Supporting information

Determination of the Global Material Economy (GME) of Synthesis Sequences - A Green **Chemistry Metric to Evaluate the Greenness of Products**

Jacques Augé and Marie-Christine Scherrmann

Calculation of GME and GRME for the sequence of Figure S1

The mass of product P_z for that sequence is

$$m = \frac{x_1}{v_{a1}} v_p M_p \prod_{i=1}^{z} \mathcal{E}_{1,i}$$
(S1)

 x_1 is the scale of the synthesis (number of moles of A1)

 ν_{a1} and ν_{p} are the stoichiometric coefficients of A_{1} and P_{z} respectively

Mp is the molecular weight of P_z .

 $\epsilon_{1,i}$ is the i th yield of the green sequence

If we divide Eq. 1 by
$$\frac{x_1}{v_{a1}} \sum M$$
, we obtain a dimensionless term: $GAE \prod_{i=1}^{2} \mathcal{E}_{1,i}$ (S2)

$$\sum M = v_{a1} M_{A1} + v_{a2} M_{A2} + \sum_{i=1}^{z} v_{b1,i} M_{B1,i} + \sum_{j=1}^{m} v_{b2,j} M_{B2,j}$$
 is the summation of the molecular weights of

all the reactants with their stoichiometric coefficients.

GAE is the global atom economy.

The total mass used in this sequence is:

$$m_{T} = x_{1} M_{A} + \sum_{i=1}^{z} \varphi_{1,i} \left(\varepsilon_{1,i} \varepsilon_{1,2} \dots \varepsilon_{1,i-1} \right) \frac{x_{1}}{v_{a1}} v_{b1,i} M_{B1,i} + x_{2} M_{A2} + \sum_{j=1}^{m} \varphi_{2,j} \left(\varepsilon_{2,1} \varepsilon_{2,2} \dots \varepsilon_{2,j-1} \right) \frac{x_{2}}{v_{a2}} v_{b2,j} M_{B2,j} + S$$
(S3)

where
$$\varphi_{1,i} = \frac{mol \quad number \quad of \quad B_{1,i} / v_{1,i}}{mol \quad number \quad of \quad P_{1,i-1} / v_{P1,i-1}}$$
 (S4)

$$\varphi_{2,j} = \frac{mol \quad number \quad of \quad B_{2,j} / v_{b2,j}}{mol \quad number \quad of \quad P_{2,j-1} / v_{P2,j-1}}$$
(S5)

S is the total mass of auxiliaries when processing the total sequence at the scale x_1 .

By introducing the ration
$$\sigma_2$$
, such as $\sigma_2 = \frac{x_2/v_{a2}}{x_1/v_{a1}}$ (S6)

the Eq. S3 becomes

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012

$$m_{T} = x_{1} M_{A} + \sum_{i=1}^{z} \varphi_{1,i} (\varepsilon_{1,i} \varepsilon_{1,2} \dots \varepsilon_{1,i-1}) \frac{x_{1}}{v_{a1}} v_{b1,i} M_{B1,i} + \sigma_{2} \left[v_{a2} \frac{x_{1}}{v_{a1}} M_{A2} + \sum_{j=1}^{m} \varphi_{2,j} (\varepsilon_{2,1} \varepsilon_{2,2} \dots \varepsilon_{2,j-1}) \frac{x_{1}}{v_{a1}} v_{b2,j} M_{B2,j} \right] + S_{2} \left[v_{a2} \frac{x_{1}}{v_{a1}} M_{A2} + \sum_{j=1}^{m} \varphi_{2,j} (\varepsilon_{2,1} \varepsilon_{2,2} \dots \varepsilon_{2,j-1}) \frac{x_{1}}{v_{a1}} v_{b2,j} M_{B2,j} \right] + S_{2} \left[v_{a2} \frac{x_{1}}{v_{a1}} M_{A2} + \sum_{j=1}^{m} \varphi_{2,j} (\varepsilon_{2,1} \varepsilon_{2,2} \dots \varepsilon_{2,j-1}) \frac{x_{1}}{v_{a1}} v_{b2,j} M_{B2,j} \right] + S_{2} \left[v_{a2} \frac{x_{1}}{v_{a1}} M_{A2} + \sum_{j=1}^{m} \varphi_{2,j} (\varepsilon_{2,1} \varepsilon_{2,2} \dots \varepsilon_{2,j-1}) \frac{x_{1}}{v_{a1}} v_{b2,j} M_{B2,j} \right] + S_{2} \left[v_{a2} \frac{x_{1}}{v_{a1}} M_{A2} + \sum_{j=1}^{m} \varphi_{2,j} (\varepsilon_{2,1} \varepsilon_{2,2} \dots \varepsilon_{2,j-1}) \frac{x_{1}}{v_{a1}} v_{b2,j} M_{B2,j} \right] + S_{2} \left[v_{a2} \frac{x_{1}}{v_{a1}} M_{A2} + \sum_{j=1}^{m} \varphi_{2,j} (\varepsilon_{2,1} \varepsilon_{2,2} \dots \varepsilon_{2,j-1}) \frac{x_{1}}{v_{a1}} v_{b2,j} M_{B2,j} \right]$$

