SUPPORTING INFORMATION

Synthesis and Thermal Behavior of Chiral Dimers: Occurrence of Highly Frustrated and Cholesteric Liquid Crystal Phases

G. Shanker^{†a} and C. V. Yelamaggad^{*a}

^aCentre for Soft Matter Research, PO Box 1329, Jalahalli, Bangalore 560013, India, yelamaggad@csmr.res.in; yelamaggad@gmail.com

Present address: [†]Institute of Chemistry, Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt Mothes Str. 2, D-06120 Halle/Saale, Germany

Contents

- I. General.
- **II.** General procedure for the synthesis of intermediates and final compounds.
- III. Additional textures and XRD profiles.

I. General

All the chemicals were obtained from either Sigma Aldrich Chemicals (Pvt.) Ltd or Lancaster Company and used as received. All the solvents were purified and dried by standard methods and the crude samples were purified by column chromatographic technique using either silica gel (230-400 mesh) or neutral aluminium oxide as a stationary phase. Thin layer chromatography (TLC) was performed on aluminium sheets pre-coated with silica gel (Merck, Kieselgel 60, F254). The absorption spectra were recorded on a Perkin-Elmer Lambda 20 UV-Vis spectrometer. IR spectra were recorded using Perkin Elmer Spectrum 1000 FT-IR spectrometer. 1H NMR spectra were recorded using either a Bruker AMX-400 (400 MHz) or a Bruker Aveance series DPX-200 (200MHz) spectrometer and the chemical shifts are reported in parts per million (ppm) relative to tetramethylsilane (TMS) as an internal standard. Mass spectra were recorded on a Jeol-JMS-600H spectrometer in FAB+ mode using 3-nitrobenzyl alcohol as a liquid matrix. Elemental analyses were done using Eurovector model EA 3000 CHNS analyzer. The identification of the mesophases and the transition temperatures of the compounds were initially determined using a polarizing microscope (Leitz DMRXP) in conjunction with a programmable hot stage (Mettler FP90). The transition temperatures and associated enthalpies were determined by differential scanning calorimetry (Perkin Elmer DSC7). X-Ray diffraction studies were carried on powder samples in Lindemann capillaries with CuKa radiation using an Image Plate Detector (MAC Science, Japan) equipped with a double mirror focusing optics.

II. General procedure for the synthesis of intermediates and final compounds (Scheme I).

II.1 4-*n*-Alkoxy benzaldehydes (3a-c) and 4-*n*-alkoxycinnamic acid (6a-c)

These intermediates were synthesized using the procedure described previously.¹

General procedure for the synthesis of 3,4-*n*-dialkoxy benzaldehyde (4a-c).

A mixture of 3,4-dihydroxy benzaldehyde (36.20 mmol, 1 equiv.), anhyd. K_2CO_3 (144.80 mmol, 4 equiv.) and *n*- bromoalkane (79.64 mmol, 2.2 eq) was taken in dry DMF and stirred at 80 °C for 12 hours under nitrogen atmosphere. The cooled reaction mixture was poured into ice-water and extracted with dichloromethane (2 × 25 ml). The combined extracts were washed with water, brine, dried over anhyd. Na₂SO₄ and concentrated. The crude product was purified by column chromatography using neutral alumina. Elution with hexanes followed by 5-10% ethyl acetate-hexanes yielded the desired intermediates.

4a: $R_f = 0.48$ in 10% EtOAc-hexanes; a colorless solid, m.p.: 54 °C yield: 86 %; IR (KBr pellet): v_{max} in cm⁻¹ 2924, 2850, 1683, 1673, 1164; ¹H NMR (CDCl₃, 200 MHz): δ 9.83 (s, 1H, CHO), 7.40-7.43 (m, 2H, Ar), 6.95 (d, 1H, J = 8 Hz), 4.07 (q, 4H, J = 6.4 Hz, 2 × OCH₂), 0.85-1.9 (m, 30H, 12 × CH₂, 2 × CH₃); MS (FAB+): m/z calcd for C₂₃H₃₉O₃ (M+1): 363.3. Found: 363.1.

4b: $R_f = 0.48$ in 10% EtOAc-hexanes; a colorless solid, m.p.: 64 °C; yield: 80 %; IR (KBr pellet): v_{max} in cm⁻¹ 2922, 2850, 1683, 1672, 1134; ¹H NMR (CDCl₃, 200 MHz): δ 9.83 (s, 1H, CHO), 7.39-7.44 (m, 2H, Ar), 6.95 (d, 1H, J = 8 Hz), 4.02- 4.11 (q, 4H, J = 6.4 Hz, 2 × OCH₂), 0.85-1.9 (m, 38H, 16 × CH₂, 2 × CH₃); MS (FAB+): m/z calcd for C₂₇H₄₇O₃ (M+1): 419.3. Found: 419.5.

4c: $R_f = 0.49$ in 10% EtOAc-hexanes; a colorless solid, m.p.:70 °C; yield: 82 %; IR (KBr pellet): v_{max} in cm⁻¹ 2919, 2850, 1683, 1671, 1134; ¹H NMR (CDCl₃, 200 MHz): δ 9.83 (s, 1H, CHO), 7.39-7.44 (m, 2H, Ar), 6.95 (d, 1H, J = 8 Hz), 4.02- 4.11 (q, 4H, J = 6.4 Hz, 2 × OCH₂), 0.85-1.9 (m, 46H, 20 × CH₂, 2 × CH₃); MS (FAB+): m/z calcd for C₃₁H₅₅O₃ (M+1): 475.4. Found: 475.4.

II.2 General procedure for the synthesis of 3,4-n-dialkoxy cinnamic acid (7a-c).

A mixture of 3,4-*n*-dialkoxy benzaldehyde (**4a-c**) (5.51 mmol, 1 equiv.), malonic acid (8.27 mmol, 1.5 equiv.), pyridine and catalytic amount of piperidine were refluxed for 10 hours at 120°C. The reaction mixture was cooled and neutralized with 20% (aq) HCl to get a white precipitate. The crude material was filtered and washed with water. The product was further purified by recrystallization from EtOAc: EtOH (1:9).

7a: $R_f = 0.30$ in 30% CH₂Cl₂-hexanes; a colorless solid ; yield: 75 %; m.p.: 129 °C; IR (neat): v_{max} in cm⁻¹ 3018, 2923, 1684, 1623, 1172; ¹H NMR (400MHz, CDCl₃): δ 12.56 (s, 1H, 1 × OH), 7.28 (d, 1H, J = 15.8 Hz 1 × olefinic), 7.10 (m, 2H, Ar), 6.87 (d, J = 8.0 Hz. 1H, Ar), 6.31 (d, 1H, J = 15.9 Hz 1 × olefinic), 4.04 (t, J = 6.5 Hz, 4H, 2 × OCH₂), 1.86-0.87 (m, 30H, 12 × CH₂, 2 × CH₃); MS (FAB+): m/z calcd for C₂₅H₄₁O₃ (M+1): 405.3. Found: 405.4.

