
С	-0.126839	-4.392329	0.031995	-0.685162	1.309206	1.699793
Ο	0.126839	4.392329	0.031995	-0.959913	1.328957	2.829978
0	2.824972	1.262480	1.138275	2.758659	1.337529	1.147484
0	-2.824972	-1.262480	1.138275	-2.758659	-1.337529	1.147484

Table S8. Theoretical Cartesian coordinates (in Å) for the structure **28-1S** (C_2) using the B3LYP/DZP and BP86/DZP methods

	H	B3LYP/DZP			BP86/DZP	
Fe	0.100518	1.528650	0.000000	0.100213	1.515388	0.000000
Fe	0.015968	-1.344091	0.000000	0.025030	-1.320670	0.000000
С	-1.293229	-1.436538	1.294306	-1.267698	-1.464205	1.277319
С	1.939275	1.485084	0.000000	1.926235	1.535761	0.000000
С	-0.097521	1.329315	1.792989	-0.131317	1.318779	1.779189
С	1.306919	-1.341422	1.295561	1.303716	-1.305091	1.283312
С	-0.101336	3.315547	0.000000	-0.128107	3.285726	0.000000
С	1.306919	-1.341422	-1.295561	1.303716	-1.305091	-1.283312
С	-0.097521	1.329315	-1.792989	-0.131317	1.318779	-1.779189
С	-1.293229	-1.436538	-1.294306	-1.267698	-1.464205	-1.277319
В	0.085138	-3.290745	0.000000	0.147588	-3.259002	0.000000
В	-1.853118	1.315258	0.000000	-1.844273	1.258598	0.000000
0	-3.062318	1.160479	0.000000	-3.065646	1.099916	0.000000
0	-2.092672	-1.566055	2.105122	-2.075195	-1.640009	2.092986
0	3.090638	1.491949	0.000000	3.090484	1.599406	0.000000
0	-0.253296	1.254324	2.933264	-0.315859	1.257793	2.930511
0	2.118619	-1.386589	2.107985	2.126283	-1.356968	2.105355
0	-0.240183	4.457900	0.000000	-0.284076	4.441302	0.000000
0	2.118619	-1.386589	-2.107985	2.126283	-1.356968	-2.105355
0	-0.253296	1.254324	-2.933264	-0.315859	1.257793	-2.930511
0	-2.092672	-1.566055	-2.105122	-2.075195	-1.640009	-2.092986
0	0.140260	-4.506328	0.000000	0.236524	-4.485177	0.000000

Table S9. Theoretical Cartesian coordinates (in Å) for the structure $28-2S(C_s)$ using the B3LYP/DZP and BP86/DZP methods

	Η	B3LYP/DZP			BP86/DZP	
Fe	-0.072514	-1.463755	-0.103930	-0.066667	-1.441976	-0.116787
Fe	0.072514	1.463755	-0.103930	0.066667	1.441976	-0.116787
С	-0.832185	-1.340564	-1.778753	-0.818790	-1.344337	-1.780621
С	0.832185	1.340564	-1.778753	0.818790	1.344337	-1.780621
С	1.657240	-1.314472	-0.636822	1.664739	-1.265106	-0.598307
С	1.623418	1.316172	0.859368	1.585150	1.339402	0.877907
С	-1.623418	-1.316172	0.859368	-1.585150	-1.339402	0.877907
С	-0.053691	-3.260867	-0.039340	-0.018549	-3.223766	-0.085513
С	-1.657240	1.314472	-0.636822	-1.664739	1.265106	-0.598307
С	0.053691	3.260867	-0.039340	0.018549	3.223766	-0.085513
0	-1.300165	-1.313558	-2.829458	-1.292091	-1.350306	-2.845329
0	1.300165	1.313558	-2.829458	1.292091	1.350306	-2.845329
0	0.034534	4.409725	0.004336	-0.018549	4.388369	-0.067336
0	2.591458	1.307042	1.476722	2.546251	1.368019	1.532226
0	-2.591458	-1.307042	1.476722	-2.546251	-1.368019	1.532226
0	-0.034534	-4.409725	0.004336	0.018549	-4.388369	-0.067336
0	-2.766459	1.278241	-0.946904	-2.796414	1.232195	-0.880121
0	2.766459	-1.278241	-0.946904	2.796414	-1.232195	-0.880121
В	-0.753129	1.486751	1.689717	-0.742372	1.469570	1.678774
В	0.753129	-1.486751	1.689717	0.742372	-1.469570	1.678774
0	1.300165	-1.560417	2.773662	1.279289	-1.556412	2.780782
0	-1.300165	1.560417	2.773662	-1.279289	1.556412	2.780782

Table S10. Theoretical Cartesian coordinates (in Å) for the structure $28-3S(C_2)$ using the B3LYP/DZP and BP86/DZP methods

		B3LYP/DZP			BP86/DZP	
Fe	1.492739	-0.284802	0.000000	1.456799	-0.302973	0.000000
В	1.041166	-2.198931	0.000000	1.035086	-2.218881	0.000000
В	-1.041166	2.198931	0.000000	-1.035086	2.218881	0.000000
Fe	-1.492739	0.284802	0.000000	-1.456799	0.302973	0.000000
0	0.808928	-3.394420	0.000000	0.838923	-3.433112	0.000000
0	-0.808928	3.394420	0.000000	-0.838923	3.433112	0.000000
С	1.331061	-0.483937	1.802278	1.285317	-0.570095	1.780980
С	-1.331061	0.483937	1.802278	-1.285317	0.570095	1.780980
С	1.873890	1.537522	0.000000	1.840289	1.497999	0.000000
С	-1.873890	-1.537522	0.000000	-1.840289	-1.497999	0.000000
С	3.219708	-0.771550	0.000000	3.180174	-0.745897	0.000000
С	-3.219708	0.771550	0.000000	-3.180174	0.745897	0.000000
0	1.331061	-0.678292	2.937167	1.285317	-0.822292	2.919491
0	-1.331061	0.678292	2.937167	-1.285317	0.822292	2.919491
0	2.244834	2.621931	0.000000	2.231189	2.591936	0.000000
0	4.323665	-1.094095	0.000000	4.308327	-1.038609	0.000000
0	-2.244834	-2.621931	0.000000	-2.231189	-2.591936	0.000000
0	-4.323665	1.094095	0.000000	-4.308327	1.038609	0.000000
С	-1.331061	0.483937	-1.802278	-1.285317	0.570095	-1.780980
С	1.331061	-0.483937	-1.802278	1.285317	-0.570095	-1.780980
0	-1.331061	0.678292	-2.937167	-1.285317	0.822292	-2.919491
0	1.331061	-0.678292	-2.937167	1.285317	-0.822292	-2.919491

