Supporting Information

A New Tetra-arylcyclopentadienone Based Low Molecular Weigth Gelator: Synthesis, Self-Assembly Properties and Anion Recognition

Mattia Boiani,^a Andrea Baschieri,^a Cristiana Cesari,^b Rita Mazzoni,^b Stefano Stagni,^b Stefano Zacchini^b and Letizia Sambri^{*a}

- [a] M. Boiani, Dr. A. Baschieri, Dr. L. Sambri Dipartimento di Chimica Organica "A. Mangini", University of Bologna, v.le Risorgimento 4, 40136 Bologna, Italy; Fax: (+) 39-051-2093654; e-mail: letizia.sambri@unibo.it
- [b] Dr. R. Mazzoni, C. Cesari, Dr. S. Stagni, Prof. S. Zacchini Dipartimento di Chimica Fisica ed Inorganica, University of Bologna, v.le Risorgimento 4, 40136 Bologna, Italy.

Figure 1S. ORTEP drawing of **6a** with key atoms labelled. Displacement ellipsoids are at the 30% probability level. H-atoms have been omitted for clarity. Only the main images of the disordered groups are represented.

Figure 2S. ORTEP drawing of **1a** with key atoms labelled. Displacement ellipsoids are at the 30% probability level. H-atoms have been omitted for clarity. Only the main images of the disordered groups are represented.

<u> </u>			
C(10)-C(30)	1.538(6)		
C(10)-O(10)	1.211(5)	C(30)-O(30)	1.213(5)
C(7)-C(10)	1.466(6)	C(27)-C(30)	1.444(7)
C(3)-C(4)	1.434(6)	C(23)-C(24)	1.431(9)
C(2)-C(3)	1.193(6)	C(22)-C(23)	1.171(11)
C(1)-C(2)	1.471(6)	C(21)-C(22)	1.462(12)
O(10)-C(10)-C(7)	123.4(4)	O(30)-C(30)-C(27)	127.8(5)
O(10)-C(10)-C(30)	117.6(4)	O(30)-C(30)-C(10)	115.8(4)
C(7)-C(10)-C(30)	118.9(4)	C(27)-C(30)-C(10)	116.2(5)
C(2)-C(3)-C(4)	177.4(5)	C(22)-C(23)-C(24)	175.3(12)
C(3)-C(2)-C(1)	179.2(5)	C(23)-C(22)-C(21)	175.6(13)

Table 1S. Selected Bond Lengths (Å) and angles (°) for **6a**. Only the main images of disordered groups are considered.

C(1)-O(1)	1.221(9)	C(3)-C(4)	1.516(11)
C(1)-C(2)	1.520(10)	C(1)-C(5)	1.471(11)
C(2)-C(3)	1.337(10)	C(4)-C(5)	1.354(10)
C(3)-C(6)	1.499(11)	C(4)-C(15)	1.474(11)
C(9)-C(12)	1.438(11)	C(18)-C(21)	1.443(13)
C(12)-C(13)	1.186(11)	C(21)-C(22)	1.189(12)
C(13)-C(14)	1.487(12)	C(22)-C(23)	1.474(15)
C(5)-C(1)-C(2)	108.0(7)	C(3)-C(2)-C(1)	105.6(7)
C(2)-C(3)-C(4)	110.4(7)	C(5)-C(4)-C(3)	108.9(7)
C(4)-C(5)-C(1)	107.1(7)		
C(13)-C(12)-C(9)	173.7(11)	C(22)-C(21)-C(18)	175.1(12)
C(12)-C(13)-C(14)	179.8(12)	C(21)-C(22)-C(23)	176.5(14)

Table 2S. Selected Bond Lengths (Å) and angles (°) for **1a**. Only the main images of disordered groups are considered.

Crystal data and collection details for **1a** and **6a** are listed in Table 6.

Table 3S. Crystal data and details of the structure refinement for 1a and 6a.