7b: $R_f = 0.34$ in 30% CH₂Cl₂-hexanes; a colorless solid ; yield: 80 %; m.p.: 128 °C; IR (neat): v_{max} in cm⁻¹ 3018, 2919, 1660, 1621, 1173; ¹H NMR (400MHz, CDCl₃): δ 12.54 (s, 1H, 1 × OH), 7.72 (d, 1H, J = 15.8 Hz 1 × olefinic), 7.10 (m, 2H, Ar), 6.87 (d, J = 8.0 Hz. 1H, Ar), 6.31 (d, 1H, J = 15.9 Hz 1 × olefinic), 4.04 (t, J = 6.4 Hz, 4H, 2 × OCH₂), 1.86-0.87 (m, 38H, 16 × CH₂, 2 × CH₃); MS (FAB+): m/z calcd for C₂₉H₅₀O₄ (M+2): 462.4. Found: 462.8.

7c: $R_f = 0.35$ in 30% CH₂Cl₂-hexanes; a colorless solid ; yield: 83 %; m.p.: 127 °C; IR (neat): v_{max} in cm⁻¹ 3022, 2983, 1723, 1660, 1141; ¹H NMR (400MHz, CDCl₃): δ 12.59 (s, 1H, 1 × OH), 7.73 (d, 1H, J = 15.8 Hz 1 × olefinic), 7.10 (m, 2H, Ar), 6.87 (d, J = 8.2 Hz. 1H, Ar), 6.31 (d, 1H, J = 15.9 Hz 1 × olefinic), 4.05 (t, J = 6.5 Hz, 4H, 2 × OCH₂), 1.87-0.86 (m, 46H, 20 × CH₂, 2 × CH₃); MS (FAB+): m/z calcd for C₃₃H₅₇O₄ (M+1): 516.4. Found: 516.7.

II.3 Procedure for the synthesis of 2,3,4 *n*-tridodecyloxy cinnamic acid (8).

A mixture 2,3,4-*n*-tridodecyloxy benzaldehyde $(5)^2$ (2g, 3.03 mmol, 1 equiv.), malonic acid (0.47g, 4.55 mmol, 1.5 equiv.), pyridine and catalytic amount of piperidine was flask refluxed for 10 hours at 120 °C. The reaction mixture was cooled and neutralized with ice-cold 20% (aq) HCl to get a precipitate. The crude material was filtered and washed with water. The product was further purified by recrystallization from EtOAc: EtOH (1:9).

8: $R_f = 0.58$ in 30% CH₂Cl₂-hexanes; a colorless solid; yield: 70 %; IR (KBr pellet): v_{max} in cm⁻¹ 3024, 2984, 1725, 1680, 1142; ¹H NMR (CDCl₃, 200 MHz): δ 12.26 (s, 1H, 1 × OH), 7.73 (d, 1H, J = 16.0 Hz 1 × olefinic), 7.56 (d, 1H, J = 8.0 Hz, Ar), 6.78 (d, 1H, J = 9.4 Hz, Ar), 6.34 (d, 1H, J = 15.8 Hz 1 × olefinic), 4.4 (t, 2H, J = 6.4 Hz, 1 × OCH₂), 3.93- 4.04(m, 4H, 2 × OCH₂), 1.28 -1.78 (m, 60H, 30 × CH₂), 0.87 (t, 9H, J = 6.1 Hz, 3 × CH₃); MS (FAB+): m/z calcd for C₄₅H₈₁O₄ (M+1): 701.6. Found: 701.3.

II.4 General procedure for the synthesis of the cholesteryl ω -[4-(4'-*n*-alkoxycinnamoyloxy)phenoxy]alkanoates (MDC-n,R series).

A mixture of cholesteryl ω -(4'-hydroxyphenoxy) alkanoate (**2a-d**)³ (0.27 mmol, 1 equiv.), 4-*n*-alkoxy cinnamic acid (**6a-c**) (0.275 mmol, 1 equiv.) and 4-dimethylamino pyridine (DMAP) (0.02 mmol, 0.05 equiv.) was dissolved in dry CH₂Cl₂ under nitrogen atmosphere. To the above clear solution, *N*,*N*'-dicyclohexylcarbodiimide (DCC) (0.40 mmol, 1.5 equiv.) dissolved in dry CH₂Cl₂ was added slowly while maintaining the temperature below 15 °C and stirred for 4 hours at room temperature. Dicyclohexylurea precipitate was filtered off and washed thoroughly with dry CH₂Cl₂.The combined filtrates were washed with water and dried over Na₂SO₄. The crude product was purified by column chromatography using neutral alumina. Elution with 10% EtOAc-hexanes afforded the product which was further purified by recrystallization from EtOH and CH₂Cl₂ (9:1) to yield a pure colorless solid.

MDC-3,10: $R_f = 0.58$ in 20% EtOAc-hexanes; a colorless solid; yield: 64 %; IR (KBr pellet): v_{max} in cm⁻¹2932, 2851, 1731, 1634, 1604, 1256, 1134, 1054; UV–Vis: $\lambda_{max} = 316.24$ nm, $\epsilon = 3.08 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.82 (d, J = 15.9 Hz, 1H, 1 × olefinic), 7.52 (d, J = 8.7 Hz, 2H, Ar), 7.06 (d, J = 6.9 Hz, 2H, Ar), 6.92-6.88 (m, 4H, Ar), 6.49 (d, J = 15.9 Hz, 1H, 1 × olefinic), 5.37 (brd, J = 3.8 Hz, 1H, 1 × olefinic), 4.64-4.62 (m, 1H, 1 × CHOCO), 3.99 (t, J = 5.8 Hz, 4H, 2 × OCH₂), 2.51-1.08 (m, 48H, 21 × CH₂, 6 × CH), 1.02 (s, 3H, 1 × CH₃), 0.92 (d, J = 6.5 Hz, 3H, 1 × CH₃), 0.87 (d, J = 1.7 Hz, 3H, 1 × CH₃), 0.67 (s, 6H, 2 × CH₃); MS (FAB+): m/z calcd for C₅₆H₈₂O₆: 850.6. Found: 850.8; Anal. calcd for C₅₆H₈₂O₆: C, 79.01; H, 9.71. Found: C, 79.18; H, 9.95.

MDC-4,10: $R_f = 0.58$ in 20% EtOAc-hexanes; a colorless solid; yield: 61 %; IR (KBr pellet): v_{max} in cm⁻¹2932, 2851, 1731, 1634, 1604, 1256, 1135, 1054; UV–Vis: $\lambda_{max} = 316.41$ nm, $\epsilon = 3.44 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.82 (d, J = 15.9 Hz, 1H, 1 × olefinic), 7.53 (d, J = 8.7 Hz, 2H, Ar), 7.07 (d, J = 7.0 Hz, 2H, Ar), 6.92-6.88 (m, 4H, Ar), 6.49 (d, J = 15.9 Hz, 1H, 1 × olefinic), 5.37 (brd, J = 3.8 Hz, 1H, 1 × olefinic), 4.64-4.61 (m, 1H, 1 × CHOCO), 3.99 (t, J = 6.5 Hz, 4H, 2 × OCH₂), 2.36-1.08 (m, 50H, 22 × CH₂, 6 × CH), 1.02 (s, 3H, 1 × CH₃), 0.92 (d, J = 6.5 Hz, 3H, 1 × CH₃), 0.87 (d, J = 1.7 Hz, 3H, 1 × CH₃), 0.85 (d, J = 1.7 Hz, 3H, 1 × CH₃), 0.67 (s, 6H, 2 × CH₃); MS (FAB+): m/z calcd for C₅₇H₈₅O₆ (M+1): 865.6. Found: 865.41; Anal. calcd for C₅₇H₈₄O₆: C, 79.12; H, 9.78. Found: C, 78.88; H, 10.03.