As previously, we divide the Eq. S7 by $\frac{x_1}{v_{a1}} \sum M$ to obtain a dimensionless term (S8):

$$1 + \sum_{i=1}^{z} \left[\varphi_{1,i} \left(\varepsilon_{1,i} \ \varepsilon_{1,2} \dots \varepsilon_{1,i-1} \right) - 1 \right] \frac{v_{b1,i} \ M_{B1,i}}{\sum M} + \left(\sigma_2 - 1 \right) \frac{v_{a2} \ M_{A2}}{\sum M} + \sum_{j=1}^{m} \left[\sigma_2 \ \varphi_{2,j} \ \left(\varepsilon_{2,1} \ \varepsilon_{2,2} \dots \varepsilon_{2,j-1} \right) - 1 \right] \frac{v_{b2,j} \ M_{B2,j}}{\sum M} + \frac{S}{\frac{x_1}{v_{a1}} \sum M} \right]$$

(S8)

Therefore
$$GME = \frac{GAE \prod_{i=1}^{r} \mathcal{E}_{1,i}}{1 + a_2 + \sum_{i=1}^{z} b_{1,i} + \sum_{j=1}^{m} b_{2,j} + s}$$
 (S9)

where
$$a_2 = (\sigma_2 - 1) \frac{V_{a_2} M_{A_2}}{\sum M}$$
 (S10)

$$b_{1,i} = \left[\varphi_{1,i}(\varepsilon_{1,1}\varepsilon_{1,2}...\varepsilon_{1,i-1}) - 1\right] \frac{V_{b1,i}M_{B1,i}}{\sum M}$$
(S11)

$$b_{2,j} = \left[\sigma_2 \varphi_{2,j} \left(\varepsilon_{2,1} \dots \varepsilon_{2,j-1} \right) - 1 \right] \frac{v_{b_{2,j}} M_{B_{2,j}}}{\sum M}$$
(S12)
$$s = \frac{S}{x_1 \sum M}$$
(S13)

$$\frac{x_1}{v_{a1}}\sum M$$

GRME is obtained by omitting in Eq. S9 the term corresponding to the auxiliaries so that

$$GRME = \frac{GAE \prod_{i=1}^{z} \varepsilon_{1,i}}{1 + a_2 + \sum_{i=1}^{z} b_{1,i} + \sum_{j=1}^{m} b_{2,j}}$$

(S14)

Figure S1 Convergent synthesis with one point of convergence. By convention A1 is the reference molecule so that the main branch starting from A1 is green. The other branch is blue.

Calculation of GME and GRME for the sequence of Figure S2

Using the same method, we can give the expressions of GME and GRME for the sequence of Figure 2

The mass of product $\mathbf{P}_{\mathbf{z}}$ for that sequence is given by Eq. S1. If we divide Eq. S1 by $\frac{x_1}{v_{a1}} \sum M$ where

$$\sum M = v_{a1} M_{A1} + v_{a2} M_{A2} + v_{a3} M_{A3} + \sum_{i=1}^{z} v_{b1,i} M_{B1,i} + \sum_{j=1}^{m} v_{b2,j} M_{B2,j} + \sum_{k=1}^{r} v_{b3,k} M_{B3,k}$$

we obtain the dimensionless term of Eq. S2.