	1a	6a	
Formula	$C_{39}H_{32}O_3$	$C_{24}H_{22}O_4$	
Fw	548.65	374.42	
λ, Å	0.71073	0.71073	
Temperature, K	293(2)	100(2)	
Crystal system	Triclinic	Monoclinic	
Space group	PĪ	<i>C</i> 2/c	
<i>a</i> , Å	6.0489(17)	23.681(8)	
b, Å	13.222(4)	4.9756(18)	
<i>c</i> , Å	20.272(6)	33.914(12)	
α, °	73.883(4)	90	
β, °	86.839(4)	94.726(5)	
γ, °	77.762(4)	90	
Cell volume, Å ³	1522.3(7)	3983(2)	
Ζ	2	8	
D_c , g cm ⁻³	1.197	1.249	
μ , mm ⁻¹	0.074	0.084	
<i>F</i> (000)	580	1584	
θ limits, °	1.64-22.46	2.02-25.03	
Reflections	11792	17201	
collected	11/85	17291	
Independent	3958	3419	
reflections	$(R_{int} = 0.1420)$	$(R_{int} = 0.0479)$	
Data/restraints	2058/201/277	2410/622/266	
/parameters	3938/321/377	3419/022/300	
Goodness on fit	1 008	1.020	
on F^2	1.008	1.020	
$R1 (I > 2\sigma(I))$	0.1055	0.0986	
wR2 (all data)	0.3554	0.2948	
Largest diff. peak and hole, e.Å ⁻³	0.614 and -0.577	0.779 and -0.678	

Figure 3S:View along the *a* axis of the crystal packing of **1a**. Oxygen atoms are in red; H-bonds dotted blue lines.

Table 4S: T_g of **1a**-gel in toluene at various concentrations (*c*) and the natural logarithm of the concentration and $1/T_g$ values.

entry	<i>c</i> (M)	$T_{g}(^{\circ}K)$	ln <i>c</i>	1/T
1	0.01260	323	-4.37406	0.003096
2	0.01360	324	-4.29769	0.003086
3	0.01800	326	-4.01738	0.003067
4	0.02500	329	-3.68888	0.00304
5	0.03650	332	-3.31044	0.003012
6	0.04500	335	-3.10109	0.002985

Table 5S: T_g of **1a**-gel in nitromethane at various concentrations (*c*) and the natural logarithm of the concentration and $1/T_g$ values.

entry	<i>c</i> (M)	$T_{g}(K)$	ln <i>c</i>	1/T
1	0.00869	321	-4.74558	0.003115
2	0.01330	328	-4.31999	0.003049
3	0.02000	333	-3.91202	0.003003
4	0.02600	336	-3.64966	0.002976
5	0.03320	341	-3.40521	0.002933

Figure 4S: SEM images of xerogels of 1a in various solvents

Acetonitrile

Nitromethane

Benzene

toluene

o-xylene

m-xylene

p-xylene

mesitilene

Figure 5S: 1 H NMR spectrum of 1a in CD₃CN (a) and CD₃CN+D₂O (b).

Figure 6S: ¹H NMR spectrum of 1a in CD₃CN at different concentrations at 25°C

Figure 7S: ¹H NMR spectrum of 1a in CD₃NO₂ at different concentrations at 25°C

Figure 9S: ¹H NMR spectrum of 1a in toluene at different concentrations at 25°C

Figure 11S: Particular of COSY-NMR spectrum of 1a-toluene gel (14.3 mM) at 25°C

Figure 12S. FT-IR spectra of 1a: a) in DCM solution, b) in *o*-xylene solution; c) in ACN solution and d) xerogel from *o*-xylene.

Figure 13S: Normalized UV/Vis absorption spectra at room temperature of **1a** in solution (1.0 mM) and in gel in different solvents. a) in ACN, **1a**-gel =24.0 mM, b) in toluene, **1a**-gel =12.6 mM.

Figure 14S. Normalized UV/Vis absorption spectra at room temperature. a) **1a**-solutions (1.0 mM) in ACN, MeNO₂, toluene and DCM; b) **1a**-gel in ACN (24.0 mM), MeNO₂ (8.7 mM) and toluene (12.6 mM)