MDC-5,10: R_f = 0.59 in 20% EtOAc-hexanes; a colorless solid; yield: 64 %; IR (KBr pellet): v_{max} in cm⁻¹ 2923, 2851, 1730, 1630, 1602, 1256, 1137, 1092; UV–Vis: λ_{max} = 316.66 nm, ϵ = 3.20 × 10⁴ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.82 (d, *J* = 15.9 Hz, 1H, 1 × olefinic), 7.53 (d, *J* = 8.8 Hz, 2H, Ar), 7.06 (d, *J* = 6.9 Hz, 2H, Ar), 6.92-6.87 (m, 4H, Ar), 6.49 (d, *J* = 16.0 Hz, 1H, 1 × olefinic), 5.38 (brd, *J* = 3.8 Hz, 1H, 1 × olefinic), 4.64-4.63 (m, 1H, 1 × CHOCO), 3.99 (t, *J* = 6.6 Hz, 4H, 2 × OCH₂), 2.32-1.08 (m, 52H, 23 × CH₂, 6 × CH), 1.02 (s, 3H, 1 × CH₃), 0.92 (d, *J* = 6.6 Hz, 3H, 1 × CH₃), 0.87 (d, *J* = 1.7 Hz, 3H, 1 × CH₃), 0.85 (d, *J* = 1.7 Hz, 3H, 1 × CH₃), 0.67 (s, 6H, 2 × CH₃); MS (FAB+): m/z calcd for C₅₈H₈₆O₆: 878.6. Found: 878.4; Anal. calcd for C₅₈H₈₆O₆: C, 79.22; H, 9.86. Found: C, 79.44; H, 9.63.

MDC-7,10: $R_f = 0.59$ in 20% EtOAc-hexanes; a colorless solid; yield: 69 %; IR (KBr pellet): v_{max} in cm⁻¹ 2934, 2853, 1733, 1630, 1600, 1255, 1137, 1002; UV–Vis: $\lambda_{max} = 316.15$ nm, $\in = 4.89 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.82 (d, J = 15.9 Hz, 1H, 1 × olefinic), 7.53 (d, J = 8.6 Hz, 2H, Ar), 7.06 (d, J = 8.9 Hz, 2H, Ar), 6.92-6.87 (m, 4H, Ar), 6.49 (d, J = 15.9 Hz, 1H, 1 × olefinic), 5.38 (brd, J = 3.9 Hz, 1H, 1 × olefinic), 4.65-4.61 (m, 1H, 1 × CHOCO), 3.99 (t, J = 6.6 Hz, 4H, 2 × OCH₂), 2.32-1.05 (m, 56H, 25 × CH₂, 6 × CH), 1.02 (s, 3H, 1 × CH₃), 0.92 (d, J = 6.6 Hz, 3H, 1 × CH₃), 0.87 (d, J = 1.6 Hz, 3H, 1 × CH₃), 0.67 (s, 6H, 2 × CH₃); MS (FAB+): m/z calcd for C₆₀H₉₀O₆: 906.6. Found: 906.0; Anal. calcd for C₆₀H₉₀O₆: C, 79.42; H, 10.00. Found: C, 79.12; H, 9.94.

MDC-3,12: $R_f = 0.68$ in 20% EtOAc-hexanes; a colorless solid; yield: 69 %; IR (KBr pellet): v_{max} in cm⁻¹ 2927, 2851, 1732, 1636, 1602, 1252, 1197, 1142; UV–Vis: $\lambda_{max} = 316.80$ nm, $\epsilon = 3.66 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (500MHz, CDCl₃): δ 7.82 (d, J = 15.8 Hz, 1H, 1 × olefinic), 7.52 (d, J = 8.7 Hz, 2H, Ar), 7.05 (d, J = 8.9 Hz, 2H, Ar), 6.99-6.83 (m, 4H, Ar), 6.49 (d, J = 8.7 Hz, 2H, Ar), 7.05 (d, J = 8.9 Hz, 2H, Ar), 6.99-6.83 (m, 4H, Ar), 6.49 (d, J = 8.7 Hz, 2H, Ar), 7.05 (d, J = 8.9 Hz, 2H, Ar), 6.99-6.83 (m, 4H, Ar), 6.49 (d, J = 8.7 Hz, 2H, Ar), 7.05 (d, J = 8.9 Hz, 2H, Ar), 6.99-6.83 (m, 4H, Ar), 6.49 (d, J = 8.7 Hz, 2H, Ar), 6.99-6.83 (m, 4H, Ar), 6.49 (d, J = 8.7 Hz, 2H, Ar), 7.05 (d, J = 8.9 Hz, 2H, Ar), 6.99-6.83 (m, 4H, Ar), 6.49 (d, J = 8.7 Hz, 2H, Ar), 7.05 (d, J = 8.9 Hz, 2H, Ar), 6.99-6.83 (m, 4H, Ar), 6.49 (d, J = 8.7 Hz, 2H, Ar), 6.49 (d, J

16.0 Hz, 1H, 1 × olefinic), 5.37 (brd, J = 4.8 Hz, 1H, 1 × olefinic), 4.64-4.61 (m, 1H, 1 × CHOCO), 3.99 (t, J = 6.8 Hz, 4H, 2 × OCH₂), 2.51-1.08 (m, 52H, 23 × CH₂, 6 × CH), 1.02 (s, 3H, 1 × CH₃), 0.92 (d, J = 6.5 Hz, 3H, 1 × CH₃), 0.87 (d, J = 2.1 Hz, 3H, 1 × CH₃), 0.85 (d, J = 2.0 Hz, 3H, 1 × CH₃), 0.67 (s, 6H, 2 × CH₃); MS (FAB+): m/z calcd for C₅₈H₈₆O₆: 878.6. Found: 878.7; Anal. calcd for C₅₈H₈₆O₆: C, 79.22; H, 9.86. Found: C, 79.43; H, 9.83.

MDC-4,12: R_f = 0.68 in 20% EtOAc-hexanes; a colorless solid; yield: 60 %; IR (KBr pellet): v_{max} in cm⁻¹ 2927, 2851, 1730, 1628, 1603, 1257, 1193, 1138; UV–Vis: λ_{max} = 316.67 nm, ϵ = 2.83 × 10⁴ L mol⁻¹cm⁻¹; ¹H NMR (500MHz, CDCl₃): δ 7.82 (d, *J* = 15.9 Hz, 1H, 1 × olefinic), 7.52 (d, *J* = 8.7 Hz, 2H, Ar), 7.07 (d, *J* = 9.0 Hz, 2H, Ar), 6.92-6.80 (m, 4H, Ar), 6.49 (d, *J* = 16.0 Hz, 1H, 1 × olefinic), 5.37 (brd, *J* = 4.5 Hz, 1H, 1 × olefinic), 4.64-4.62 (m, 1H, 1 × CHOCO), 3.99 (t, *J* = 6.6 Hz, 4H, 2 × OCH₂), 2.36-1.08 (m, 54H, 24 × CH₂, 6 × CH), 1.02 (s, 3H, 1 × CH₃), 0.92 (d, *J* = 6.6 Hz, 3H, 1 × CH₃), 0.87 (d, *J* = 2.1 Hz, 3H, 1 × CH₃), 0.86 (d, *J* = 2.1 Hz, 3H, 1 × CH₃), 0.67 (s, 6H, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃): 172.62, 165.99, 161.36, 156.57, 146.02, 144.47, 139.73, 129.90, 126.83, 122.56, 122.32, 115.10, 114.98, 114.67, 73.89, 68.4, 67.87, 56.74, 56.17, 50.11, 42.35, 39.78, 39.51, 38.17, 37.02, 36.61, 36.21, 35.74, 34.26, 31.86, 29.52, 29.13, 28.67, 28.16, 27.96, 27.83; MS (FAB+): m/z calcd for C₅₉H₈₈O₆: 892.6. Found: 892.7; Anal. calcd for C₅₉H₈₈O₆: C, 79.33; H, 9.93. Found: C, 79.09; H, 10.03.