The total mass of reactants used in the sequence is:

$$m_{T} = x_{1}M_{A} + \sum_{i=1}^{z} \phi_{1,i}(\epsilon_{1,i}.\epsilon_{1,i-1}) \frac{x_{1}}{\nu_{a1}} \nu_{b1,i}M_{B1,i} + x_{2}M_{A2} + \sum_{j=1}^{m} \phi_{2,j}(\epsilon_{2,1}..\epsilon_{2,j-1}) \frac{x_{2}}{\nu_{a2}} \nu_{b2,j}M_{B2,j} + x_{3}M_{A3} + \sum_{k=1}^{r} \phi_{3,k}(\epsilon_{3,1}...\epsilon_{3,k-1}) \frac{x_{3}}{\nu_{a2}} \nu_{b3,k}M_{B3,k} + S(\epsilon_{3,1}...\epsilon_{3,k-1}) \frac{x_{3}}{\nu_{a3}} \nu_{a3}} \nu_{a3} \nu_{a3}$$

(S15)

where $\phi_{1,i}$ and $\phi_{2,j}$ are given by Eq. S4 and S5

$$\varphi_{3,k} = \frac{mol \quad number \quad of \quad B_{3,k} / v_{b3,k}}{mol \quad number \quad of \quad P_{3,k-1} / v_{P3,k-1}} \quad (S16)$$

S is the total mass of auxiliaries when processing the total sequence at the scale x₁.

We introduce the ratio σ_2 and σ_3 ; they are respectively defined by Eq. S6 and S17:

$$\sigma_{3} = \frac{\frac{x_{3}}{v_{a3}}}{\frac{x_{1}}{v_{a1}}}$$
(S17)

The Eq. S15 becomes

$$\mathbf{m}_{\mathrm{T}} = \mathbf{x}_{\mathrm{I}} \mathbf{M}_{\mathrm{A}} + \sum_{i=1}^{z} \phi_{\mathrm{I},i} (\boldsymbol{\varepsilon}_{\mathrm{I},i} \dots \boldsymbol{\varepsilon}_{\mathrm{I},i-1}) \frac{\mathbf{x}_{\mathrm{I}}}{\mathbf{v}_{\mathrm{a}1}} \mathbf{v}_{\mathrm{b}\mathrm{I},i} \mathbf{M}_{\mathrm{B}\mathrm{I},i} + \sigma_{2} \left[\mathbf{v}_{\mathrm{a}2} \frac{\mathbf{x}_{\mathrm{I}}}{\mathbf{v}_{\mathrm{a}1}} \mathbf{M}_{\mathrm{A}2} + \sum_{j=1}^{m} \phi_{2,j} (\boldsymbol{\varepsilon}_{2,1} \dots \boldsymbol{\varepsilon}_{2,j-1}) \frac{\mathbf{x}_{\mathrm{I}}}{\mathbf{v}_{\mathrm{a}1}} \mathbf{v}_{\mathrm{b}2,j} \mathbf{M}_{\mathrm{B}2,j} \right] + \sigma_{3} \left[\mathbf{v}_{\mathrm{a}3} \frac{\mathbf{x}_{\mathrm{I}}}{\mathbf{v}_{\mathrm{a}1}} \mathbf{M}_{\mathrm{A}3} + \sum_{k=1}^{r} \phi_{3,k} (\boldsymbol{\varepsilon}_{3,1} \dots \boldsymbol{\varepsilon}_{3,j-1}) \frac{\mathbf{x}_{\mathrm{I}}}{\mathbf{v}_{\mathrm{a}1}} \mathbf{v}_{\mathrm{b}3,k} \mathbf{M}_{\mathrm{B}3,k} \right] + \mathbf{S} \left[\mathbf{v}_{\mathrm{B}3} \frac{\mathbf{x}_{\mathrm{I}}}{\mathbf{v}_{\mathrm{a}1}} \mathbf{v}_{\mathrm{B}3,k} \mathbf{w}_{\mathrm{B}3,k} \mathbf{w}$$

As previously, we divide the Eq. S18 by $\frac{x_1}{v_{a1}} \sum M$ to obtain a dimensionless term (S19):