Table S11. Theoretical Cartesian coordinates (in Å) for the structure $28-4S(C_{2h})$ using the B3LYP/DZP and BP86/DZP methods

		B3LYP/DZP			BP86/DZP	
Fe	2.059462	0.023511	-0.107416	2.037307	0.032603	-0.119717
В	-1.549576	-1.767854	0.438399	-1.454793	-1.660198	0.659945
В	-0.030981	0.039718	-0.660969	-0.027024	0.072604	-0.667267
Fe	-1.967473	0.096940	-0.032292	-1.970477	0.097426	-0.048675
0	-1.286715	-2.917618	0.738408	-1.129696	-2.757757	1.108810
0	0.708451	0.069889	-1.689261	0.697961	0.130350	-1.725164
С	1.820864	1.820598	0.101287	1.843358	1.811959	0.135567
С	-2.028797	1.853580	-0.563894	-2.101193	1.753805	-0.792433
С	3.682848	0.152518	-0.954594	3.674572	0.173508	-0.906965
С	-1.306057	0.438826	1.631863	-1.338686	0.631247	1.558894
С	2.378665	-0.111609	1.647833	2.298995	-0.155701	1.623496
С	-2.252904	-0.577503	-1.699575	-2.178347	-0.821757	-1.587655
0	1.653807	2.954683	0.236301	1.715614	2.959403	0.314518
0	-2.043512	2.949777	-0.906270	-2.161693	2.810663	-1.275114
0	4.720187	0.247274	-1.448513	4.744875	0.273651	-1.362244
0	2.596785	-0.200397	2.781151	2.494281	-0.281541	2.771698
0	-0.867411	0.630495	2.675084	-0.914835	0.949445	2.594145
0	-2.415998	-1.024183	-2.744071	-2.304224	-1.435640	-2.567343
С	1.991592	-1.820970	-0.200589	1.990070	-1.785469	-0.258118
С	-3.708084	-0.118828	0.521489	-3.697563	-0.106965	0.498652
0	1.981590	-2.967103	-0.276570	1.996226	-2.945125	-0.355057
0	-4.791894	-0.281657	0.864031	-4.797975	-0.259267	0.844020

Table S12. Theoretical Cartesian coordinates (in Å) for the structure $28-5S(C_1)$ using the B3LYP/DZP and BP86/DZP methods

_	F	B3LYP/DZP			BP86/DZP	
Fe	0.000000	0.000000	-1.410382	0.000000	0.000000	1.405659
Fe	0.000000	0.000000	1.410382	0.000000	0.000000	-1.405659
С	-0.722893	1.678416	-1.422159	-1.610503	0.819049	1.249567
С	-1.678412	0.722902	1.422225	-0.796409	1.606333	-1.637596
С	0.722893	-1.678416	-1.422159	1.610503	-0.819049	1.249567
С	1.678412	-0.722902	1.422225	0.796409	-1.606333	-1.637596
В	0.000000	0.000000	-3.357265	0.000000	0.000000	3.347980
В	0.000000	0.000000	3.357265	0.000000	0.000000	-3.347980
С	-1.678412	-0.722902	-1.422225	0.796409	1.606333	1.637596
С	-0.722893	-1.678416	1.422159	1.610503	0.819049	-1.249567
С	1.678412	0.722902	-1.422225	-0.796409	-1.606333	1.637596
С	0.722893	1.678416	1.422159	-1.610503	-0.819049	-1.249567
0	-1.177359	2.733624	-1.475108	-2.646181	1.352520	1.215703
0	-2.733591	1.177428	1.475230	-1.300453	2.634699	-1.850678
0	1.177359	-2.733624	-1.475108	2.646181	-1.352520	1.215703
0	2.733591	-1.177428	1.475230	1.300453	-2.634699	-1.850678
0	0.000000	0.000000	-4.574552	0.000000	0.000000	4.577670
0	0.000000	0.000000	4.574552	0.000000	0.000000	-4.577670
0	-2.733591	-1.177428	-1.475230	1.300453	2.634699	1.850678
0	-1.177359	-2.733624	1.475108	2.646181	1.352520	-1.215703
0	2.733591	1.177428	-1.475230	-1.300453	-2.634699	1.850678
0	1.177359	2.733624	1.475108	-2.646181	-1.352520	-1.215703

Table S13. Theoretical Cartesian coordinates (in Å) for the structure $28-6S(D_2)$ using the B3LYP/DZP and BP86/DZP methods

		B3LYP/DZP			BP86/DZP	
Fe	0.000000	1.529677	0.119836	0.000000	1.500765	0.133482
Fe	0.000000	-1.529677	0.119836	0.000000	-1.500765	0.133482
С	1.802282	1.423397	-0.116061	1.786244	1.410755	-0.142834
С	1.802282	-1.423397	-0.116061	1.786244	-1.410755	-0.142834
С	-1.802282	1.423397	-0.116061	-1.786244	1.410755	-0.142834
С	-1.802282	-1.423397	-0.116061	-1.786244	-1.410755	-0.142834
С	0.000000	3.322569	0.038604	0.000000	3.278862	0.074595
С	0.000000	-3.322569	0.038604	0.000000	-3.278862	0.074595
С	0.000000	1.467695	1.961277	0.000000	1.457525	1.960426
С	0.000000	-1.467695	1.961277	0.000000	-1.457525	1.960426
В	0.000000	1.575080	-1.858325	0.000000	1.548012	-1.839433
В	0.000000	-1.575080	-1.858325	0.000000	-1.548012	-1.839433
0	2.938357	1.476642	-0.292623	2.930299	1.492378	-0.350051
0	2.938357	-1.476642	-0.292623	2.930299	-1.492378	-0.350051
0	-2.938357	1.476642	-0.292623	-2.930299	1.492378	-0.350051
0	-2.938357	-1.476642	-0.292623	-2.930299	-1.492378	-0.350051
0	0.000000	4.470852	-0.017520	0.000000	4.443420	0.036324
0	0.000000	-4.470852	-0.017520	0.000000	-4.443420	0.036324
0	0.000000	1.531196	3.110036	0.000000	1.552606	3.121859
0	0.000000	-1.531196	3.110036	0.000000	-1.552606	3.121859
0	0.000000	1.751298	-3.061103	0.000000	1.730347	-3.054267
0	0.000000	-1.751298	-3.061103	0.000000	-1.730347	-3.054267

