Supporting Information

Design and synthesis of anthracene-based bispyridinium amides: Anion binding, cell staining and their DNA interaction studies

Kumaresh Ghosh,*^a Avik Ranjan Sarkar, ^a Atanu Ghorai, ^b Utpal Ghosh ^b

^[a]Department of Chemistry, University of Kalyani, Kalyani-741235, India. ^[b]Department of Biochemistry and Biophysics, University of Kalyani, Kalyani-741235, India. **E-mail :** <u>ghosh k2003@yahoo.co.in</u>

Table of Contents:

1. Spectral data for intermediates and receptors 1-4
2. Change in fluorescence and absorption spectra of 1-4 with anions
in CH ₃ CN. (Selected)
3. Job plots of receptor1-4 by fluorescence and UV-vis method
4. Binding constant curves from fluorescence and UV-vis for receptor
1-4 with anions (Selected)
5. Reversibility experiment of receptor 2 -4 for $H_2PO_4^-$ in CH_3CN from fluorescenceS29
6. Change in fluorescence and UV-vis spectra of 3 and 4 with
dicarboxylates in CH ₃ CNS30
7. Change in absorption with host to guest ration for receptor 1-4 with
dicarboxylate at 371 nm in CH ₃ CNS34
8. Binding constant curves of 3 and 4 with dicarboxylates from fluorescence in
CH ₃ CN
9. Emission and UV-vis titration curves for receptor 1-4 with sodium salt of $H_2PO_4^-$, HPO_4^{2-}
and PO ₄ ⁻ In 4:1 (v/v) CH ₃ CN:H ₂ O containing 10 mM HEPES buffer (pH= 7.2)S38
10. Anion binding studies of receptors $1 - 4$ with sodium salt of $H_2PO_4^-$,
HPO ₄ ²⁻ and PO ₄ ³⁻ in 4:1 (v/v) CH ₃ CN:H ₂ O
11. Binding constant curves for receptor 1 and 3 with NaH_2PO_4 and Na_2HPO_4 from
fluorescence in 4:1 (v/v) CH ₃ CN:H ₂ O containing 10 mM HEPES buffer (pH= 7.2)S42
12. ROESY spectrum in d ₆ -DMSO of receptors 1-4
13. ¹ H NMR of the receptors 2 – 4 in the presence and absence of anions
14. ³¹ P of H ₂ PO ₄ ⁻ in the presence of 1-4 in d ₆ -DMSO
15. MO structure of receptors 1-4 and there complexes with 1:1 H ₂ PO ₄ ⁻
16. Fixed HeLa cells stained with receptors 1 – 4 and Hoechst dye
under- bright-field mode and fluorescence mode
17. Gel Retardation Assay (taking calf-thymus DNA)
18. CD spectra of receptors 1 – 4

1. Spectral data of compounds:

¹H NMR of 5 (400 MHz, d₆-DMSO):

¹³C NMR of 5 (100 MHz, d₆-DMSO):

¹H NMR of 1 (400 MHz, d₆-DMSO):

¹³C NMR of 1 (100 MHz, d₆-DMSO):

ESI mass of 1:

¹³C NMR of 6 (100 MHz, d₆-DMSO):

ESI mass of 6:

¹H NMR of 2 (400 MHz, d₆-DMSO):

ESI mass of 2:

ESI mass of 7:

¹H NMR of 3 (400 MHz, d₆-DMSO):

¹³C NMR of 4 (100 MHz, d₆-DMSO):

ESI mass of 4:

13

2a. Selected emission titration curves for receptor 1 in CH_3CN with following

FigureS1a: Fluorescence titration curve of receptor 1 ($c = 5.65 \times 10^{-5} \text{ M}$) with the tetrabutylammonium (a) fluoride, (b) acetate, (c) propanoate, (d) hydrogensulphate, (e) salt of ibuprofen, (f) benzoate, (g) chloride, (h) bromide in CH₃CN(concentration of all guests $c = 2.5 \times 10^{-4} \text{ M}$, $\lambda_{\text{Excitation}} = 370 \text{ nm}$).

