SUPPORTING INFORMATION

MOLECULAR RECOGNITION-BASED CATALYSIS IN NUCLEOPHILIC AROMATIC SUBSTITUTION: A MECHANISTIC STUDY

Nuno Basilio,[†] Luis García-Río,^{*,†} Ángeles Peña-Gallego[†] and Moisés Pérez-Lorenzo^{*,‡}

Center for Research in Biological Chemistry and Molecular Materials (CIQUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain, and Department of Physical Chemistry, University of Vigo, 36310 Vigo, Spain.

Corresponding author email: moisespl@uvigo.es

INDEX

S _N Ar reaction of 1-chloro-2,4-dinitrobenzene	
Influence of <i>n</i> -butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers	2-4
Influence of <i>n</i> -butylamine concentration on $k_{obs}/[BuNH_2]$ for the CDNB S_N Ar in the presence of polyethers	5-7
Influence of polyether concentration on α and β terms for the CDNB $S_{\rm N}$ Ar.	8-10
Appendix 1: observed rate constants for the CDNB nucleophilic aromatic substitution	11-20
S _N Ar reaction of 1-fluoro-4-nitrobenzene	
Influence of <i>n</i> -butylamine concentration on k_{obs} for the FNB S_N Ar in the presence of polyethers	21-22
Influence of <i>n</i> -butylamine concentration on $k_{obs}/[BuNH_2]$ for the FNB S_NAr in the presence of polyethers	22-23
Influence of polyether concentration on α and β terms for the FNB $S_{\rm N}$ Ar	24-24
Appendix 2: observed rate constants for the FNB nucleophilic aromatic substitution	25-28

Figure S-1. Influence of *n*-butylamine concentration on k_{obs} for the $S_{\rm N}$ Ar reaction of 1-chloro-2,4-dinitrobenzene. T=25.0°C. [CDNB]= 1.4×10^{-4} M. (•) [G2]=0M; (•) [G2]=0.10M; (•) [G2]=0.20M; (□) [G2]=0.30M and (•) [G2]=0.51M.

Figure S-2. Influence of *n*-butylamine concentration on k_{obs} for the S_N Ar reaction of 1-chloro-2,4-dinitrobenzene. T=25.0°C. [CDNB]= 1.4×10^{-4} M. (•) [G3]=0M; (•) [G3]=0.10M; (•) [G3]=0.21M; (□) [G3]=0.31M and (•) [G3]=0.52M.

Figure S-3. Influence of *n*-butylamine concentration on k_{obs} for the S_N Ar reaction of 1-chloro-2,4-dinitrobenzene. T=25.0°C. [CDNB]= 1.4×10^{-4} M. (•) [G5]=0M; (•) [G5]=0.10M; (•) [G5]=0.26M; (□) [G5]=0.35M and (•) [G5]=0.56M.

Figure S-4. Influence of *n*-butylamine concentration on k_{obs} for the S_N Ar reaction of 1-chloro-2,4-dinitrobenzene. T=25.0°C. [CDNB]=1.4×10⁻⁴M. (•) [12C4]=0M; (•) [12C4]=0.11M; (•) [12C4]=0.22M; (□) [12C4]=0.33M and (▲) [12C4]=0.55M.

Figure S-5. Influence of *n*-butylamine concentration on k_{obs} for the S_N Ar reaction of 1-chloro-2,4-dinitrobenzene. T=25.0°C. [CDNB]=1.4×10⁻⁴M. (•) [15C5]=0M; (•) [15C5]=0.10M; (•) [15C5]=0.20M; (•) [15C5]=0.31M and (•) [15C5]=0.51M.

Figure S-6. Influence of *n*-butylamine concentration on k_{obs} for the S_N Ar reaction of 1-chloro-2,4-dinitrobenzene. T=25.0°C. [CDNB]=1.4×10⁻⁴M. (•) [18C6]=0M; (•) [18C6]=0.10M; (•) [18C6]=0.25M; (□) [18C6]=0.35M and (•) [18C6]=0.50M.