Table S14. Theoretical Cartesian coordinates (in Å) for the structure $28-7S(C_{2v})$ using the B3LYP/DZP and BP86/DZP methods

	В	3LYP/DZP			BP86/DZP	
Fe	-0.044725	1.525428	0.000000	0.034360	-1.386524	0.000000
Fe	-0.132234	-1.465702	0.000000	0.148135	1.387193	0.000000
С	-1.834254	1.140142	0.000000	1.556773	-0.224540	0.000000
В	1.392450	-1.293750	1.214598	-1.297034	0.817037	1.199228
В	1.392450	-1.293750	-1.214598	-1.297034	0.817037	-1.199228
С	1.824587	1.469385	0.000000	-1.776039	-1.856136	0.000000
С	-0.020185	1.308535	-1.835166	0.073351	-1.461472	-1.832380
С	-0.192450	3.344120	0.000000	0.912954	-2.938509	0.000000
С	-0.020185	1.308535	1.835166	0.073351	-1.461472	1.832380
С	0.205956	-3.201651	0.000000	-0.768911	2.915899	0.000000
С	-1.269015	-1.538568	1.431821	1.120006	1.884537	1.454724
С	-1.269015	-1.538568	-1.431821	1.120006	1.884537	-1.454724
0	2.304171	-1.114213	2.006934	-2.201781	0.566174	2.001904
0	2.304171	-1.114213	-2.006934	-2.201781	0.566174	-2.001904
0	-2.976266	0.993319	0.000000	2.743234	-0.220894	0.000000
0	2.964671	1.542042	0.000000	-2.863434	-2.255234	0.000000
0	-0.033328	1.254415	-2.980268	0.151964	-1.602224	-2.981418
0	-0.305913	4.487398	0.000000	1.486143	-3.954150	0.000000
0	-0.033328	1.254415	2.980268	0.151964	-1.602224	2.981418
0	0.440346	-4.330433	0.000000	-1.351204	3.925100	0.000000
0	-1.949526	-1.634299	2.357444	1.689732	2.248336	2.404358
0	-1.949526	-1.634299	-2.357444	1.689732	2.248336	-2.404358

Table S15. Theoretical Cartesian coordinates (in Å) for the structure $28-8S(C_s)$ using the B3LYP/DZP and BP86/DZP methods

	Η	B3LYP/DZP			BP86/DZP	
Fe	0.000000	1.362685	0.088048	0.000000	1.346488	0.094470
Fe	0.000000	-1.362685	0.088048	0.000000	-1.346488	0.094470
С	0.000000	0.000000	-1.417873	0.000000	0.000000	-1.409445
С	0.000000	0.000000	1.596444	0.000000	0.000000	1.610489
С	-1.803483	1.564301	-0.145444	-1.775280	1.589551	-0.183675
С	-1.803483	-1.564301	-0.145444	-1.775280	-1.589551	-0.183675
С	0.000000	2.608055	1.421052	0.000000	2.553596	1.445968
С	0.000000	-2.608055	1.421052	0.000000	-2.553596	1.445968
С	1.803483	1.564301	-0.145444	1.775280	1.589551	-0.183675
С	1.803483	-1.564301	-0.145444	1.775280	-1.589551	-0.183675
В	0.000000	-2.766511	-1.286611	0.000000	-2.771621	-1.245400
В	0.000000	2.766511	-1.286611	0.000000	2.771621	-1.245400
0	0.000000	3.670111	-2.099746	0.000000	3.697967	-2.051819
0	0.000000	0.000000	-2.589700	0.000000	0.000000	-2.594325
0	0.000000	0.000000	2.767578	0.000000	0.000000	2.795156
0	-2.925277	1.749889	-0.311191	-2.902218	1.812044	-0.376319
0	-2.925277	-1.749889	-0.311191	-2.902218	-1.812044	-0.376319
0	0.000000	3.415919	2.236575	0.000000	3.352095	2.291034
0	0.000000	-3.415919	2.236575	0.000000	-3.352095	2.291034
0	2.925277	1.749889	-0.311191	2.902218	1.812044	-0.376319
0	2.925277	-1.749889	-0.311191	2.902218	-1.812044	-0.376319
0	0.000000	-3.670111	-2.099746	0.000000	-3.697967	-2.051819

Table S16. Theoretical Cartesian coordinates (in Å) for the structure $28-9S(C_{2v})$ using the B3LYP/DZP and BP86/DZP methods

	B3LYP/DZP				BP86/DZP		
Fe	-0.054721	-2.612073	0.000000	-0.092584	2.623159	0.000000	
Fe	0.222079	2.275944	0.000000	-0.140120	-2.299591	0.000000	
С	-1.795022	-3.093731	0.000000	1.674098	2.948610	0.000000	
С	2.075127	2.720958	0.000000	-1.891129	-2.930033	0.000000	
С	0.043635	2.084981	1.839651	0.047645	-2.081078	1.807828	
С	1.085670	-4.016100	0.000000	-0.980803	4.204378	0.000000	
С	0.043635	-2.338257	-1.765785	-0.284483	2.331220	-1.753530	
С	0.043635	-2.338257	1.765785	-0.284483	2.331220	1.753530	
С	-0.376262	3.992982	0.000000	0.596857	-3.926694	0.000000	
0	-2.916713	-3.384474	0.000000	2.827253	3.150817	0.000000	
0	3.189728	2.966718	0.000000	-2.970193	-3.353339	0.000000	
0	-0.780243	5.065904	0.000000	1.097664	-4.977957	0.000000	
0	1.838612	-4.898071	0.000000	-1.578288	5.211612	0.000000	
0	0.117054	-2.116967	-2.905033	-0.412895	2.103481	-2.898820	
0	0.117054	-2.116967	2.905033	-0.412895	2.103481	2.898820	
0	-0.090026	1.920505	2.961947	0.202503	-1.944911	2.949159	
В	-1.686493	1.738962	0.000000	1.689925	-1.564317	0.000000	
В	0.438114	-0.825350	0.000000	-0.525020	0.811013	0.000000	
С	0.043635	2.084981	-1.839651	0.047645	-2.081078	-1.807828	
0	-0.090026	1.920505	-2.961947	0.202503	-1.944911	-2.949159	
0	-2.868180	1.460918	0.000000	2.841103	-1.137526	0.000000	
0	0.846025	0.380176	0.000000	-0.962542	-0.388938	0.000000	