$$1+\sum_{i=1}^{z}\left[\varphi_{1,i}(\varepsilon_{1,i}..\varepsilon_{1,i-1})-1\right]\frac{V_{b1,i}M_{B1,i}}{\sum M} + (\sigma_{2}-1)\frac{V_{a2}M_{A2}}{\sum M} + \sum_{j=1}^{m}\left[\sigma_{2}\varphi_{2,j}(\varepsilon_{2,1}..\varepsilon_{2,j-1})-1\right]\frac{V_{b2,j}M_{B2,j}}{\sum M} + (\sigma_{3}-1)\frac{V_{a3}M_{A3}}{\sum M} + \sum_{k=1}^{r}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,1}..\varepsilon_{3,k-1})-1\right]\frac{V_{b3,k}M_{B3,k}}{\sum M} + \frac{S}{\frac{x_{1}}{v_{a1}}\sum M}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,1}..\varepsilon_{3,k-1})-1\right]\frac{V_{b3,k}M_{B3,k}}{\sum M} + \frac{S}{\frac{x_{1}}{v_{a1}}\sum M}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,1}..\varepsilon_{3,k-1})-1\right]\frac{V_{b3,k}M_{B3,k}}{\sum M} + \frac{S}{\frac{x_{1}}{v_{a1}}\sum M}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,1}..\varepsilon_{3,k-1})-1\right]\frac{V_{b3,k}M_{B3,k}}{\sum M} + \frac{S}{\frac{x_{1}}{v_{a1}}\sum M}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,1}..\varepsilon_{3,k-1})-1\right]\frac{V_{b3,k}M_{B3,k}}{\sum M} + \frac{S}{\frac{x_{1}}{v_{a1}}}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,1}..\varepsilon_{3,k-1})-1\right]\frac{V_{b3,k}M_{B3,k}}{\sum M} + \frac{S}{\frac{x_{1}}{v_{a2}}}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,1}..\varepsilon_{3,k-1})-1\right]\frac{V_{b3,k}M_{b3,k}}{\sum M} + \frac{S}{\frac{x_{1}}{v_{a2}}}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,k})-1\right]\frac{V_{b3,k}M_{b3,k}}{\sum M} + \frac{S}{\frac{x_{1}}{v_{a2}}}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,k})-1\right]\frac{V_{b3,k}M_{b3,k}}{\sum M} + \frac{S}{\frac{x_{1}}{v_{a2}}}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,k})-1\right]\frac{V_{b3,k}M_{b3,k}}{\sum M} + \frac{S}{\frac{x_{1}}{v_{a3}}}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,k})-1\right]\frac{V_{b3,k}M_{b3,k}}{\sum M} + \frac{S}{\frac{x_{1}}{v_{a3}}}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,k})-1\right]\frac{V_{b3,k}M_{b3,k}}{\sum M} + \frac{S}{\frac{x_{1}}{v_{a3}}}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,k})-1\right]\frac{V_{b3,k}M_{b3,k}}{\sum M} + \frac{S}{\frac{x_{1}}{v_{a3}}}\left[\sigma_{3}\varphi_{3,k}(\varepsilon_{3,k})-1\right]\frac{V_{b3,k}M_{b3,k}}{$$

9)

Therefore

$$GME = \frac{GAE \prod_{i=1}^{z} \mathcal{E}_{1,i}}{1 + a_2 + a_3 + \sum_{i=1}^{z} b_{1,i} + \sum_{j=1}^{m} b_{2,j} + \sum_{k=1}^{r} b_{3,k} + s}$$
(S20)

where a_2 , $b_{1,i}$, $b_{2,j}$, s are given by Eq. S10, S11, S12 and S13.

$$a_{3} = (\sigma_{3} - 1) \frac{\nu_{a3} M_{A3}}{\sum M}$$
(S21)

$$b_{3,k} = \left[\sigma_{3}\varphi_{3,k}\left(\varepsilon_{3,1}...\varepsilon_{3,k-1}\right) - 1\right] \frac{V_{b3,k}M_{B3,k}}{\sum M}$$
(S22)

GRME is obtained by omitting in Eq.20 the term corresponding to the auxiliaries so that

Figure S2 Convergent synthesis with two points of convergence. Two branches (in blue) converge to the main sequence (in green). A1 is the reference molecule.

Calculation of GRME for the synthesis of discodermolide

To obtain 165 mg of discodermolide we need to start with $x_1 = 6.96$ mmol of A_1 , $x_2 = 6.654$ mmol of A_2 and $x_3 = 8.435$ mmol of A_3 . The mass of reagents at this scale are displayed in Table S1