Figure S-7. Influence of *n*-butylamine concentration on $k_{obs}/[BuNH_2]$ (Equation [2]) for the S_N Ar reaction of 1-chloro-2,4-dinitrobenzene. T=25.0°C. [CDNB]=1.4×10⁻⁴M. (•) [G2]=0M; (•) [G2]=0.10M; (•) [G2]=0.20M; (□) [G2]=0.31M and (▲) [G2]=0.51M.

Figure S-8. Influence of *n*-butylamine concentration on $k_{obs}/[BuNH_2]$ (Equation [2]) for the S_N Ar reaction of 1-chloro-2,4-dinitrobenzene. T=25.0°C. [CDNB]=1.4×10⁻⁴M. (•) [G3]=0M; (•) [G3]=0.10M; (•) [G3]=0.21M; (□) [G3]=0.31M and (▲) [G3]=0.52M.

Figure S-9. Influence of *n*-butylamine concentration on $k_{obs}/[BuNH_2]$ (Equation [2]) for the S_N Ar reaction of 1-chloro-2,4-dinitrobenzene. T=25.0°C. [CDNB]=1.4×10⁻⁴M. (•) [G5]=0M; (•) [G5]=0.10M; (•) [G5]=0.26M; (□) [G5]=0.35M and (▲) [G5]=0.56M.

Figure S-10. Influence of *n*-butylamine concentration on $k_{obs}/[BuNH_2]$ (Equation [2]) for the S_N Ar reaction of 1-chloro-2,4-dinitrobenzene. T=25.0°C. [CDNB]=1.4×10⁻⁴M. (•) [12C4]=0M; (•) [12C4]=0.11M; (•) [12C4]=0.22M; (□) [12C4]=0.33M and (▲) [12C4]=0.55M.

Figure S-11. Influence of *n*-butylamine concentration on $k_{obs}/[BuNH_2]$ (Equation [2]) for the S_N Ar reaction of 1-chloro-2,4-dinitrobenzene. T=25.0°C. [CDNB]=1.4×10⁻⁴M. (•) [15C5]=0M; (•) [15C5]=0.10M; (•) [15C5]=0.20M; (□) [15C5]=0.31M and (▲) [15C5]=0.51M.

Figure S-12. Influence of *n*-butylamine concentration on $k_{obs}/[BuNH_2]$ (Equation [2]) for the S_N Ar reaction of 1-chloro-2,4-dinitrobenzene. T=25.0°C. [CDNB]=1.4×10⁻⁴M. (•) [18C6]=0M; (•) [18C6]=0.10M; (•) [18C6]=0.25M; (□) [18C6]=0.35M and (▲) [18C6]=0.50M.

Figure S-13. Influence of G2 concentration on α and β terms (Equation 2) for the *S*_NAr reaction of 1-chloro-2,4-dinitrobenzene. (•) α and (\circ) β .

Figure S-14. Influence of G3 concentration on α and β terms (Equation 2) for the *S*_NAr reaction of 1-chloro-2,4-dinitrobenzene. (•) α and (\circ) β .

Figure S-15. Influence of G5 concentration on α and β terms (Equation 2) for the *S*_NAr reaction of 1-chloro-2,4-dinitrobenzene. (•) α and (\circ) β .

Figure S-16. Influence of 12C4 concentration on α and β terms (Equation 2) for the *S*_NAr reaction of 1-chloro-2,4-dinitrobenzene. (•) α and (\circ) β .

Figure S-17. Influence of 15C5 concentration on α and β terms (Equation 2) for the *S*_NAr reaction of 1-chloro-2,4-dinitrobenzene. (•) α and (\circ) β .

Figure S-18. Influence of 18C6 concentration on α and β terms (Equation 2) for the *S*_NAr reaction of 1-chloro-2,4-dinitrobenzene. (•) α and (\circ) β .

[BuNH ₂], M	k_{obs} , s ⁻¹
2.01×10 ⁻²	1.46×10 ⁻⁵
4.03×10 ⁻²	3.20×10 ⁻⁵
8.06×10 ⁻²	7.38×10 ⁻⁵
1.51×10 ⁻¹	1.73×10 ⁻⁴
3.02×10^{-1}	4.79×10 ⁻⁴
5.03×10 ⁻¹	1.11×10 ⁻³

Table S-1. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the absence of polyethers. T=25.0°C.