MDC-5,12: R_f = 0.69 in 20% EtOAc-hexanes; a colorless solid; yield: 64 %; IR (KBr pellet): v_{max} in cm⁻¹ 2928, 2851, 1733, 1635, 1602, 1253, 1158, 1136; UV–Vis: λ_{max} = 316.74 nm, ϵ = 1.96 × 10⁴ L mol⁻¹cm⁻¹; ¹H NMR (500MHz, CDCl₃): δ 7.82 (d, *J* = 15.9 Hz, 1H, 1 × olefinic), 7.53 (d, *J* = 8.7 Hz, 2H, Ar), 7.07 (d, *J* = 9.0 Hz, 2H, Ar), 6.92-6.89 (m, 4H, Ar), 6.49 (d, *J* = 16.0 Hz, 1H, 1 × olefinic), 5.37 (brd, *J* = 4.5 Hz, 1H, 1 × olefinic), 4.66-4.63 (m, 1H, 1 × CHOCO), 3.99 (t, *J* = 6.6 Hz, 4H, 2 × OCH₂), 2.33-1.08 (m, 56H, 25 × CH₂, 6 × CH), 1.02 (s, 3H, 1 × CH₃), 0.92 (d, *J* = 6.6 Hz, 3H, 1 × CH₃), 0.87 (d, *J* = 2.1 Hz, 3H, 1 × CH₃), 0.67 (s, 6H, 2 × CH₃); MS (FAB+): m/z calcd for C₆₀H₉₀O₆: 906.6. Found: 906.5; Anal. calcd for C₆₀H₉₀O₆: C, 79.42; H, 10.00. Found: C, 79.48; H, 10.27.

MDC-7,12: R_f = 0.70 in 20% EtOAc-hexanes; a colorless solid; yield: 68 %; IR (KBr pellet): v_{max} in cm⁻¹ 2919, 2850, 1734, 1635, 1604, 1261, 1150, 1130 UV–Vis: λ_{max} = 316.81 nm, ϵ = 3.04 × 10⁴ L mol⁻¹cm⁻¹; ¹H NMR (500MHz, CDCl₃): δ 7.82 (d, *J* = 15.9 Hz, 1H, 1 × olefinic), 7.53 (d, *J* = 8.7 Hz, 2H, Ar), 7.07 (d, *J* = 8.9 Hz, 2H, Ar), 6.92-6.88 (m, 4H, Ar), 6.49 (d, *J* = 16.0 Hz, 1H, 1 × olefinic), 5.37 (brd, *J* = 4.2 Hz, 1H, 1 × olefinic), 4.63-4.61 (m, 1H, 1 × CHOCO), 3.99 (t, *J* = 6.6 Hz, 4H, 2 × OCH₂), 2.32-1.08 (m, 60H, 27 × CH₂, 6 × CH), 1.02 (s, 3H, 1 × CH₃), 0.92 (d, *J* = 6.5 Hz, 3H, 1 × CH₃), 0.87 (d, *J* = 2.2 Hz, 3H, 1 × CH₃), 0.86 (d, *J* = 2.2 Hz, 3H, 1 × CH₃), 0.67 (s, 6H, 2 × CH₃); MS (FAB+): m/z calcd for C₆₂H₉₅O₆ (M+1): 935.7. Found: 935.3; Anal. calcd for C₆₂H₉₄O₆: C, 79.61; H, 10.13. Found: C, 79.88; H, 10.31.

MDC-3,16: $R_f = 0.60$ in 20% EtOAc-hexanes; a colorless solid; yield: 62 %; IR (KBr pellet): v_{max} in cm⁻¹ 2923, 2850, 1731, 1633, 1602, 1254, 1196, 1143; UV–Vis: $\lambda_{max} = 315.92$ nm, $\epsilon = 2.21 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.82 (d, J = 15.9 Hz, 1H, 1 × olefinic), 7.53 (d, J = 8.7 Hz, 2H, Ar), 7.07 (d, J = 8.9 Hz, 2H, Ar), 6.92-6.88 (m, 4H, Ar), 6.49 (d, J = 15.9 Hz, 1H, 1 × olefinic), 5.37 (brd, J = 3.6 Hz, 1H, 1 × olefinic), 4.64-4.62 (m, 1H, 1 ×

CHOCO), 3.99 (t, J = 6.5 Hz, 4H, 2 × OCH₂), 2.51-1.08 (m, 60H, 27 × CH₂, 6 × CH), 1.02 (s, 3H, 1 × CH₃), 0.92 (d, J = 6.5 Hz, 3H, 1 × CH₃), 0.87 (d, J = 2.1 Hz, 3H, 1 × CH₃), 0.85 (d, J = 1.7 Hz, 3H, 1 × CH₃), 0.67 (s, 6H, 2 × CH₃); MS (FAB+): m/z calcd for C₆₂H₉₄O₆: 934.7. Found: 934.1; Anal. calcd for C₆₂H₉₄O₆: C, 79.61; H, 10.13. Found: C, 79.89; H, 10.13.

MDC-4,16: $R_f = 0.64$ in 20% EtOAc-hexanes; a colorless solid; yield: 66 %; IR (KBr pellet): v_{max} in cm⁻¹ 2921, 2850, 1727, 1633, 1597, 1250, 1181, 1132; UV–Vis: $\lambda_{max} = 316.38$ nm, $\epsilon = 1.90 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.82 (d, J = 15.9 Hz, 1H, 1 × olefinic), 7.53 (d, J = 8.7 Hz, 2H, Ar), 7.07 (d, J = 8.8 Hz, 2H, Ar), 6.92-6.88 (m, 4H, Ar), 6.49 (d, J = 15.9 Hz, 1H, 1 × olefinic), 5.37 (brd, J = 3.6 Hz, 1H, 1 × olefinic), 4.64-4.61 (m, 1H, 1 × CHOCO), 3.99 (t, J = 6.6 Hz, 4H, 2 × OCH₂), 2.36-1.09 (m, 62H, 28 × CH₂, 6 × CH), 1.02 (s, 3H, 1 × CH₃), 0.92 (d, J = 6.5 Hz, 3H, 1 × CH₃), 0.87 (d, J = 1.76 Hz, 3H, 1 × CH₃), 0.85 (d, J = 1.7 Hz, 3H, 1 × CH₃), 0.67 (s, 6H, 2 × CH₃); MS (FAB+): m/z calcd for C₆₃H₉₆O₆: 948.7. Found: 948.3; Anal. calcd for C₆₃H₉₆O₆: C, 79.70; H, 10.19. Found: C, 79.42; H, 10.25.