Table S17. Theoretical Cartesian coordinates (in Å) for the structure $28-10S(C_s)$ using the B3LYP/DZP and BP86/DZP methods

	В	3LYP/DZP			BP86/DZP	
Fe	0.000000	1.381778	0.100438	0.000000	1.357158	-0.105338
Fe	0.000000	-1.381778	0.100438	0.000000	-1.357158	-0.105338
С	1.488430	0.000000	0.051654	-1.485246	0.000000	-0.280990
С	-1.488430	0.000000	0.051654	1.485246	0.000000	-0.280990
В	0.000000	1.539420	-1.886011	0.000000	1.445377	1.879418
В	0.000000	-1.539420	-1.886011	0.000000	-1.445377	1.879418
С	-1.344943	2.579086	-0.112926	1.340333	2.512759	0.233309
С	-1.344943	-2.579086	-0.112926	1.340333	-2.512759	0.233309
С	0.000000	1.541276	1.946371	0.000000	1.669407	-1.910125
С	0.000000	-1.541276	1.946371	0.000000	-1.669407	-1.910125
С	1.344943	-2.579086	-0.112926	-1.340333	-2.512759	0.233309
С	1.344943	2.579086	-0.112926	-1.340333	2.512759	0.233309
0	2.185783	3.348217	-0.254463	-2.194096	3.276711	0.435702
0	2.660061	0.000000	0.029994	-2.657086	0.000000	-0.458066
0	-2.660061	0.000000	0.029994	2.657086	0.000000	-0.458066
0	0.000000	1.778159	-3.077104	0.000000	1.690304	3.083267
0	0.000000	-1.778159	-3.077104	0.000000	-1.690304	3.083267
0	-2.185783	3.348217	-0.254463	2.194096	3.276711	0.435702
0	-2.185783	-3.348217	-0.254463	2.194096	-3.276711	0.435702
0	0.000000	1.733175	3.079239	0.000000	1.968177	-3.035520
0	0.000000	-1.733175	3.079239	0.000000	-1.968177	-3.035520
0	2.185783	-3.348217	-0.254463	-2.194096	-3.276711	0.435702

Table S18. Theoretical Cartesian coordinates (in Å) for the structure $28-11S(C_{2v})$ using the B3LYP/DZP and BP86/DZP methods

]	B3LYP/DZP			BP86/DZP	
Fe	-0.000044	-1.460558	0.000000	-0.000024	-1.410525	0.000000
Fe	-0.000033	1.541252	0.000000	0.000003	1.498035	0.000000
С	1.813716	-1.421717	0.000000	1.799158	-1.392429	0.000000
С	-1.296920	1.316039	1.296500	-1.285198	1.287442	1.288315
С	-1.296920	1.316039	-1.296500	-1.285198	1.287442	-1.288315
С	-1.813800	-1.421470	0.000000	-1.799182	-1.392382	0.000000
В	-0.000028	-1.430985	-1.982283	0.000145	-1.396415	-1.974988
С	-0.000150	-3.232415	0.000000	-0.000104	-3.160984	0.000000
В	-0.000028	-1.430985	1.982283	0.000145	-1.396415	1.974988
С	-0.000069	3.367238	0.000000	-0.000062	3.308462	0.000000
С	1.296973	1.316004	1.296373	1.285188	1.287519	1.288336
С	1.296973	1.316004	-1.296373	1.285188	1.287519	-1.288336
0	-2.122908	1.257740	2.089356	-2.119649	1.248931	2.093566
0	-2.122908	1.257740	-2.089356	-2.119649	1.248931	-2.093566
0	2.966259	-1.430989	0.000000	2.966556	-1.438101	0.000000
0	-2.966346	-1.430529	0.000000	-2.966587	-1.438051	0.000000
0	-0.000045	-1.345381	-3.199767	0.000190	-1.342728	-3.207121
0	-0.000223	-4.384486	0.000000	-0.000154	-4.329513	0.000000
0	-0.000045	-1.345381	3.199767	0.000190	-1.342728	3.207121
0	-0.000078	4.515833	0.000000	-0.000139	4.471824	0.000000
0	2.123364	1.257568	2.088801	2.119645	1.249053	2.093587
0	2.123364	1.257568	-2.088801	2.119645	1.249053	-2.093587

Table S19. Theoretical Cartesian coordinates (in Å) for the structure $28-12S(C_s)$ using the B3LYP/DZP and BP86/DZP methods

Table S20. Theoretical harmonic vibrational frequencies (in cm^{-1}) for the structure 14-1D(C_s). using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP
47(2), 74(1), 76(1), 91(1), 95(3), 99(2), 103(0),	45(2), 71(1), 74(0), 88(1), 93(2), 96(1), 100(0),
324(0), 340(0), 349(0), 355(4), 388(1), 400(2),	329(1), 350(0), 353(0), 375(2), 397(1), 419(0),
420(7), 439(5), 449(6), 485(2), 507(2), 526(8),	430(1), 457(1), 476(3), 480(1), 502(2), 520(1),
589(72), 597(91), 600(100), 1925(265),	597(83), 604(83), 613(92), 1845(182),
2099(1453), 2102(808), 2109(549), 2168(105)	2006(1216), 2010(708), 2018(516), 2075(96)

Table S21. Theoretical harmonic vibrational frequencies (in cm⁻¹) for the structure $14-2D(C_{2v})$ using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP
40(0), 64(3), 85(1), 94(0), 97(4), 100(3),	49(0), 60(2), 82(0), 90(0), 94(3), 96(2), 107(0),
112(0), 330(0), 356(1), 358(7), 360(0), 390(0),	332(0), 363(0), 365(0), 387(3), 392(1), 415(0),
405(7), 425(1), 441(3), 452(0), 457(25), 508(6),	433(0), 453(1), 471(10), 474(0), 495(1), 544(0),
556(0), 594(83), 626(81), 635(79), 1919(205),	602(80), 621(77), 634(81), 1848(186),
2093(1571), 2098(1448), 2107(96), 2170(32)	1998(1303), 2007(1203), 2016(138), 2079(21)

Table S22. Theoretical harmonic vibrational frequencies (in cm^{-1}) for the $Fe(BO)_2(CO)_3$ structure using the B3LYP/DZP and BP86/DZP methods.