Table S-2. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_NAr in the presence of polyethers. [G2]=0.10M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	1.72×10 ⁻⁵
4.00×10 ⁻²	3.63×10 ⁻⁵
8.01×10 ⁻²	8.26×10 ⁻⁵
1.50×10 ⁻¹	1.83×10 ⁻⁴
3.00×10 ⁻¹	4.96×10 ⁻⁴
5.00×10 ⁻¹	1.13×10 ⁻³

Table S-3. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [G2]=0.20M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	2.03×10 ⁻⁵
4.00×10 ⁻²	4.21×10 ⁻⁵
8.01×10 ⁻²	9.53×10 ⁻⁵
1.50×10 ⁻¹	2.05×10^{-4}
3.00×10 ⁻¹	5.41×10 ⁻⁴
5.00×10 ⁻¹	1.19×10 ⁻³

[BuNH ₂], M	[BuNH ₂], M
2.00×10 ⁻²	2.19×10 ⁻⁵
4.00×10 ⁻²	4.64×10 ⁻⁵
8.01×10 ⁻²	1.03×10^{-4}
1.50×10^{-1}	2.19×10 ⁻⁴
3.00×10 ⁻¹	5.65×10 ⁻⁴
5.01×10 ⁻¹	1.22×10 ⁻³

Table S-4. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [G2]=0.31M; T=25.0°C.

Table S-5. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_NAr in the presence of polyethers. [G2]=0.51M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.02×10 ⁻²	2.97×10 ⁻⁵
4.05×10 ⁻²	6.14×10 ⁻⁵
8.09×10 ⁻²	1.34×10 ⁻⁴
1.52×10^{-1}	2.82×10 ⁻⁴
3.04×10 ⁻¹	7.01×10^{-4}
4.99×10 ⁻¹	1.44×10 ⁻³

Table S-6. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_NAr in the presence of polyethers. [G3]=0.10M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	2.23×10 ⁻⁵
4.00×10 ⁻²	4.65×10 ⁻⁵
8.01×10 ⁻²	1.05×10 ⁻⁴
1.50×10 ⁻¹	2.23×10 ⁻⁴
3.00×10 ⁻¹	5.88×10 ⁻⁴
5.00×10 ⁻¹	1.28×10 ⁻³

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	2.91×10 ⁻⁵
4.00×10 ⁻²	6.05×10 ⁻⁵
8.01×10 ⁻²	1.32×10^{-4}
1.50×10 ⁻¹	2.77×10^{-4}
3.00×10 ⁻¹	6.79×10^{-4}
5.00×10 ⁻¹	1.43×10 ⁻³

Table S-7. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_NAr in the presence of polyethers. [G3]=0.21M; T=25.0°C.

Table S-8. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_NAr in the presence of polyethers. [G3]=0.31M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	3.52×10 ⁻⁵
4.00×10 ⁻²	7.37×10 ⁻⁵
8.01×10 ⁻²	1.61×10 ⁻⁴
1.50×10 ⁻¹	3.25×10 ⁻⁴
3.00×10 ⁻¹	7.75×10 ⁻⁴
5.00×10 ⁻¹	1.58×10 ⁻³

Table S-9. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_NAr in the presence of polyethers. [G3]=0.52M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	4.69×10 ⁻⁵
4.00×10 ⁻²	9.87×10 ⁻⁵
8.01×10 ⁻²	2.13×10 ⁻⁴
1.50×10 ⁻¹	4.27×10 ⁻⁴
3.00×10 ⁻¹	9.83×10 ⁻⁴
4.94×10 ⁻¹	1.88×10^{-3}

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	2.56×10 ⁻⁵
3.99×10 ⁻²	5.43×10 ⁻⁵
7.98×10 ⁻²	1.19×10 ⁻⁴
1.50×10 ⁻¹	2.46×10 ⁻⁴
2.99×10 ⁻¹	6.46×10 ⁻⁴
4.99×10 ⁻¹	1.37×10 ⁻³

Table S-10. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [G4]=0.11M; T=25.0°C.