2b. Selected UV-vis titration curves for receptor 1 in CH₃CN:

Figure S1b: UV-vis titration curve of receptor **1** ($c = 5.65 \times 10^{-5} \text{ M}$) with the tetrabutylammonium (a) H₂PO₄, (b) fluoride, (c) acetate, (d) propanoate, (e) salt of ibuprofen, (f) hydrogensulphate in CH₃CN (concentration of all guests $c = 2.5 \times 10^{-3} \text{ M} \lambda_{\text{max}} = 371 \text{ nm}$).

2c. Selected emission titration curves for receptor 2 in CH₃CN with following anions

Figure S1c: Fluorescence titration curve of receptor **2** (c = 5.65 x 10⁻⁵ M) with the tetrabutylammonium (a) fluoride, (b) acetate, (c) propanoate, (d) hydrogensulphate, (e) salt of ibuprofen, (f) benzoate, (g) chloride, (h) bromide in CH₃CN (concentration of all guests c = 2.5×10^{-3} M, $\lambda_{\text{Excitation}} = 370$ nm).

2d. Selected UV-vis titration curves for receptor 2 in CH₃CN:

Figure S1d. UV-vis titration curve of receptor **2** ($c = 5.65 \times 10^{-5} \text{ M}$) with the tetrabutylammonium (a) H₂PO₄, (b) fluoride, (c) acetate, (d) propanoate, (e) salt of ibuprofen, (f) hydrogensulphate (g) chloride, (h) benzoate in CH₃CN (concentration of all guests $c = 2.5 \times 10^{-4} \text{ M}$, $\lambda_{max} = 371 \text{ nm}$).

2e. Selected emission titration curves for receptor 3 in CH₃CN with following anions

Figure S1e. Fluorescence titration curve of receptor **3** ($c = 5.65 \times 10^{-5}$ M) with the tetrabutylammonium (a) fluoride, (b) acetate, (c) propanoate, (d) hydrogensulphate, (e) salt of ibuprofen, (f) benzoate, (g) chloride, (h) bromide in CH₃CN(concentration of all guests $c = 2.5 \times 10^{-3}$ M, $\lambda_{\text{Excitation}} = 370$ nm).

Figure S1f: UV-vis titration curve of receptor **3** (c = 5.65 x 10^{-5} M) with the tetrabutylammonium (a) H₂PO₄, (b) fluoride, (c) acetate, (d) propanoate, (e) salt of ibuprofen, (f) hydrogensulphate (g) chloride, (h) benzoate in CH₃CN(concentration of all guests c = 2.5 x 10^{-3} M, $\lambda_{max} = 371$ nm).

2g. Selected emission titration curves for receptor 4 in CH₃CN with following anions

Figure S1g. Fluorescence titration curve of receptor 4 ($c = 5.65 \times 10^{-5} \text{ M}$) with the tetrabutylammonium (a) fluoride, (b) acetate, (c) propanoate, (d) hydrogensulphate, (e) salt of ibuprofen, (f) benzoate, (g) chloride, (h) bromide in CH₃CN(concentration of all guests $c = 2.5 \times 10^{-3} \text{ M}$, $\lambda_{\text{Excitation}} = 370 \text{ nm}$).

Figure S1h: UV-vis titration curve of receptor **3** (c = 5.65 x 10^{-5} M) with the tetrabutylammonium (a) H₂PO₄, (b) fluoride, (c) acetate, (d) propanoate, (e) salt of ibuprofen, (f) hydrogensulphate (g) chloride, (h) benzoate in CH₃CN (concentration of all guests c = 2.5 x 10^{-3} M, $\lambda_{max} = 371$ nm).

3a. Job plots from fluorescence of 1 and 2.