Reagent	MW (g.mol ⁻¹)	?	yield	Mass (mg)
A ₁	258.43			1798,673
B _{1,1a} (iPrMgCl)	158.95	3.002		3322.055
B _{1,1b} (MeNHOMe)	61.08	1.55		659.053
B _{1,1c} (HCl)	36.46	1.55	0.98	393.403
B _{1,2a} (TESCl)	150.72	1.016		1044.479
B _{1,2b} (imidazole)	68.08	1.128	0.92	523.798
B _{1,3} (Red-Al)	202.16	2	0.97	2543.092
B _{1,4a} (EtP+Ph ₃ I-)	418.25	1.804		4622.612
B _{1,4b} (NaHMDS)	183.37	1.88		2111.0988
B _{1,4c} (I ₂)	253.81	1.804		2805.177
B _{1,4d} (NaHMDS)	183.37	1.804	0.3	2026.654
A ₂	258.43			1719.607
B _{2,1a} (iPrMgCl)	158.95	3.11		3289.212
B _{2,1b} (MeNHOMe)	61.08	1.71		694.804
B _{2,1c} (HCl)	36.46	1.71	1	414.744
B _{2,2a} (DMSO)	78.13	1		519.881
B _{2,2b} (Pyridine)	79.1	3.037		1598.557
B _{2,2c} (SO ₃)	80.06	3.037		1617.958
B2,2d (NEt3)	101.19	4.056	1	2730.723
B _{2,3a} (Br-allylsilane)	193.16	4		5141.189
B _{2,3b} (2 CrCl ₂)	245.8	3		4906.70

Table S1. Calculation of the mass of reagents at the appropriate scale

B _{2,3c} (H ₂ O)	18.02	1		119.906
B2,3d (KH)	40.11	1.097	0.77	292.800
B _{2,4a} (DIBAH)	142.22	1.053		767.544
B _{2,4b} (H ₂ O)	18.02	1	0.79	92.328
B _{2,5a} (oxazoline)	233.26	1.425		1345.424
B _{2,5b} (Bu ₂ OTf)	274.11	1.35		1497.831
B2,5c (NEt3)	101.19	1.792		734.177
B2,5d (H2O)	18.02	1	0.85	72.939
B _{2,6a} (lutidine)	107.15	2.632		970.307
B _{2,6b} (TBSOTf)	264.34	2.374	0.9	2158.967
B _{2,7a} (mercaptan)	124.2	3.886		1494.37
B _{2,7b} (BuLi)	64.06	2.857		566.741
B _{2,7c} (H ₂ O)	18.02	1	1	55.798
B _{2,8a} (1/2 LiBH ₄)	10.89	16		539.527
B _{2,8b} (2 EtOH)	92.14	1	0.84	285.308
$B_{2.9a}$ (Ph ₃ P)	262.29	1.711		1167.11
B2 9h (I2)	253.81	1.496		987.522
B _{2.9c} (imidazole)	68.08	1.504	0.86	266.349
$B_{1,5a}$ (tBuLi)	64.06	2.439		287.101
$B_{1,5h}$ (borane-OMe)	152.04	1.583	0.81	442.124
B _{1,6} (2 CF ₂ COOH)	228.04	3 562	0.77	1209 105
$B_{1,0} (2 \text{ de } 3000 \text{ h})$ $B_{1,7} (\text{PhI}(\Omega \land c)_2)$	322.1	3	1	1107 391
$B_{1,2} (K_2(\Omega_2))$	138.21	6	1	950 3/1
$B_{1,82}$ (R2CO3) $B_{1,84}$ (nhosphonate)	318 11	3 99	0.87	1454 492
B _{1,80} (phospholiate)	1887	4.55	0.07	854 610
B _{1,9a} (Isocyaliate)	22.04	1	0.08	21 045
	22.04	2 002	0.90	1100.62
$D_{1,10a} (2 \text{ DIDAR})$	204.44	1	0.02	17.607
	10.02	1	0.92	17.007
B _{1,11} (Dess-Martin)	424.14	1.504	0.96	573.554
$A_3 (= A_1)$	258.43			2179.91
B _{3,1a} (iPrMgCl)	158.95	3		4026.17
B _{3,1b} (MeNHOMe)	61.08	1.55		798.74
B _{3,1c} (HCl)	36.46	1.55	0.98	476.79
B _{3,2a} (DMSO)	78.13	1		645.861
B _{3,2b} (pyridine)	79.1	3.0147		1971.254
B _{3,2c} (SO ₃)	80.06	3.0147		1995.178
B _{3,2d} (NEt ₃)	101.19	4.0147	0.84	3358.245
B _{3,3a} (MeMgBr)	119.24	1.762		1458.83
B3,3b (H2O)	18.02	1	1	125.128
B _{3,4a} (DMSO)	78.13	1		542.523
B _{3,4b} (pyridine)	79.1	4.914		2699.214
B _{3,4c} (SO ₃)	80.06	4.914		2731.973
B _{3,4d} (NEt ₃)	101.19	6.286	0.82	4416.646
B _{1,12a} (chloroborane)	320.75	6.598		1484.869
B1,12b (NEt3)	101.19	5.364		579.436
B _{1,12c} (H ₂ O)	18.02	6.635	0.628	15.551
B _{1,13a} (borohydride)	263.1	14.175		2021.107
B _{1,13b} (AcOH)	60.05	1	0.733	32.544

B _{1,z} (3 HCl)	109.38	406.564	0.7	17665.399
Total	9748,2			115161.686

By applying Eq S23 to the synthesis of discodermolide (Figure 7), we obtain Eq 35. The coefficients of Eq. 35 are displayed in Table 1.