MDC-5,16: $R_f = 0.70$ in 20% EtOAc-hexanes; a colorless solid; yield: 70 %; IR (KBr pellet): v_{max} in cm⁻¹ 2922, 2851, 1725, 1654, 1570, 1254, 1190, 1132; UV–Vis: $\lambda_{max} = 316.21$ nm, $\epsilon = 2.4 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.82 (d, J = 15.8 Hz, 1H, 1 × olefinic), 7.53 (d, J = 8.7 Hz, 2H, Ar), 7.07 (d, J = 8.9 Hz, 2H, Ar), 6.92-6.88 (m, 4H, Ar), 6.49 (d, J = 16.0 Hz, 1H, 1 × olefinic), 5.37 (brd, J = 3.4 Hz, 1H, 1 × olefinic), 4.64-4.61 (m, 1H, 1 × CHOCO), 3.99 (t, J = 6.6 Hz, 4H, 2 × OCH₂), 2.33-1.09 (m, 64H, 29 × CH₂, 6 × CH), 1.02 (s, 3H, 1 × CH₃), 0.92 (d, J = 6.6 Hz, 3H, 1 × CH₃), 0.87 (d, J = 2.1 Hz, 3H, 1 × CH₃), 0.85 (d, J = 1.7 Hz, 3H, 1 × CH₃), 0.67 (s, 6H, 2 × CH₃); MS (FAB+): m/z calcd for C₆₄H₉₉O₆ (M+1): 964.5. Found: 964.8; Anal. calcd for C₆₄H₉₈O₆: C, 79.78; H, 10.25. Found: C, 80.03; H, 9.96.

MDC-7,16: $R_f = 0.74$ in 20% EtOAc-hexanes; a colorless solid; yield: 73 %; IR (KBr pellet): v_{max} in cm⁻¹ 2925, 2841, 1727, 1644, 1570, 1256, 1190, 1122; UV–Vis: $\lambda_{max} = 316.19$ nm, $\epsilon = 2.5 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.82 (d, J = 15.9 Hz, 1H, 1 × olefinic), 7.53 (d, J = 8.7 Hz, 2H, Ar), 7.07 (d, J = 8.9 Hz, 2H, Ar), 6.92-6.89 (m, 4H, Ar), 6.49 (d, J = 15.9 Hz, 1H, 1 × olefinic), 5.37 (brd, J = 3.7 Hz, 1H, 1 × olefinic), 4.62-4.60 (m, 1H, 1 × CHOCO), 3.99 (t, J = 6.5 Hz, 4H, 2 × OCH₂), 2.32-1.07 (m, 68H, 31 × CH₂, 6 × CH), 1.02 (s, 3H, 1 × CH₃), 0.92 (d, J = 6.5 Hz, 3H, 1 × CH₃), 0.87 (d, J = 1.7 Hz, 3H, 1 × CH₃), 0.67 (s, 6H, 2 × CH₃); MS (FAB+): m/z calcd for C₆₆H₁₀₂O₆: 990.7. Found: 990.8; Anal. calcd for C₆₆H₁₀₂O₆: C, 79.95; H, 10.37. Found: C, 80.05; H, 10.09.

II.5 General procedure for the synthesis of the cholesteryl ω -[4-(3',4'-*n*-dialkoxycinnamoyloxy)phenoxy]alkanoates (DDC-n,R series).

A mixture of cholesteryl ω -(4'-hydroxyphenoxy) alkanoate (**2a-d**)³ (0.36 mmol, 1 equiv.), 3,4-*n*-dialkoxy cinnamic acid (**7a-c**) (0.36 mmol, 1 equiv.) and 4-dimethylamino pyridine (DMAP) (0.02 mmol, 0.05 equiv.) was dissolved in dry CH₂Cl₂ under nitrogen atmosphere. To the above clear solution, DCC (0.54 mmol, 1.5 equiv.) dissolved in dry CH₂Cl₂ was added slowly while maintaining the temperature below 15 °C and stirred for 4 hours at room temperature. Dicyclohexylurea precipitate was filtered off and washed

thoroughly with CH_2Cl_2 . The combined filtrates were washed with water and dried over Na_2SO_4 . The crude product was purified by column chromatography using neutral alumina. Elution with 10% EtOAc-hexane afforded the product which was further purified by recrystallization from EtOH and CH_2Cl_2 (9:1) to yield a pure colorless solid.

DDC-3,8: $R_f = 0.76$ in 20% EtOAc-hexanes; a colorless solid; yield: 67 %; IR (KBr pellet): v_{max} in cm⁻¹ 2923, 2850, 1720, 1631, 1596, 1215, 1196, 1133; UV–Vis: $\lambda_{max} = 331.92$ nm, $\epsilon = 2.21 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.79 (d, J = 15.8 Hz, 1H, 1 × olefinic), 7.13 (d, J = 7.7 Hz, 2H, Ar), 7.07 (d, J = 8.9 Hz, 2H, Ar), 6.90-6.86 (m, 3H, Ar), 6.48 (d, J = 15.8 Hz, 1H, 1 × olefinic), 5.38 (brd, J = 3.8 Hz, 1H, 1 × olefinic), 4.64-4.61 (m, 1H, 1 × CHOCO), 4.05-3.99 (m, 6H, 3 × OCH₂), 2.52-0.67 (m, 77H, 7 × CH₃, 25 × CH₂, 6 × CH); MS (FAB+): m/z calcd for C₆₂H₉₄O₇: 950.7. Found: 950.1; Anal. calcd for C₆₂H₉₄O₇: C, 78.27; H, 9.96. Found: C, 78.29; H, 9.89.

DDC-4,8: $R_f = 0.78$ in 20% EtOAc-hexanes; a colorless solid; yield: 69 %; IR (KBr pellet): v_{max} in cm⁻¹ 2943, 2840, 1729, 1633, 1599, 1205, 1194, 1133; UV–Vis: $\lambda_{max} = 331.84$ nm, $\epsilon = 2.17 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.79 (d, J = 15.8 Hz, 1H, 1 × olefinic), 7.13 (d, J = 7.7 Hz, 2H, Ar), 7.07 (d, J = 8.9 Hz, 2H, Ar), 6.91-6.86 (m, 3H, Ar), 6.48 (d, J = 15.8 Hz, 1H, 1 × olefinic), 5.38 (brd, J = 3.4 Hz, 1H, 1 × olefinic), 4.65-4.62 (m, 1H, 1 × CHOCO), 4.05-3.96 (m, 6H, 3 × OCH₂), 2.51-0.67 (m, 79H, 7 × CH₃, 26 × CH₂, 6 × CH); MS (FAB+): m/z calcd for C₆₃H₉₇O₇ (M+1): 965.7. Found: 965.7; Anal. calcd for C₆₃H₉₆O₇: C, 78.38; H, 10.02. Found: C, 78.65; H, 10.15.