Figure S2a. Job plot of **1** (c = 5.65 x 10^{-5} M) with tetrabutylammonium F⁻ (c = 5.65 x 10^{-5} M) and AcO⁻ (c = 5.65 x 10^{-5} M) at 412 nm from fluorescence in CH₃CN at 25 ⁰C

Figure S2b. Job plot of **2** (c = 5.65 x 10^{-5} M) with tetrabutylammonium F⁻ (c = 5.65 x 10^{-5} M) and AcO⁻ (c = 5.65 x 10^{-5} M) at 412 nm from fluorescence in CH₃CN at 25 ^oC

3b. Job plots from UV-vis.

Figure S2c. Job plots of **1** to **4** with tetrabutylammonium $H_2PO_4^-$ at 371 nm from UV-vis in CH₃CN ([G] = [H] = 5.65 x 10⁻⁵ M).

Figure S2d. Job plot of **1** (c = 5.65 x 10^{-5} M) with tetrabutylammonium F⁻ (c = 5.65 x 10^{-5} M) and AcO⁻ (c = 5.65 x 10^{-5} M) at 371 nm from UV-vis in CH₃CN.

Figure S2e. Job plot of **2** (c = 5.65 x 10^{-5} M) with tetrabutylammonium F⁻ (c = 5.65 x 10^{-5} M) and AcO⁻ (c = 5.65 x 10^{-5} M) at 371 nm from UV-vis in CH₃CN.

4a. Binding constant curves for receptor 1-4 with tetrabutylammonium dihydrogenphosphate from fluorescence in CH₃CN:

Figure S3a: Binding constant curves of receptor (a) **1**, (b) **2**, (c) **3** and (d) **4** with the tetrabutylammonium $H_2PO_4^-$ from fluorescence titration in CH₃CN. Working formula

If $I = (I_0 + K_1 \times C_G \times I_{[1:1]} + K_1 \times K_2 \times I_{lim} \times C_G^2) / (1 + K_1 \times C_G + K_1 \times K_2 \times C_G^2)$ where I_0 = intensity of receptor solution, I = intensity after successive addition of guest into the receptor solution, $I_{(1:1)}$ = intensity at 1:1, I_{lim} = represent the intensity at infinite guest concentration $C_G = [G].(\lambda_{max} = 412 \text{ nm}, [H] = 5.65 \times 10^{-5} \text{ M}$ and $[G] = 2.5 \times 10^{-3} \text{ M}).$

4b.Binding constant curves for receptor 1 and 2 with F⁻ and AcO⁻ from fluorescence in CH₃CN:

Figure S3b: Binding constant curves of receptor (a) **1**, (b) **2**, (c) **3** and (d) **4** with the tetrabutylammonium dihydrogenphosphate from UV-vis titration in CH₃CN.Working formula

 $I = I_0 + (I-I_0) / (2 \times C_H) \{ (C_G + C_H + 1/K) - [(C_G + C_H + 1/K)^2 - 4 \times C_G \times C_H]^{0.5} \}, \text{ where } I_0 = \text{emission intensity of receptor, } I = \text{emission intensity after succive addition of guest, } C_G = [G], C_H = [H]. (\lambda_{max} = 371 \text{ nm}, [H] = 5.65 \times 10^{-5} \text{ M and } [G] = 2.5 \times 10^{-3} \text{ M}).$

4c. Binding constant curves for receptor 1-4 with tetrabutylammonium dihydrogenphosphate from UV-vis in CH₃CN:

Figure S3c: Binding constant curves of receptor **1** with (a) fluoride, (b) acetate and receptor **2** with (c) fluoride and (d) acetate from fluorescence titration in CH₃CN. Working formula $A = A_0 + (A - A_0) / 2 \times C_H \times \{C_G + C_H + 1/K - [(C_G + C_H + 1/K)^2 - 4 \times C_G \times C_H]^{0.5}\}$ where A_0 = absorption of receptor, A = absorption after succive addition of guest, $C_G = [G]$, $C_H = [H]$. ($\lambda_{max} = 412 \text{ nm}$, $[H] = 5.65 \times 10^{-5} \text{ M}$ and $[G] = 2.5 \times 10^{-3} \text{ M}$).