The coefficients of Eq. 36, 38 and 42 are displayed in Tables S2, S3 and S4 respectively

Table S2. Coefficients of Eq. 36

a1 (A1)	0.00121892			a ₃ (A ₃)	0.007096262
b _{1,1a} (iPrMgCl)	0.03490929	b _{2,1a} (iPrMgCl)	0.03440296	b _{3,1a} (iPrMgCl)	0.045764431
b _{1,1b} (MeNHOMe)	0.0038946	b _{2,1b} (MeNHOMe)	0.004445753	b _{3,1b} (MeNHOMe)	0.006048123
b _{1,1c} (HCl)	0.00232477	b _{2,1c} (HCl)	0.002653768	b3,1c (HCl)	0.003610258
b _{1,2a} (TESCl)	0.00064103	b _{2,2a} (DMSO)	0	b _{3,2a} (DMSO)	0.001942178
b _{1,2b} (imidazole)	0.00109134	b _{2,2b} (pyridine)	0.016530032	b _{3,2b} (pyridine)	0.022275752
b1,3 (Red-Al)	0.0184677	b _{2,2c} (SO ₃)	0.016730649	b _{3,2c} (SO ₃)	0.022546103
b _{1,4a} (EtPh ₃ P+I-)	0.0283597	b2,2d (NEt3)	0.031718147	b3,2d (NEt3)	0.041392417
b _{1,4b} (NaHMDS)	0.01373536	b _{2,3a} (Br-allylsilane)	0.059444821	b _{3,3a} (MeMgBr)	0.010258232
b _{1,4c} (I ₂)	0.01720975	b2,3b (CrCl2)	0.050429823	b3,3b (H2O)	0.0000805075
b1,4d (NaHMDS)	0.01243352	b _{2,3c} (H ₂ O)	0	b _{3,4a} (DMSO)	0.000349059
b _{2,10a} (^t BuLi)	-0.0021453	b2,3d (KH)	0.000399386	b _{3,4b} (pyridine)	0.033498435
b _{2,10b} (borane-OMe)	-0.0087807	b _{2,4a (} DIBAH)	-0.002756416	b _{3,4c} (SO ₃)	0.03390499
b _{2,11} (CF ₃ CO ₂ H)	-0.00475272	b _{2,4b} (H ₂ O)	-0.000425166	b _{3,4d} (NEt ₃)	0.057709381
b _{2,12} (PhI(OAc) ₂)	-0.01596977	b _{2,5a} (oxazoline)	-0.003186621		
b2,13a, (K2CO3)	0.00047305	b2,5b (Bu2OTf)	-0.005027543	1+Σa, b	1.775404066
b _{2,13b} (phosphonate)	-0.01020935	b2,5c (NEt3)	0.000938155	(Eq.36 denomin.)	
b _{2,14a} (isocyanate)	-0.00615131	b2,5d (H2O)	-0.000724076	GAE Π ε	0.00254552
b _{2,14b} (MeOH)	-0.00279428	b _{2,6a} (lutidine)	0.003967077	(Eq. 36 numerator)	
b _{2,15a} (DIBAH)	-0.01207214	b _{2,6b} (TBSOTf)	0.006167181	GRME	0.0014337711
b _{2,15b} (H ₂ O)	-0.0015771	b _{2,7a} (mercaptan)	0.010297319		
b _{2,16} (Dess-Martin)	-0.03466731	b2,7b (BuLi)	0.002165759		
b _{2,17a} (chloroborane)	-0.01001185	b2,7c (H2O)	-0.000988326		
b _{1,17b} (NEt ₃)	-0.00144743	b _{2,8a} (LiBH ₄)	0.00720056		
b _{1,17c} (H ₂ O)	-0.00160881	b _{2,8b} (EtOH)	-0.005053517		
b _{2,18a} (borohydride)	0.00416905	b _{2,9a} (Ph ₃ P)	-0.00891362		
b2,18b (CH3CO2H)	-0.0056584	b2,9ь (I2)	-0.010812347		
b _{2,,z} (HCl)	0.26112022	b _{2,9c} (imidazole)	-0.002877657		