DDC-5,8: $R_f = 0.83$ in 20% EtOAc-hexanes; a colorless solid; yield: 66 %; IR (KBr pellet): v_{max} in cm⁻¹2931, 2851, 1727, 1629, 1593, 1262, 1189, 1130; UV–Vis: $\lambda_{max} = 331.78$ nm, $\epsilon = 4.39 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.79 (d, J = 15.9 Hz, 1H, 1 × olefinic), 7.13 (d, J = 7.7 Hz, 2H, Ar), 7.07 (d, J = 8.9 Hz, 2H, Ar), 6.90-6.86 (m, 3H, Ar), 6.47 (d, J = 15.9 Hz, 1H, 1 × olefinic), 5.38 (brd, J = 3.4 Hz, 1H, 1 × olefinic), 4.63-4.62 (m, 1H, 1 × CHOCO), 4.05-3.93 (m, 6H, 3 × OCH₂), 2.33-0.67 (m, 81H, 7 × CH₃, 27 × CH₂, 6 × CH); MS (FAB+): m/z calcd for C₆₄H₉₉O₇ (M+1): 979.7. Found: 979.5; Anal. calcd for C₆₄H₉₈O₇: C, 78.48; H, 10.08. Found: C, 78.62; H, 9.93.

DDC-7,8: R_f = 0.86 in 20% EtOAc-hexanes; a colorless solid; yield: (64%); IR (KBr pellet): v_{max} in cm⁻¹ 2930, 2859, 1724, 1625, 1593, 1262, 1190, 1131; UV–Vis: λ_{max} = 331.08 nm, ϵ = 1.35 × 10⁴ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.79 (d, *J* = 15.9 Hz, 1H, 1 × olefinic), 7.13 (d, *J* = 7.7 Hz, 2H, Ar), 7.07 (d, *J* = 8.9 Hz, 2H, Ar), 6.90-6.86 (m, 3H, Ar), 6.47 (d, *J* = 15.9 Hz, 1H, 1 × olefinic), 5.38 (brd, *J* = 4.0 Hz, 1H, 1 × olefinic), 4.63-4.61 (m, 1H, 1 × CHOCO), 4.05-3.92 (m, 6H, 3 × OCH₂), 2.32-0.67 (m, 85H, 7 × CH₃, 29 × CH₂, 6 × CH); MS (FAB+): m/z calcd for C₆₆H₁₀₃O₇ (M+1): 1007.7. Found: 1007.7; Anal. calcd for C₆₆H₁₀₂O₇: C, 78.68; H, 10.20. Found: C, 78.75; H, 10.26.

DDC-3,10: $R_f = 0.68$ in 20% EtOAc-hexanes; a colorless solid; yield: 67 %; IR (KBr pellet): v_{max} in cm⁻¹ 2924, 2851, 1719, 1625, 1596, 1265, 1191, 1132; UV–Vis: $\lambda_{max} = 331.14$ nm, $\epsilon = 2.01 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.79 (d, J = 15.8 Hz, 1H, 1 × olefinic), 7.13 (d, J = 7.8 Hz, 2H, Ar), 7.07 (d, J = 8.9 Hz, 2H, Ar), 6.90-6.86 (m, 3H, Ar), 6.47 (d, J = 15.9 Hz, 1H, 1 × olefinic), 5.38 (brd, J = 3.6 Hz, 1H, 1 × olefinic), 4.64-4.62 (m, 1H, 1 × 1)

CHOCO), 4.05-3.98 (m, 6H, $3 \times OCH_2$), 2.51-0.67 (m, 85H, $7 \times CH_3$, $29 \times CH_2$, $6 \times CH$); MS (FAB+): m/z calcd for C₆₆H₁₀₃O₇ (M+1): 1007.7. Found: 1007.7; Anal. calcd for C₆₆H₁₀₂O₇: C, 78.68; H, 10.20. Found: C, 78.41; H, 9.95.

DDC-4,10: $R_f = 0.70$ in 20% EtOAc-hexanes; a colorless solid; yield: 69 %; IR (KBr pellet): v_{max} in cm⁻¹ 2925, 2841, 1739, 1629, 1602, 1255, 1190, 1130; UV–Vis: $\lambda_{max} = 332.14$ nm, $\epsilon = 2.18 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.79 (d, J = 15.9 Hz, 1H, 1 × olefinic), 7.13 (d, J = 7.8 Hz, 2H, Ar), 7.07 (d, J = 8.8 Hz, 2H, Ar), 6.90-6.86 (m, 3H, Ar), 6.48 (d, J = 15.9 Hz, 1H, 1 × olefinic), 5.38 (brd, J = 5.6 Hz, 1H, 1 × olefinic), 4.64-4.62 (m, 1H, 1 × CHOCO), 4.05-3.96 (m, 6H, 3 × OCH₂), 2.51-0.67 (m, 87H, 7 × CH₃, 30 × CH₂, 6 × CH); MS (FAB+): m/z calcd for C₆₇H₁₀₅O₇ (M+1): 1021.7. Found: 1021.9; Anal. calcd for C₆₇H₁₀₄O₇: C, 78.78; H, 10.26. Found: C, 79.02; H, 10.05.

DDC-5,10: $R_f = 0.70$ in 20% EtOAc-hexanes; a colorless solid; yield: 72 %; IR (KBr pellet): v_{max} in cm⁻¹ 2926, 2851, 1740, 1630, 1602, 1257, 1191, 1134; UV–Vis: $\lambda_{max} = 330.10$ nm, $\epsilon = 1.21 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.80 (d, J = 15.8 Hz, 1H, 1 × olefinic), 7.13 (d, J = 7.8 Hz, 2H, Ar), 7.07 (d, J = 8.9 Hz, 2H, Ar), 6.90-6.86 (m, 3H, Ar), 6.48 (d, J = 15.9 Hz, 1H, 1 × olefinic), 5.38 (brd, J = 3.8 Hz, 1H, 1 × olefinic), 4.63-4.61 (m, 1H, 1 × CHOCO), 4.05-3.93 (m, 6H, 3 × OCH₂), 2.33-0.67 (m, 89H, 7 × CH₃, 31 × CH₂, 6 × CH); MS (FAB+): m/z calcd for C₆₈H₁₀₆O₇: 1035.8. Found: 1035.4; Anal. calcd for C₆₈H₁₀₆O₇: C, 78.87; H, 10.32. Found: C, 79.05; H, 10.14.

DDC-7,10: R_f = 0.72 in 20% EtOAc-hexanes; a colorless solid; yield: 74 %; IR (KBr pellet): v_{max} in cm⁻¹2924, 2852, 1721, 1631, 1594, 1259, 1190, 1131; UV–Vis: λ_{max} = 331.18 nm, ϵ = 3.85 × 10⁴ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.80 (d, *J* = 15.8 Hz, 1H, 1 × olefinic), 7.13 (d, *J* = 7.6 Hz, 2H, Ar), 7.07 (d, *J* = 8.9 Hz, 2H, Ar), 6.90-6.86 (m, 3H, Ar), 6.48 (d, *J* = 15.9 Hz, 1H, 1 × olefinic), 5.38 (brd, *J* = 3.6 Hz, 1H, 1 × olefinic), 4.65-4.61 (m, 1H, 1 × CHOCO), 4.05-3.92 (m, 6H, 3 × OCH₂), 2.33-0.67 (m, 93H, 7 × CH₃, 33 × CH₂, 6 × CH); MS (FAB+): m/z calcd for C₇₀H₁₁₀O₇: 1062.8. Found: 1062.7; Anal. calcd for C₇₀H₁₁₀O₇: C, 79.05; H, 10.42. Found: C, 78.99; H, 10.55.