5. Reversibility experiment of receptor 2 -4 for H₂PO₄⁻ in CH₃CN from fluorescence.

Figure S4a. Emission profile for sensitivity of $H_2PO_4^-$ over H_3PO_4 receptor **2** and the reversibility in the process.

Figure S4b. Emission profile for sensitivity of $H_2PO_4^-$ over H_3PO_4 receptor **3** and the reversibility in the process.

Figure S4c. Emission profile for sensitivity of $H_2PO_4^-$ over H_3PO_4 receptor **4** and the reversibility in the process.

6a. Emission titration curves for receptor 3 in CH₃CN with dicarboxylate.

Figure S5a. Fluorescence titration curve of receptor **3** (c = 5.65 x 10^{-5} M) with the tetrabutylammonium (a) Adipate, (b) Glutarate, (c) Malonate and (d) Succinate in CH₃CN (concentration of all guests c = 2.5 x 10^{-3} M, $\lambda_{max} = 412$ nm).

6b. Emission titration curves for receptor 4 with dicarboxylate in CH₃CN.

Figure S5b. Fluorescence titration curve of receptor **4** ($c = 5.65 \times 10^{-5} \text{ M}$) with the tetrabutylammonium (a) Adipate, (b) Glutarate, (c) Malonate and (d) Succinate in CH₃CN (concentration of all guests $c = 2.5 \times 10^{-3} \text{ M}$, $\lambda_{max} = 412 \text{ nm}$).

6c. UV-vis titration curves for receptor 3 with dicarboxylate in CH₃CN.

Figure S5c: UV-vis titration curve of receptor **3** (c = 5.65 x 10^{-5} M) with the tetrabutylammonium (a) Adipate, (b) Glutarate, (c) Malonate and (d) Succinate in CH₃CN (concentration of all guests c = 2.5 x 10^{-3} M, $\lambda_{max} = 371$ nm).

6d.UV-vis titration curves for receptor 4 with dicarboxylate in CH₃CN.

Figure S5d. UV-vis titration curve of receptor **4** (c = 5.65 x 10^{-5} M) with the tetrabutylammonium (a) Adipate, (b) Glutarate, (c) Malonate and (d) Succinate in CH₃CN (concentration of all guests c = 2.5 x 10^{-3} M, $\lambda_{max} = 371$ nm).

Figure S5e: Fluorescence emission change of **1** (c = 5.65×10^{-5} M) with addition of 10 equiv. amounts of tetrabutylammonium (a) adipate, (b) glutarate (c) succinate and (d) malonate CH₃CN. $\lambda_{\text{Excitation}} = 370$ nm.

Figure S5f: Fluorescence emission change of **2** (c = 5.65 x 10^{-5} M) with addition of 10 equiv. amounts of tetrabutylammonium (a) adipate, (b) glutarate (c) succinate and (d) malonate CH₃CN. $\lambda_{\text{Excitation}} = 370$ nm.

7. Change in absorption with guest to host ration for receptor 1 - 4 with various anions at 371 nm in CH₃CN.

Figure S6a. UV-vis titration curves ([Guest]/[Host] vs change in absorbance) for **3** (measured at 371 nm) with various anions.

Figure S6b. UV-vis titration curves ([Guest]/[Host] vs change in absorbance) for **4** (measured at 371 nm) with various anions.

Figure S6c: UV-vis titration curves ([Guest]/[Host] vs change in absorbance) for 2 (measured at 371 nm) with various anions.

Figure S6d: UV-vis titration curves ([Guest]/[Host] vs change in absorbance) for **1** (measured at 371 nm) with various anions.

Figure S6e: UV-vis titration curve of receptor **1** (c = 5.65 x 10^{-5} M) with the tetrabutylammonium hydroxide (TBAOH) in CH₃CN (concentration of guest c = 2.5 x 10^{-3} M, $\lambda_{max} = 371$ nm).

Figure S6f: Effect of addition of TBA OH and TBA F on UV-vis spectrum of receptor **1**.

Figure S6g: UV-vis titration curve of receptor **2** (c = 5.65 x 10^{-5} M) with the tetrabutylammonium hydroxide (TBAOH) in CH₃CN (concentration of guest c = 2.5 x 10^{-3} M, $\lambda_{max} = 371$ nm).