B3LYP/DZP	BP86/DZP
54(2), 72(3), 75(0), 93(4), 97(6), 104(1),	46(2), 63(2), 69(0), 89(4), 93(3), 99(0), 105(1),
110(1), 311(5), 346(1), 353(0), 360(7), 387(3),	306(4), 349(0), 355(0), 362(4), 392(1), 428(1),
420(6), 422(9), 425(0), 458(4), 470(1), 491(0),	434(0), 445(0), 448(3), 470(2), 485(0), 531(6),
542(7), 605(97), 615(79), 626(50), 1926(219),	611(74), 612(96), 629(46), 1844(162),
1934(182), 2121(1280), 2128(601), 2180(105)	1853(155), 2018(1140), 2028(576), 2085(70)

Table S23. Theoretical harmonic vibrational frequencies (in cm^{-1}) for the Fe(CO)₅ structure using the B3LYP/DZP and BP86/DZP methods.

B3LYP/DZP	BP86/DZP
54(0), 54(0), 95(0), 95(0), 104(0), 104(0),	53(0), 54(0), 90(0), 91(0), 99(0), 99(0), 103(0),
107(1), 365(0), 366(0), 366(0), 413(0), 439(1),	358(0), 369(0), 369(0), 434(6), 435(6), 435(0),
439(14), 440(13), 473(7), 483(2), 483(2),	460(0), 488(0), 492(1), 492(1), 547(0), 547(0),
563(0), 563(0), 617(127), 660(132), 660(132),	626(127), 662(125), 662(125), 1992(1080),
2067(1275), 2067(1273), 2093(0), 2094(1474),	1992(1077), 2008(1264), 2012(0), 2089(0)
2169(0	

Table S24. Theoretical harmonic vibrational frequencies (in cm⁻¹) for the structure 28-1S (C₂) using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP
44(1), 52(1), 56(1), 62(0), 65(0), 75(3), 75(0),	42(1), 46(0), 52(1), 55(0), 61(0), 69(0), 70(2),
82(1), 83(1), 98(4), 98(1), 100(0), 101(0),	76(1), 79(1), 93(3), 94(1), 96(0), 97(0), 105(0),
108(1), 109(0), 113(0), 115(0), 119(0), 122(2),	106(0), 108(0), 110(0), 114(0), 119(1), 150(0),
148(0), 356(0), 357(0), 358(0), 366(23),	345(0), 355(0), 355(0), 356(9), 384(11), 386(1),
375(14), 376(1), 402(1), 415(25), 415(0),	397(1), 410(0), 424(0), 425(1), 434(14), 439(0),
424(0), 432(1), 432(2), 442(2), 446(0), 453(5),	439(5), 442(0), 469(5), 469(1), 489(6), 499(0),
458(0), 474(1), 482(0), 525(1), 525(1), 532(5),	516(0), 517(0), 519(2), 524(2), 536(1), 548(2),
536(2), 544(1), 555(3), 618(146), 618(33),	619(112), 620(30), 623(51), 626(147),
625(544), 630(30), 634(168), 649(1),	630(452), 647(0), 1851(48), 1851(290),
1921(343), 1922(57), 2085(98), 2103(809),	2002(108), 2017(667), 2021(618), 2027(51),
2111(383), 2118(1), 2126(1122), 2134(1058),	2039(600), 2043(887), 2062(1343), 2101(4)
2141(1789), 2189(6)	

Table S25. Theoretical harmonic vibrational frequencies (in cm⁻¹) for the structure 28-2S(C_s) using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP
37(0), 49(0), 55(2), 58(0), 61(3), 63(0), 71(2),	30(0), 39(1), 44(0), 51(1), 54(0), 56(2), 64(1),
81(3), 81(0), 92(1), 96(0), 98(2), 100(1),	75(2), 76(0), 88(0), 91(0), 92(1), 97(1), 101(0),
104(0), 107(1), 109(1), 110(0), 115(1), 122(5),	103(1), 105(0), 106(0), 109(1), 119(5), 154(0),
154(1), 361(0), 362(3), 371(0), 373(0), 376(3),	350(5), 358(0), 368(1), 371(1), 377(0), 390(5),
382(13), 401(21), 407(0), 411(0), 418(0),	401(0), 412(7), 420(0), 424(0), 439(9), 440(0),
426(4), 433(7), 449(3), 453(0), 465(10),	445(1), 446(4), 478(4), 479(3), 482(2), 489(7),
465(15), 468(1), 480(0), 503(3), 506(7), 535(1),	493(7), 495(4), 523(1), 525(2), 545(0), 554(1),
536(3), 555(0), 567(2), 624(80), 634(45),	625(72), 628(52), 636(400), 640(86), 640(112),
637(443), 637(86), 640(179), 663(41),	662(69), 1848(176), 1863(215), 1995(263),
1919(213), 1935(279), 2081(453), 2094(14),	2009(58), 2017(73), 2031(1334), 2031(1269),
2097(121), 2120(1105), 2121(1312),	2054(181), 2055(1029), 2107(6)
2136(1505), 2144(488), 2192(3)	

Table S26. Theoretical harmonic vibrational frequencies (in cm^{-1}) for the structure **28-3S**(C₂) using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP
40(0), 46(0), 57(1), 60(1), 62(0), 69(0), 73(4),	35(0), 41(0), 51(0), 54(0), 55(1), 62(0), 66(3),
83(0), 83(0), 97(0), 97(0), 97(3), 101(1),	78(0), 79(0), 90(0), 93(2), 93(0), 96(0), 102(0),
105(0), 109(0), 111(0), 114(1), 117(0), 122(2),	105(0), 108(0), 109(1), 112(0), 118(2), 149(0),
148(0), 349(3), 353(0), 359(3), 365(1), 376(15),	344(3), 350(0), 354(1), 359(0), 384(5), 385(2),
382(5), 398(0), 410(10), 416(19), 424(0),	393(1), 407(0), 427(0), 428(0), 430(8), 433(0),
434(0), 436(0), 444(3), 446(1), 464(3), 464(1),	437(12), 441(0), 477(4), 478(1), 488(7), 497(0),
475(0), 480(0), 522(7), 522(4), 533(3), 535(0),	514(2), 516(2), 521(2), 525(1), 537(0), 546(2),
548(0), 555(1), 622(156), 622(15), 625(385),	619(37), 622(139), 623(137), 624(32),
627(209), 630(164), 648(5), 1932(89),	629(449), 644(2), 1861(61), 1866(283),
1938(336), 2089(10), 2090(113), 2108(762),	2002(17), 2007(122), 2023(868), 2026(501),
2116(650), 2123(1216), 2124(522),	2032(917), 2035(533), 2060(1246), 2098(61)
2137(1914), 2186(77)	