DDC-3,12: R_f = 0.76 in 20% EtOAc-hexanes; a colorless solid; yield: 65 %; IR (KBr pellet): v_{max} in cm⁻¹2928, 2854, 1721, 1632, 1596, 1215, 1192, 1132; UV–Vis: λ_{max} = 332.95 nm, ϵ = 1.97 × 10⁴ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.79 (d, *J* = 15.8 Hz, 1H, 1 × olefinic), 7.13 (d, *J* = 7.7 Hz, 2H, Ar), 7.07 (d, *J* = 8.9 Hz, 2H, Ar), 6.90-6.86 (m, 3H, Ar), 6.47 (d, *J* = 15.9 Hz, 1H, 1 × olefinic), 5.38 (brd, *J* = 3.6 Hz, 1H, 1 × olefinic), 4.64-4.62 (m, 1H, 1 × CHOCO), 4.05-3.99 (m, 6H, 3 × OCH₂), 2.51-0.67 (m, 93H, 7 × CH₃, 33 × CH₂, 6 × CH); MS (FAB+): m/z calcd for C₇₀H₁₁₀O₇: 1062.8. Found: 1062.7; Anal. calcd for C₇₀H₁₁₀O₇: C, 79.05; H, 10.42. Found: C, 78.98; H, 10.58.

DDC-4,12: $R_f = 0.78$ in 20% EtOAc-hexanes; a colorless solid; yield: 60 %; IR (KBr pellet): v_{max} in cm⁻¹ 2938, 2864, 1725, 1633, 1599, 1229, 1196, 1134; UV–Vis: $\lambda_{max} = 333.91$ nm, $\in = 2.68 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.79 (d, J = 15.8 Hz, 1H, 1 × olefinic), 7.13 (d, J = 7.6 Hz, 2H, Ar), 7.07 (d, J = 8.9 Hz, 2H, Ar), 6.90-6.86 (m, 3H, Ar), 6.47 (d, J = 15.9 Hz, 1H, 1 × olefinic), 5.38 (brd, J = 3.4 Hz, 1H, 1 × olefinic), 4.64-4.60 (m, 1H, 1 × CHOCO), 4.05-3.96 (m, 6H, 3 × OCH₂), 2.36-0.67 (m, 95H, 7 × CH₃, 34 × CH₂, 6 × CH); ¹³C

NMR (100 MHz, CDCl₃): 172.91, 166.19, 156.59, 151.72, 149.21, 146.55, 144.31, 139.69, 127.02, 123.03, 122.70, 122.44, 115.05, 114.62, 112.19, 73.94, 69.33, 69.08, 67.79, 56.71, 56.14, 50.03, 42.34, 39.75, 39.55, 38.19, 37.02, 36.63, 36.21, 35.84, 34.31, 31.98, 31.94, 31.88, 29.76, 29.72, 29.69, 29.67, 29.47, 29.43, 29.25, 29.14, 28.69, 28.28, 28.06, 27.85, 26.06, 26.04, 24.33, 23.86, 22.88, 22.75, 21.75, 21.06, 19.38, 18.75, 14.19, 11.90; MS (FAB+): m/z calcd for $C_{71}H_{112}O_7$: 1076.8. Found: 1075.2; Anal. calcd for $C_{71}H_{112}O_7$: C, 79.13; H, 10.23. Found: C, 79.21; H, 10.48.

DDC-5,12: R_f = 0.80 in 20% EtOAc-hexanes; a colorless solid; yield: 66 %; IR (KBr pellet): v_{max} in cm⁻¹ 2928, 2854, 1721, 1632, 1596, 1215, 1192, 1133; UV–Vis: λ_{max} = 333.96 nm, ϵ = 8.81 × 10³ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.79 (d, *J* = 15.8 Hz, 1H, 1 × olefinic), 7.13 (d, *J* = 7.8 Hz, 2H, Ar), 7.07 (d, *J* = 8.9 Hz, 2H, Ar), 6.90-6.86 (m, 3H, Ar), 6.47 (d, *J* = 15.8 Hz, 1H, 1 × olefinic), 5.38 (brd, *J* = 4.2 Hz, 1H, 1 × olefinic), 4.64-4.61 (m, 1H, 1 × CHOCO), 4.05-3.93 (m, 6H, 3 × OCH₂), 2.33-0.67 (m, 97H, 7 × CH₃, 35 × CH₂, 6 × CH); MS (FAB+): m/z calcd for C₇₂H₁₁₄O₇: 1090.9. Found: 1090.6; Anal. calcd for C₇₂H₁₁₄O₇: C, 79.22; H, 10.53. Found: C, 79.41; H, 10.26.

DDC-7,12: $R_f = 0.82$ in 20% EtOAc-hexanes; a colorless solid; yield: 70 %; IR (KBr pellet): v_{max} in cm⁻¹2932, 2844, 1723, 1613, 1601, 1225, 1198, 1143; UV–Vis: $\lambda_{max} = 331.04$ nm, $\epsilon = 1.58 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 7.79 (d, J = 15.8 Hz, 1H, 1 × olefinic), 7.13 (d, J = 7.8 Hz, 2H, Ar), 7.07 (d, J = 8.9 Hz, 2H, Ar), 6.90-6.86 (m, 3H, Ar), 6.48 (d, J = 15.7 Hz, 1H, 1 × olefinic), 5.38 (brd, J = 4.3 Hz, 1H, 1 × olefinic), 4.64-4.60 (m, 1H, 1 × CHOCO), 4.05-3.92 (m, 6H, 3 × OCH₂), 2.32-0.67 (m, 101H, 7 × CH₃, 37 × CH₂, 6 × CH); MS (FAB+): m/z calcd for C₇₄H₁₁₈O₇: 1118.8. Found: 1118.7; Anal. calcd for C₇₄H₁₁₈O₇: C, 79.38; H, 10.62. Found: C, 79.46; H, 10.40.

II.6 General procedure for the synthesis of the cholesteryl ω -[4-(2',3',4'-*n*-dodecyloxycinnamoyloxy)phenoxy]alkanoates (TDC-n,12 series).

A mixture of cholesteryl ω -(4'-hydroxyphenoxy) alkanoate (**2a-d**)³ (0.18 mmol, 1 equiv.), 2,3,4-*n*-tridodecyloxy cinnamic acid (**8**) (0.18 mmol, 1 equiv.) and 4-dimethylamino pyridine (DMAP) (0.0091 mmol, 0.05 equiv.) was dissolved in dry CH₂Cl₂ under nitrogen atmosphere. To the above clear solution, DCC (0.27 mmol, 1.5 equiv.) dissolved in dry CH₂Cl₂ was added slowly while maintaining the temperature below 15 °C and stirred for 4 hours at room temperature. Dicyclohexylurea precipitate was filtered off and washed thoroughly with CH₂Cl₂. The combined filtrates were washed with water and dried over Na₂SO₄. The crude product was purified by column chromatography using neutral alumina. Elution with 10% EtOAc-hexanes afforded the product which was further purified by recrystallization from EtOH: CH₂Cl₂ (9:1) to yield a pure colorless solid.