Figure S6h: Effect of addition of TBA OH and TBA F on UV-vis spectrum of receptor **2**.

Figure S7a: Binding constant curves of receptor **3** with tetrabutylammonium salt of (a) Adipate, (b) Glutarate, (c) Malonate and (d) Succinate from fluorescence titration in CH₃CN. Working formula I= (I₀+I x K x C_G)/ (1+K x C_G), I₀ = initial intensity, I = intensity after successive addition of guest. C_G = [G]. (λ_{max} = 412 nm, [H] = 5.65 x 10⁻⁵ M and [G] = 2.5 x 10⁻³ M).

8b. Binding constant curves for receptor 4 with dicarboxylates from fluorescence in CH₃CN:

Figure S7b: Binding constant curves of receptor **4** with tetrabutylammonium salt of (a) Adipate, (b) Glutarate, (c) Malonate and (d) Succinate from fluorescence titration in CH_3CN . Working formula

I= (I₀+I x K x C_G)/ (1+K x C_G), I₀ = initial intensity, I = intensity after successive addition of guest. C_G = [G]. (λ_{max} = 412 nm, [H] = 5.65 x 10⁻⁵ M and [G] = 2.5 x 10⁻³ M).

9a. Emission titration curves for receptor 1-4 with sodium salt of $H_2PO_4^-$, $HPO_4^{-2}^-$, PO_4^- in 4:1 (v/v) CH₃CN:H₂O containing 10 mM HEPES buffer (pH= 7.2) at 25 ^{0}C

Figure S8a: Fluorescence titration of **1** (c = 2.01×10^{-5} M) with addition of 50 equiv. amounts of NaH₂PO₄ (c = 9.84×10^{-2} M) in 4:1 (v/v) CH₃CN:H₂O containing 10 mM HEPES buffer (pH= 7.2). $\lambda_{\text{Excitation}} = 380$ nm.

Figure S8b: Fluorescence emission change of **1** (c = 2.01 x 10^{-5} M) with addition of 50 equiv. amounts of (a) NaH₂PO₄, (b) Na₂HPO₄ and (c) Na₃PO₄ in 4:1 (v/v) CH₃CN:H₂O containing 10 mM HEPES buffer (pH= 7.2). $\lambda_{\text{Excitation}} = 380$ nm.

Figure S8c: Fluorescence titration of **3** (c = 2.01×10^{-5} M) with addition of 50 equiv. amounts of Na₂HPO₄ (c = 9.84×10^{-2} M) in 4:1 (v/v) CH₃CN:H₂O containing 10 mM HEPES buffer (pH= 7.2). $\lambda_{\text{Excitation}} = 380$ nm.

Figure S8d: Fluorescence emission change of **3** (c = 2.01 x 10^{-5} M) with addition of 50 equiv. amounts of (a) NaH₂PO₄, (b) Na₂HPO₄ and (c) Na₃PO₄ in 4:1 (v/v) CH₃CN:H₂O containing 10 mM HEPES buffer (pH= 7.2). $\lambda_{\text{Excitation}} = 380$ nm.

Figure S8e: Fluorescence emission change of **4** (c = 2.01×10^{-5} M) with addition of 50 equiv. amounts of (a) NaH₂PO₄, (b) Na₂HPO₄ and (c) Na₃PO₄ in 4:1 (v/v) CH₃CN:H₂O containing 10 mM HEPES buffer (pH= 7.2). $\lambda_{\text{Excitation}} = 380$ nm.

Figure S8f: Fluorescence emission change of **2** (c = 2.01 x 10⁻⁵M) with addition of 50 equiv. amounts of (a) NaH₂PO₄, (b) Na₂HPO₄ and (c) Na₃PO₄ in 4:1 (v/v) CH₃CN:H₂O containing 10 mM HEPES buffer (pH= 7.2). $\lambda_{\text{Excitation}}$ = 380 nm.