Table S27. Theoretical harmonic vibrational frequencies (in cm⁻¹) for the structure $28-4S(C_{2h})$ using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP
-29(2), 36(0), 38(0), 61(1), 65(3), 67(0), 79(0),	-28(1), 30(0), 32(0), 51(2), 61(2), 62(0), 74(0),
82(0), 88(5), 94(0), 98(3), 107(1), 107(0),	76(0), 83(4), 90(0), 95(1), 102(0), 104(0),
111(0), 118(0), 119(0), 130(0), 131(4), 147(0),	106(0), 114(0), 115(0), 127(0), 127(3), 140(0),
154(0), 358(0), 359(0), 360(0), 365(25), 374(0),	149(0), 354(0), 358(0), 359(0), 360(3), 382(10),
375(10), 402(0), 412(0), 415(32), 424(0),	385(0), 398(0), 408(0), 419(0), 427(2), 433(21),
430(0), 433(2), 446(0), 446(1), 455(5), 461(0),	433(0), 436(1), 440(0), 475(8), 479(0), 496(2),
482(4), 483(0), 527(5), 528(0), 529(0), 537(1),	500(0), 511(2), 514(0), 518(0), 527(4), 542(0),
548(0), 557(6), 619(0), 619(173), 627(0),	550(2), 618(0), 620(167), 621(158), 621(0),
631(318), 632(430), 643(0), 1926(410),	634(457), 640(0), 1857(0), 1857(338), 1995(0),
1927(0), 2083(0), 2094(26), 2115(2067),	2013(120), 2025(1746), 2028(0), 2034(969),
2117(0), 2124(1713), 2132(0), 2145(1674),	2038(0), 2061(1482), 2097(0)
2188(0)	

Table S28. Theoretical harmonic vibrational frequencies (in cm^{-1}) for the structure **28-5S**(C₁) using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP
6(0), 29(1), 37(0), 46(1), 55(0), 62(1), 67(1),	9(0), 26(1), 35(0), 40(0), 49(0), 57(1), 61(0),
72(1), 79(1), 87(2), 89(0), 94(1), 101(0),	69(0), 76(1), 83(1), 88(0), 91(1), 96(0), 98(0),
103(1), 109(1), 110(1), 115(0), 158(2), 160(1),	104(1), 107(1), 111(0), 152(0), 156(0), 271(15),
271(38), 342(1), 356(0), 364(4), 376(47),	335(0), 355(0), 359(1), 374(1), 388(16), 392(8),
382(7), 386(19), 401(6), 405(3), 417(41),	401(6), 417(24), 425(49), 432(3), 436(0),
423(39), 431(2), 435(15), 440(5), 448(3),	440(15), 443(4), 448(1), 471(5), 476(9), 483(1),
459(0), 468(20), 471(12), 476(26), 479(16),	487(12), 493(21), 510(50), 523(14), 533(111),
512(72), 531(10), 542(114), 547(24), 553(5),	541(9), 542(12), 605(38), 625(402), 635(89),
606(33), 620(329), 632(89), 643(83), 647(121),	644(77), 647(122), 654(103), 1544(78),
652(137), 1624(72), 1935(178), 2064(626),	1864(153), 1989(555), 1998(717), 2016(547),
2080(781), 2103(784), 2126(800), 2130(1259),	2034(722), 2036(1149), 2044(476), 2068(486),
2135(544), 2149(553), 2187(135)	2100(88)

Table S29. Theoretical harmonic vibrational frequencies (in cm⁻¹) for the structure 28-6S(D₂) using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP BP86/DZP	
23(0), 39(0), 49(0), 50(3), 50(3), 53(3), 53(3), 14(0), 24(0), 45(0), 45(1), 48(4), 48(5), 53(3), 14(0), 24(0), 45(0), 45(1), 48(4), 48(5), 53(3), 14(0), 24(0), 45(0), 45(0), 45(1), 48(4), 48(5), 53(1), 14(0), 24(0), 45(0), 45(0), 45(1), 48(4), 48(5), 53(1), 14(0), 24(0), 45(0), 45(0), 45(1), 48(4), 48(5), 53(1), 14(0), 24(0), 45(0), 45(0), 45(1), 48(4), 48(5), 53(1), 14(0), 24(0), 45(58(1),
78(0), 78(0), 88(1), 88(1), 92(0), 101(0), 69(0), 79(0), 88(1), 92(0), 93(0), 97(0), 100(0), 10	01(0),
101(0), 106(3), 106(3), 110(0), 110(0), 122(10), 102(2), 102(2), 105(0), 108(0), 122(9), 133(10), 102(2), 103(10	58(0),
160(0), 370(0), 370(0), 375(0), 376(1), 376(1), 359(0), 367(2), 375(1), 375(2), 380(0),	80(0),
376(0), 406(32), 410(2), 415(0), 418(0), 427(0), 409(10), 415(0), 421(37), 441(0), 441(14(0),
427(0), 440(0), 440(0), 472(0), 472(0), 474(24), 445(1), 461(0), 462(0), 463(0), 472(1)	75(1),
474(24), 502(0), 502(0), 521(11), 521(11), 486(3), 493(3), 494(10), 505(1), 506(1), 506(1), 507	5(15),
571(0), 571(0), 641(0), 641(0), 645(149), 554(0), 554(0), 635(16), 639(89), 645(149), 554(0), 556(0), 556(0), 556(0), 556(0), 556(0), 556(0), 556(0), 556(0), 5	5(60),
645(149), 654(526), 674(0), 1932(581), 647(136), 650(468), 667(0), 18610	(445),
1934(0), 2094(0), 2094(0), 2115(621), 2117(0), 1862(0), 1997(8), 2006(58), 2027(1	868),
2118(0), 2119(2098), 2119(2098), 2191(0) 2027(1749), 2031(0), 2032(41), 2052((420),
2105(0)	