TDC-3,12: $R_f = 0.72$ in 20% EtOAc-hexanes; a colorless solid; yield: 62 %; IR (KBr pellet): v_{max} in cm⁻¹ 2923, 2851, 1729, 1630, 1591, 1250, 1193, 1134; UV–Vis: $\lambda_{max} = 319.89$ nm, $\epsilon = 2.94 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 8.11 (d, J = 16.1 Hz, 1H, 1 × olefinic), 7.30 (d, J = 8.8 Hz, 1H, Ar), 7.07 (d, J = 8.9 Hz, 2H, Ar), 6.89 (d, J = 8.9 Hz, 2H, Ar), 6.69

(d, J = 8.8 Hz, 1H, Ar), 6.57 (d, J = 16.1 Hz, 1H, 1 × olefinic), 5.38 (brd, J = 3.6 Hz, 1H, 1 × olefinic), 4.64-4.60 (m, 1H, 1 × CHOCO), 4.08 (t, 2H, J = 6.5 Hz, 1 × OCH₂), 4.05- 3.95 (m, 6H, 3 × OCH₂), 2.51-0.67 (m, 116H, 8 × CH₃, 43 × CH₂, 6 × CH); MS (FAB+): m/z calcd for C₈₂H₁₃₄O₈: 1247.9. Found: 1247.3; Anal. calcd for C₈₂H₁₃₄O₈: C, 78.92; H, 10.82. Found: C, 78.88; H, 11.02.

TDC-4,12: $R_f = 0.74$ in 20% EtOAc-hexanes; a colorless solid; yield: 62 %; IR (KBr pellet): v_{max} in cm⁻¹ 2925, 2856, 1734, 1638, 1581, 1239, 1195, 1139; UV–Vis: $\lambda_{max} = 319.85$ nm, $\epsilon = 2.33 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 8.11 (d, J = 16.1 Hz, 1H, 1 × olefinic), 7.30 (d, J = 8.8 Hz, 1H, Ar), 7.07 (d, J = 8.9 Hz, 2H, Ar), 6.89 (d, J = 9.0 Hz, 2H, Ar), 6.69 (d, J = 8.8 Hz, 1H, Ar), 6.57 (d, J = 16.1 Hz, 1H, 1 × olefinic), 5.38 (brd, J = 3.5 Hz, 1H, 1 × olefinic), 4.64-4.60 (m, 1H, 1 × CHOCO), 4.08 (t, 2H, J = 6.6 Hz, 1 × OCH₂), 4.05- 3.92 (m, 6H, 3 × OCH₂), 2.32-0.67 (m, 118H, 8 × CH₃, 44 × CH₂, 6 × CH); MS (FAB+): m/z calcd for C₈₃H₁₃₆O₈: 1262.0. Found: 1262.4; Anal. calcd for C₈₃H₁₃₆O₈: C, 79.00; H, 10.52. Found: C, 79.30; H, 10.28.

TDC-5,12: $R_f = 0.76$ in 20% EtOAc-hexanes; a colorless solid; yield: 67 %; IR (KBr pellet): v_{max} in cm⁻¹ 2916, 2848, 1728, 1639, 1591, 1297, 1191, 1139; UV–Vis: $\lambda_{max} = 319.93$ nm, $\epsilon = 2.23 \times 10^4$ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 8.07 (d, J = 16.1 Hz, 1H, 1 × olefinic), 7.30 (d, J = 8.8 Hz, 1H, Ar), 7.07 (d, J = 8.8 Hz, 2H, Ar), 6.89 (d, J = 8.9 Hz, 2H, Ar), 6.69 (d, J = 8.6 Hz, 1H, Ar), 6.57 (d, J = 16.1 Hz, 1H, 1 × olefinic), 5.37 (brd, J = 3.5 Hz, 1H, 1 × olefinic), 4.64-4.62 (m, 1H, 1 × CHOCO), 4.08 (t, 2H, J = 6.4 Hz, 1 × OCH₂), 4.05-3.93 (m, 6H, 3 × OCH₂), 2.34-0.67 (m, 120H, 8 × CH₃, 45 × CH₂, 6 × CH); ¹³C NMR (100 MHz, CDCl₃): 173.12, 169.21, 166.42, 162.94, 156.59, 155.76, 153.13, 144.41, 141.83, 139.71, 132.01, 122.97, 122.67, 115.54, 114.99, 108.37, 73.75, 72.70, 68.79, 68.06, 56.71, 56.14, 53.12, 50.04, 47.07, 42.34, 39.75, 39.55, 38.19, 37.02, 36.63, 36.21, 35.84, 34.63, 31.88, 30.36, 29.74, 29.71, 29.62, 29.56, 29.44, 29.43, 29.29, 29.01, 28.27, 28.06, 27.85, 26.19, 26.15, 25.66, 24.84, 24.32, 23.86, 22.87, 22.75, 22.61, 21.06, 19.37, 18.75, 14.96, 14.18, 11.89; MS (FAB+): m/z calcd for C₈₄H₁₃₉O₈ (M+1): 1276.0. Found: 1276.8; Anal. calcd for C₈₄H₁₃₈O₈: C, 79.07; H, 10.90. Found: C, 79.25; H, 11.19.

TDC-7,12: R_f = 0.80 in 20% EtOAc-hexanes; a colorless solid; yield: 65 %; IR (KBr pellet): v_{max} in cm⁻¹ 2916, 2848, 1728, 1639, 1591, 1297, 1191, 1139; UV–Vis: λ_{max} = 319.93 nm, ϵ = 2.23 × 10⁴ L mol⁻¹cm⁻¹; ¹H NMR (400MHz, CDCl₃): δ 8.10 (d, *J* = 16.2 Hz, 1H, 1 × olefinic), 7.30 (d, *J* = 8.8 Hz, 1H, Ar), 7.07 (d, *J* = 8.9 Hz, 2H, Ar), 6.90 (d, *J* = 8.9 Hz, 2H, Ar), 6.69 (d, *J* = 8.9 Hz, 1H, Ar), 6.57 (d, *J* = 16.1 Hz, 1H, 1 × olefinic), 5.38 (brd, *J* = 3.8 Hz, 1H, 1 × olefinic), 4.64-4.61 (m, 1H, 1 × CHOCO), 4.09 (t, 2H, *J* = 6.6 Hz, 1 × OCH₂), 4.05- 3.97 (m, 6H, 3 × OCH₂), 2.33-0.67 (m, 124H, 8 × CH₃, 47 × CH₂, 6 × CH); MS (FAB+): m/z calcd for C₈₆H₁₄₂O₈: 1303.1. Found: 1303.6; Anal. calcd for C₈₆H₁₄₂O₈: C, 79.21; H, 10.98. Found: C, 79.50; H, 10.31.

III. Additional textures and XRD profiles

Figure S1. Microphotographs of the textures observed in a homogeneously aligned SmA phase of dimer **MDC-7,10** at (a) 140 °C, (b) 133 °C, (c) 104 °C, (d) 93 °C.

Figure S2. Intensity *vs* 2θ profiles derived from the 2D XRD pattern of TGBC* phase dimers (a) **MDC-3,16** at 60 °C and (b) **DDC-3,8** at 85 °C.

References

- 2 G. Shanker, M. Prehm, C. V: Yelamaggad, C. Tschierske., J. Mater. Chem., 2011, 21, 5307-5311
- 3 C. V. Yelamaggad and G. Shanker, *Liq. Cryst.*, 2007, 34, 799-809

¹ C. V. Yelamaggad and G. Shanker, *Liq. Cryst.*, 2007, **34**, 1045-1057.