Figure S8g: UV-vis titration of **1** (c = 2.01 x 10⁻⁵M) with addition of 50 equiv. amounts of (a) NaH₂PO₄ (c = 9.84 x 10⁻² M) and (b) Na₂HPO₄ (c = 9.84 x 10⁻² M) in 4:1 (v/v) CH₃CN:H₂O containing 10 mM HEPES buffer (pH=7.2). λ_{Max} = 380 nm.

Figure S8h: UV-vis titration of **2** (c = 2.01 x 10⁻⁵M) with addition of 50 equiv. amounts of (a) NaH₂PO₄ (c = 9.84 x 10⁻² M) and (b) Na₂HPO₄ (c = 9.84 x 10⁻² M) in 4:1 (v/v) CH₃CN:H₂O containing 10 mM HEPES buffer (pH=7.2). λ_{Max} = 380 nm.

Figure S8i: UV-vis titration of **3** (c = 2.01 x 10⁻⁵M) with addition of 50 equiv. amounts of (a) NaH₂PO₄ (c = 9.84 x 10⁻² M) and (b) Na₂HPO₄ (c = 9.84 x 10⁻² M) in 4:1 (v/v) CH₃CN:H₂O containing 10 mM HEPES buffer (pH= 7.2). λ_{Max} = 380 nm.

Figure S8j: UV-vis titration of 4 (c = 2.01×10^{-5} M) with addition of 50 equiv. amounts of (a) NaH₂PO₄ (c = 9.84×10^{-2} M) and (b) Na₂HPO₄ (c = 9.84×10^{-2} M) in 4:1 (v/v) CH₃CN:H₂O containing 10 mM HEPES buffer (pH=7.2). λ_{Max} = 380 nm.

10. Anion binding studies of receptors 1 - 4 with sodium salt of $H_2PO_4^-$, HPO_4^{2-} and PO_4^{3-} in $CH_3CN:H_2O$ (4:1, v/v)

Figure S8k. Fluorescence ratio $[(I-I_0)/I_0]$ of receptors 1 - 4 in CH₃CN: H₂O (4:1 v/v) at 412 nm upon addition of 50 equiv. amounts of a particular anion (dissolved in H₂O).

Figure S9a : Benesi–Hilderband plot for $\mathbf{1}$ (c = 2.01 x 10⁻⁵M) with (a) NaH₂PO₄⁻ and (b) Na₂HPO₄ at 412 nm.

Figure S9b: Benesi–Hilderband plot for 3 (c = 2.01×10^{-5} M) with (a) NaH₂PO₄⁻ and (b) Na₂HPO₄ at 412 nm.

12. ROESY spectrum in d₆-DMSO of receptors 1-4

Figure S10. ROSEY spectrum of receptors (a) 1, (b) 2, (c) 3 and (d) 4 in d_6 -DMSO.

13a. ¹H NMR of the receptors 2 - 4 itself and in presence of equiv. amount of F^{*}, AcO^{*} and H₂PO₄^{*} in CDCl₃ containing 6% d₆-DMSO

Figure S11a. Partial ¹H NMR of (a) receptor **2** (c = 2.64×10^{-3} M) and with equiv. amount of (b) H₂PO₄⁻N⁺Bu₄, (c) F⁻N⁺Bu₄, (d) AcO⁻ N⁺Bu₄ in CDCl₃ containing 6% *d*₆-DMSO.

Figure S11b. Partial ¹H NMR of (a) receptor **3** (c = 2.64×10^{-3} M) and with (b) 1 equiv. amount of H₂PO₄⁻ N⁺Bu₄, (c) 2 equiv. amount of H₂PO₄⁻ N⁺Bu₄ in CDCl₃ containing 6% *d*₆-DMSO.

Figure S11c. Partial ¹H NMR of receptor **3** (c = 2.64×10^{-3} M) and with tetrabutylammonium salts of (b) F⁻ (1:1), (c) AcO⁻ (1:1) in CDCl₃ containing 6% *d*₆-DMSO.