Table S30. Theoretical harmonic vibrational frequencies (in cm⁻¹) for the structure $28-7S(C_{2v})$ using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP
-31(0), 32(1), 38(0), 60(0), 61(4), 68(1), 79(0),	-31(0), 23(1), 31(0), 53(3), 55(0), 64(1), 73(0),
82(0), 88(0), 92(4), 95(0), 97(2), 108(0),	77(0), 83(0), 87(3), 91(0), 94(1), 104(0),
111(0), 116(0), 123(1), 123(0), 129(0), 150(0),	106(0), 111(0), 118(1), 121(0), 127(0), 145(0),
156(0), 347(6), 351(2), 354(0), 355(0), 376(10),	152(0), 342(0), 342(6), 351(0), 352(0), 382(2),
384(6), 403(0), 412(0), 416(41), 427(1), 434(0),	387(3), 400(0), 409(0), 425(0), 429(3), 432(0),
437(0), 444(1), 445(0), 466(2), 467(3), 482(0),	433(0), 435(25), 442(1), 479(1), 479(0), 498(1),
483(3), 531(0), 532(7), 533(2), 540(0), 550(0),	501(0), 520(0), 520(3), 526(2), 530(2), 546(0),
560(3), 622(0), 623(173), 627(2), 629(185),	553(2), 620(174), 620(0), 622(0), 622(158),
637(567), 649(5), 1934(39), 1943(406),	641(452), 646(2), 1860(16), 1868(333),
2087(0), 2092(20), 2098(17), 2118(449),	1999(0), 2005(20), 2016(78), 2027(360),
2119(2039), 2124(511), 2133(2350), 2185(132)	2030(1732), 2037(514), 2056(1549), 2097(91)

Table S31. Theoretical harmonic vibrational frequencies (in cm⁻¹) for the structure 28-8S(C_s) using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP
42(0), 50(0), 52(0), 54(3), 61(3), 70(0), 72(0),	30(1), 37(1), 47(0), 58(0), 67(1), 74(0), 82(0),
78(2), 80(0), 88(0), 98(1), 99(0), 105(1),	86(0), 86(0), 92(1), 100(0), 101(1), 105(1),
106(0), 108(0), 109(1), 113(0), 114(1), 118(0),	107(1), 113(3), 113(0), 118(0), 120(2), 173(1),
138(5), 349(0), 358(0), 359(2), 370(1), 372(16),	211(9), 326(2), 330(7), 354(0), 360(20), 364(0),
377(4), 382(17), 386(3), 393(0), 394(1), 407(1),	370(20), 390(2), 398(1), 400(0), 411(5), 412(8),
415(5), 451(3), 451(12), 458(8), 459(0), 465(0),	428(9), 442(3), 452(0), 459(43), 463(11),
473(8), 492(5), 514(16), 529(5), 534(0), 542(1),	474(0), 481(2), 487(1), 510(3), 514(48),
550(4), 615(185), 622(0), 624(94), 626(150),	525(10), 534(71), 546(1), 592(14), 615(170),
628(291), 643(43), 1902(193), 1911(234),	616(130), 621(236), 626(103), 653(90),
2086(368), 2086(97), 2105(724), 2127(914),	1817(163), 1825(195), 1873(363), 2015(349),
2130(948), 2135(1274), 2160(497), 2199(132)	2024(100), 2024(951), 2042(1151), 2060(234),
	2062(1114), 2106(106)

Table S32. Theoretical harmonic vibrational frequencies (in cm⁻¹) for the structure $28-9S(C_{2v})$ using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP
-80(0), 33(0), 42(0), 59(2), 65(1), 66(3), 73(0),	29(0), 29(0), 44(1), 54(2), 58(2), 60(0), 77(0),
80(0), 90(0), 92(0), 98(1), 99(0), 105(0),	81(0), 87(0), 91(0), 93(0), 95(0), 100(0),
105(1), 109(5), 111(0), 128(0), 167(1), 199(2),	102(0), 105(4), 109(0), 124(0), 179(0), 203(2),
241(10), 310(8), 349(0), 362(1), 369(0), 372(0),	241(9), 321(5), 356(0), 363(0), 369(0), 372(0),
387(2), 387(0), 388(0), 409(0), 413(1), 414(13),	383(1), 387(2), 388(3), 409(0), 412(0), 416(1),
417(19), 432(0), 443(12), 451(7), 453(23),	434(0), 448(33), 454(0), 460(0), 462(1),
473(0), 494(24), 502(71), 514(0), 519(0),	466(11), 492(17), 494(38), 501(0), 505(0),
521(0), 570(0), 573(301), 583(0), 618(141),	519(0), 554(0), 569(294), 576(0), 614(144),
625(336), 629(157), 642(10), 651(59),	621(380), 623(167), 637(3), 646(80),
1922(1194), 1939(304), 1939(62), 1974(30),	1863(793), 1867(246), 1869(92), 1896(52),
2101(0), 2121(68), 2124(2048), 2131(591),	2005(0), 2026(1801), 2031(54), 2040(576),
2144(1024), 2182(104)	2059(838), 2091(81)

Table S33. Theoretical harmonic vibrational frequencies (in cm^{-1}) for the structure **28-10S**(C_s) using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP
6(0), 16(0), 22(0), 28(0), 58(0), 62(0), 66(0),	6(0), 19(0), 24(0), 28(0), 54(0), 60(0), 62(0),
72(3), 78(1), 80(1), 88(0), 89(1), 92(1), 99(0),	67(0), 74(1), 75(1), 82(0), 85(1), 86(4), 94(0),
104(1), 106(1), 108(0), 140(3), 172(3), 246(4),	100(1), 101(0), 103(0), 130(0), 162(1), 221(15),
335(0), 340(20), 365(5), 374(8), 381(0), 387(4),	340(0), 356(8), 367(4), 370(48), 372(0),
389(3), 397(23), 400(3), 418(5), 421(0), 429(1),	384(56), 386(1), 403(0), 413(1), 413(0), 436(2),
443(14), 475(0), 480(6), 485(3), 487(0), 491(9),	444(7), 447(14), 452(1), 470(31), 481(6),
493(21), 513(3), 518(7), 549(16), 549(0),	484(7), 491(22), 496(18), 506(12), 519(5),
571(0), 608(56), 612(82), 617(208), 634(126),	520(1), 520(2), 548(0), 606(67), 609(81),
665(148), 680(132), 1620(956), 1954(136),	612(498), 634(103), 642(112), 657(80),
2027(1337), 2044(452), 2048(1057),	1570(35), 1872(119), 1964(965), 1982(421),
2106(910), 2146(584), 2169(924), 2179(364),	1985(853), 2028(1463), 2034(751),
2212(295)	2048(1036), 2058(440), 2102(412)