Table S3. Coefficients of Eq. 38

a1 (A1)	-0.00463631	a ₂ (A ₂)	-0.005597847		
b _{1,1a} (iPrMgCl)	0.02409499	b _{2,1a} (iPrMgCl)	0.023695571	b _{3,1a} (iPrMgCl)	0.032658004
b1,1b (MeNHOMe)	0.00174918	b _{2,1b} (MeNHOMe)	0.002183955	b _{3,1b} (MeNHOMe)	0.003447975
b1,1c (HCl)	0.00104413	b _{2,1c} (HCl)	0.001303651	b3,1c (HCl)	0.002058172
b _{1,2a} (TESCI)	-0.00275907	b _{2,2a} (DMSO)	-0.001692372	b _{3,2a} (DMSO)	-0.000160296
b _{1,2b} (imidazole)	-0.00061378	b _{2,2b} (pyridine)	0.01132624	b _{3,2b} (pyridine)	0.01585872
b1,3 (Red-Al)	0.01018916	b _{2,2c} (SO ₃)	0.011463701	b _{3,2c} (SO ₃)	0.01605119
b _{1,4a} (EtPh ₃ P+I-)	0.01331169	b2,2d (NEt3)	0.022828809	b3,2d (NEt3)	0.030460303
b _{1,4b} (NaHMDS)	0.00686309	b _{2,3a} (Br-allylsilane)	0.042708681	b _{3,3a} (MeMgBr)	0.005509294
b1,4c (I2)	0.08807804	b _{2,3b} (CrCl ₂)	0.034457016	b _{3,3b} (H ₂ O)	-0.000326823

b1,4d (NaHMDS)	0.00583614	b2,3c (H2O)	-0.000390331	b _{3,4a} (DMSO)	-0.001417019
b _{2,10a} (^t BuLi)	-0.00307994	b2,3d (KH)	-0.000553768	b _{3,4b} (pyridine)	0.02471167
b _{2,10b} (borane-OMe)	-0.01021991	b _{2,4a (} DIBAH)	-0.005255008	b _{3,4c} (SO ₃)	0.025011584
b _{2,11} (CF ₃ CO ₂ H)	-0.008668873	b _{2,4b} (H ₂ O)	-0.00072572	b3,4d (NEt3)	0.04333185
b _{2,12} (PhI(OAc) ₂)	-0.01957467	b _{2,5a} (oxazoline)	-0.007566388	b _{3,5a} (chloroborane)	-0.01484555
b _{2,13a} , (K ₂ CO ₃)	-0.0026206	b _{2,5b} (Bu ₂ OTf)	-0.009903441	b _{3,5b} (NEt ₃)	-0.00333367
b _{2,13b} (phosphonate)	-0.0149442	b _{2,5c} (NEt ₃)	-0.001451816	b _{3,5c} (H ₂ O)	-0.00165943
b _{2,14a} (isocyanate)	-0.00893335	b _{2,5d (} H ₂ O)	-0.000961514	b _{3,6a} (borohydride)	-0.00241027
b _{2,14b} (MeOH)	-0.00289827	b _{2,6a} (lutidine)	0.000808433	b _{3,6b} (CH ₃ CO ₂ H)	-0.00576434
b _{2,15a} (DIBAH)	-0.0156843	b _{2,6b} (TBSOTf)	-0.000860917	b _{3,,z} (HCl)	0.20361396
b _{2,15b} (H ₂ O)	-0.00163442	b _{2,7a} (mercaptan)	0.005432689		
b _{2,16} (Dess-Martin)	-0.0365344	b _{2,7b (} BuLi)	0.000320845	1+ Σ a, b	1.40051761
		b _{2,7c} (H ₂ O)	-0.001169967	(Eq.38 denomin.)	
		b _{2,8a} (LiBH ₄)	0.005444233	GAE Π ε	0.00200802
		b _{2,8b} (EtOH)	-0.005982282	(Eq. 38 numerator)	
		b _{2,9a} (Ph ₃ P)	-0.012712918	GRME	0.0014337711
		b2,9b (I2)	-0.014027033		
		b _{2,9c} (imidazole)	-0.003744704		