Figure S11d. Partial ¹H NMR of (a) receptor **4** (c = 2.64 x 10⁻³ M) and with tetrabutylammonium salts of (b) $H_2PO_4^-$ (1:1), (c) F^- (1:1), (d) AcO⁻ (1:1) in CDCl₃ containing 6% d_6 -DMSO.

Figure S11e. (a) Partial ¹H NMR spectrum of receptor **3** (c = $2.64 \times 10^{-3} \text{ M}$) only, with tetrabutylammonium (b) Glutarate (1:1) in CDCl₃ containing 6% *d_s*-DMSO.

Figure S11f. (a) Partial ¹H NMR spectrum of receptor **4** (c = 2.64 x 10^{-3} M) only, with tetrabutylammonium (b) Adipate (1:1) in CDCl₃ containing 6% d_6 -DMSO.

Figure S12a. ³¹P NMR (500 MHz, in d₆-DMSO) of (a) $H_2PO_4^-$ ($c = 8.66x \ 10^{-3} \text{ M}$), (b) $1.H_2PO_4^-$ (1:1) and (c) $1.H_2PO_4^-$ (1:2).

Figure S12b. ³¹P NMR (500 MHz, in d₆-DMSO) of (a) $H_2PO_4^-$ ($c = 8.66x \ 10^{-3} \text{ M}$), (b) $2.H_2PO_4^-$ (1:1) and (c) $2.H_2PO_4^-$ (1:2).

Figure S12c. ³¹P NMR (500 MHz, in d₆-DMSO) of (a) $H_2PO_4^-$ ($c = 8.66x \ 10^{-3} \text{ M}$), (b) $3.H_2PO_4^-$ (1:1) and (c) $3.H_2PO_4^-$ (1:2).

Figure S12d. ³¹P NMR (500 MHz, in d₆-DMSO) of (a) $H_2PO_4^-$ ($c = 8.66x \ 10^{-3} \text{ M}$), (b) $4.H_2PO_4^-$ (1:1) and (c) $4.H_2PO_4^-$ (1:2).

15. The distribution of the MO's of the receptors (1-4) itself and in their complexes with $H_2PO_4^-$ ([G]/ [H] = 1:1)

Figure S13a. MO picture of receptor 1 and 1:1 complex with H₂PO₄.

Figure S13b. MO picture of receptor **2** and 1:1 complex with $H_2PO_4^-$.

Figure S13c. MO picture of receptor 3 and 1:1 complex with $H_2PO_4^-$.

Figure S13d. MO picture of receptor **4** and 1:1 complex with $H_2PO_4^-$.

16. Cell Staining.

Figure S14. Fixed HeLa cells stained with – (A) receptor **1**, (B) receptor **3**, (C) receptor **4**, (D) receptor **2** and (E) Hoechst dye. a- bright-field mode, b- fluorescence mode.

17. Gel Retardation Assay (taking calf-thymus DNA)

Experimental procedure:

20 μ M of each receptors **1** - **4** was mixed with 0.46 μ g of calf-thymus DNA in Tris-EDTA (TE) buffer, pH-8 in separate microcentrifuge tubes and incubated for 25 minutes. All samples were loaded in 1.15% normal agarose gel after adding 1X gel loading dye and run in 1X Tris-acetate EDTA (TAE) buffer at constant 60 volt for 3 hrs. After staining with ethidium bromide (20 μ g/ μ l) for 5 minutes it was observed under Typhon 9210 (Variable Mode Imager), GE Healthcare.

Figure S15. Changes in the agarose gel electrophoretic pattern of calf thymus DNA induced by all the four receptors. Lanes 1 and 6, DNA alone; lane 2 for receptor **1** (20μ M); lane 3 for receptor **3** (20μ M); lane 4 for receptor **4** (20μ M) and lane 5, receptor **2** (20μ M) respectively. The concentration of DNA used is 0.046μ g/µl.

18. CD spectra of receptors 1 – 4.

Figure S16. CD spectra of receptors 1 - 4 after buffer subtraction (20 μ M of each compound has been used for analysis).