Table S34. Theoretical harmonic vibrational frequencies (in cm⁻¹) for the structure $28-11S(C_{2v})$ using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP
-100(0), 22(0), 40(1), 58(0), 67(8), 67(0), 69(2),	-43(0), 26(1), 45(0), 52(0), 56(6), 70(2), 71(0),
81(1), 91(0), 92(0), 95(3), 96(3), 97(0), 103(0),	78(0), 83(0), 89(0), 91(0), 92(1), 94(2), 106(0),
110(0), 119(0), 136(0), 175(0), 200(0), 249(10),	106(0), 124(0), 132(0), 187(0), 204(0), 245(7),
325(0), 344(0), 347(0), 351(3), 354(0), 358(0),	331(0), 338(0), 339(0), 341(0), 351(0), 370(1),
368(0), 374(8), 377(6), 422(14), 431(0),	372(0), 383(3), 385(1), 417(2), 424(0), 429(10),
433(15), 435(24), 447(0), 460(15), 464(2),	444(5), 457(1), 458(5), 472(9), 481(0), 490(2),
478(0), 498(0), 498(1), 512(11), 533(0), 542(1),	494(1), 513(1), 514(0), 539(11), 539(0),
546(22), 579(194), 582(152), 608(401),	559(143), 587(69), 609(121), 611(177),
612(173), 615(89), 629(70), 637(0),	614(596), 628(40), 639(0), 1854(9), 1861(327),
1915(1035), 1937(16), 1944(359), 1969(30),	1862(734), 1890(0), 2018(6), 2030(903),
2107(15), 2124(896), 2125(0), 2128(1366),	2035(0), 2038(1215), 2063(1388), 2090(105)
2148(1711), 2182(181)	

Table S35. Theoretical harmonic vibrational frequencies (in cm^{-1}) for the structure **28-12S**(C_s) using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP
39(0), 41(0), 53(0), 54(3), 63(0), 65(2), 69(6),	17(0), 43(0), 43(0), 48(3), 54(0), 60(2), 64(5),
69(1), 80(2), 90(0), 92(0), 97(2), 101(0),	64(1), 76(2), 88(0), 93(0), 95(2), 99(0), 102(0),
104(0), 108(1), 111(0), 112(0), 114(2), 120(0),	104(1), 108(0), 109(1), 109(0), 118(1), 142(3),
136(6), 341(0), 349(2), 358(1), 358(0), 371(0),	338(0), 354(1), 354(1), 361(0), 364(0), 376(0),
374(0), 380(0), 391(16), 412(1), 418(0), 420(0),	379(0), 403(4), 409(22), 420(2), 422(0), 429(1),
422(10), 425(3), 436(4), 451(7), 452(13),	433(0), 460(4), 466(7), 466(6), 470(0), 477(0),
454(11), 501(0), 502(0), 520(33), 529(4),	520(1), 521(12), 523(5), 523(0), 535(3), 537(6),
536(0), 537(0), 551(1), 625(78), 626(69),	628(59), 629(77), 633(61), 635(398), 636(98),
632(453), 634(60), 642(91), 650(1), 1905(355),	656(23), 1831(302), 1845(2), 1989(553),
1918(8), 2084(535), 2099(198), 2127(6),	2010(243), 2039(299), 2046(811), 2049(1186),
2131(1568), 2133(960), 2137(1471), 2142(0),	2051(835), 2061(0), 2114(123)
2197(120)	
	•

	B3LYP/DZP			BP86/DZP		
Fe	0.000000	0.000016	0.000000	0.000000	0.000137	0.000000
С	0.000000	-1.815688	0.000000	0.000000	1.805247	0.000000
С	0.000000	0.909214	-1.571817	0.000000	-0.904432	-1.562241
С	0.000000	0.909214	1.571817	0.000000	-0.904432	1.562241
С	-1.822518	-0.001157	0.000000	1.805386	0.001682	0.000000
С	1.822518	-0.001157	0.000000	-1.805386	0.001682	0.000000
0	0.000000	-2.971987	0.000000	0.000000	2.975377	0.000000
0	0.000000	1.488029	-2.572795	0.000000	-1.490859	-2.574794
0	0.000000	1.488029	2.572795	0.000000	-1.490859	2.574794
0	-2.974916	-0.002221	0.000000	2.972721	0.003043	0.000000
0	2.974916	-0.002221	0.000000	-2.972721	0.003043	0.000000

Table S3. Theoretical Cartesian coordinates (in Å) for the Fe(CO)₅ structure using the B3LYP/DZP and BP86/DZP methods.

Table S4. Theoretical harmonic vibrational frequencies (in cm⁻¹) for the Fe(CO)₅ structure

using the B3LYP/DZP and BP86/DZP methods

B3LYP/DZP	BP86/DZP			
54(0), 54(0), 95(0), 95(0), 104(0), 104(0),	53(0), 54(0), 90(0), 91(0), 99(0), 99(0), 103(0),			
107(1), 365(0), 366(0), 366(0), 413(0), 439(1),	358(0), 369(0), 369(0), 434(6), 435(6), 435(0),			
439(14), 440(13), 473(7), 483(2), 483(2),	460(0), 488(0), 492(1), 492(1), 547(0), 547(0),			
563(0), 563(0), 617(127), 660(132), 660(132),	626(127), 662(125), 662(125), 1992(1080),			
2067(1275), 2067(1273), 2093(0), 2094(1474),	1992(1077), 2008(1264), 2012(0), 2089(0)			
2169(0				

Complete Gaussian 03 reference (Reference 25)

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.;
Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.;
Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.;
Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota,
K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,
H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo,
C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi,
R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador,
P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.;
Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J.
V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.;
Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.;
Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. Gaussian 03,
Revision C.02; Gaussian, Inc., Wallingford CT, **2004**.