Table S4. Coefficients of Eq. 42

a1 (A1)	-0.00463631	a ₂ (A ₂)	-0.005597847		
b _{1,1a} (iPrMgCl)	0.02409499	b _{2,1a} (iPrMgCl)	0.023695571	b _{3,1a} (iPrMgCl)	0.032658004
b _{1,1b} (MeNHOMe)	0.00174918	b _{2,1b} (MeNHOMe)	0.002183955	b _{3,1b} (MeNHOMe)	0.003447975
b _{1,1c} (HCl)	0.00104413	b _{2,1c} (HCl)	0.001303651	b _{3,1c} (HCl)	0.002058172
b _{1,2a} (TESCl)	-0.00275907	b _{2,2a} (DMSO)	-0.001692372	b _{3,2a} (DMSO)	-0.000160296
b _{1,2b} (imidazole)	-0.00061378	b _{2,2b} (pyridine)	0.01132624	b _{3,2b} (pyridine)	0.01585872
b _{1,3} (Red-Al)	0.01018916	b2,2c (SO3)	0.011463701	b3,2c (SO3)	0.01605119
b _{1,4a} (EtPh ₃ P+I-)	0.01331169	b2,2d (NEt3)	0.022828809	b3,2d (NEt3)	0.030460303
b _{1,4b} (NaHMDS)	0.00686309	b _{2,3a} (Br-allylsilane)	0.042708681	b _{3,3a} (MeMgBr)	0.005509294
b _{1,4c} (I ₂)	0.08807804	b _{2,3b} (CrCl ₂)	0.034457016	b _{3,3b} (H ₂ O)	-0.000326823
b _{1,4d} (NaHMDS)	0.00583614	b _{2,3c} (H ₂ O)	-0.000390331	b _{3,4a} (DMSO)	-0.001417019
b _{1,5a} (^t BuLi)	-0.00307994	b _{2,3d} (KH)	-0.000553768	b _{3,4b} (pyridine)	0.02471167
b _{1,5b} (borane-OMe)	-0.01021991	b _{2,4a (} DIBAH)	-0.005255008	b _{3,4c} (SO ₃)	0.025011584
b _{1,6} (CF ₃ CO ₂ H)	-0.008668873	b _{2,4b} (H ₂ O)	-0.00072572	b3,4d (NEt3)	0.04333185
b _{1,7} (PhI(OAc) ₂)	-0.01957467	b _{2,5a} (oxazoline)	-0.007566388	b _{3,5a} (chloroborane)	-0.01484555
b _{1,8a} , (K ₂ CO ₃)	-0.0026206	b2,5b (Bu2OTf)	-0.009903441	b3,5b (NEt3)	-0.00333367
b _{1,8b} (phosphonate)	-0.01494416	b2,5c (NEt3)	-0.001451816	b3,5c (H2O)	-0.00165943
b _{1,9a} (isocyanate)	-0.00893335	b2,5d (H2O)	-0.000961514	b _{3,6a} (borohydride)	-0.00241027
b1,9b (МеОН)	-0.00289827	b _{2,6a} (lutidine)	0.000808433	b3,6b (CH3CO2H)	-0.00576434
b _{1,10a} (DIBAH)	-0.01568429	b _{2,6b} (TBSOTf)	-0.000860917	b _{3,,z} (HCl)	0.20361396
b _{1,10b} (H ₂ O)	-0.00163442	b _{2,7a} (mercaptan)	0.005432689		
b _{1,11} (Dess-Martin)	-0.0365344	b _{2,7b (} BuLi)	0.000320845	1+ Σ a, b	1.40051761
		b2,7c (H2O)	-0.001169967	(Eq.38 denomin.)	
		b _{2,8a} (LiBH ₄)	0.005444233	GAE Π ε	0.00200802
		b _{2,8b} (EtOH)	-0.005982282	(Eq. 38 numerator)	
		b _{2,9a} (Ph ₃ P)	-0.012712918	GRME	0.0014337711
		b _{2,9b} (I ₂)	-0.014027033		
		b2,9c (imidazole)	-0.003744704		

Scheme S1. Synthesis of C9-C14 fragment of discodermolide

Scheme S2. Synthesis of C15-C24 fragment of discodermolide

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012

Scheme S3. Synthesis of C7-C24 fragment of discodermolide

Scheme S4. Synthesis of C1-C6 fragment of discodermolide

Scheme S5. Final steps of the synthesis of discodermolide