Table S-11. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_NAr in the presence of polyethers. [G4]=0.25M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	3.72×10 ⁻⁵
3.99×10 ⁻²	8.09×10 ⁻⁵
7.98×10 ⁻²	1.75×10 ⁻⁴
1.50×10 ⁻¹	3.54×10 ⁻⁴
2.99×10 ⁻¹	8.47×10^{-4}
4.99×10 ⁻¹	1.71×10 ⁻³

Table S-12. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_NAr in the presence of polyethers. [G4]=0.35M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	4.69×10 ⁻⁵
3.99×10 ⁻²	9.74×10 ⁻⁵
7.98×10 ⁻²	2.09×10 ⁻⁴
1.50×10 ⁻¹	4.28×10 ⁻⁴
2.99×10 ⁻¹	9.85×10 ⁻⁴
4.99×10 ⁻¹	1.92×10 ⁻³

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	6.53×10 ⁻⁵
3.99×10 ⁻²	1.36×10 ⁻⁴
7.98×10 ⁻²	2.84×10 ⁻⁴
1.50×10 ⁻¹	5.56×10 ⁻⁴
2.99×10 ⁻¹	1.24×10 ⁻³
4.99×10 ⁻¹	2.36×10 ⁻³

Table S-13. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [G4]=0.55M; T=25.0°C.

Table S-14. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [G5]=0.10M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.08×10 ⁻²	2.70×10 ⁻⁵
4.16×10 ⁻²	5.76×10 ⁻⁵
8.33×10 ⁻²	1.28×10^{-4}
1.56×10 ⁻¹	2.72×10^{-4}
3.12×10 ⁻¹	6.97×10^{-4}
5.20×10 ⁻¹	1.49×10 ⁻³

Table S-15. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [G5]=0.26M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	4.13×10 ⁻⁵
3.99×10 ⁻²	8.84×10 ⁻⁵
7.98×10 ⁻²	1.90×10^{-4}
1.50×10 ⁻¹	3.86×10 ⁻⁴
2.99×10 ⁻¹	9.18×10 ⁻⁴
4.99×10 ⁻¹	1.85×10 ⁻³

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	5.31×10 ⁻⁵
3.99×10 ⁻²	1.06×10 ⁻⁴
7.98×10 ⁻²	2.30×10 ⁻⁴
1.50×10 ⁻¹	4.63×10 ⁻⁴
2.99×10 ⁻¹	1.08×10 ⁻³
4.99×10 ⁻¹	2.08×10 ⁻³

Table S-16. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [G5]=0.35M; T=25.0°C.

Table S-17. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_NAr in the presence of polyethers. [G5]=0.56M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	7.00×10 ⁻⁵
3.99×10 ⁻²	1.45×10^{-4}
7.98×10 ⁻²	3.12×10 ⁻⁴
1.50×10 ⁻¹	6.23×10 ⁻⁴
2.99×10 ⁻¹	1.37×10 ⁻³
4.99×10 ⁻¹	2.59×10 ⁻³

Table S-18. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [G5]=0.26M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	4.13×10 ⁻⁵
3.99×10 ⁻²	8.84×10 ⁻⁵
7.98×10 ⁻²	1.90×10^{-4}
1.50×10 ⁻¹	3.86×10 ⁻⁴
2.99×10 ⁻¹	9.18×10 ⁻⁴
4.99×10 ⁻¹	1.85×10 ⁻³

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	1.99×10 ⁻⁵
4.00×10 ⁻²	4.28×10 ⁻⁵
8.01×10 ⁻²	9.61×10 ⁻⁵
1.50×10 ⁻¹	2.08×10^{-4}
3.00×10 ⁻¹	5.60×10 ⁻⁴
5.00×10 ⁻¹	1.24×10 ⁻³

Table S-19. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [12C4]=0.11M; T=25.0°C.

Table S-20. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [12C4]=0.22M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	2.45×10 ⁻⁵
4.00×10 ⁻²	5.21×10 ⁻⁵
8.01×10 ⁻²	1.14×10^{-4}
1.50×10^{-1}	2.48×10^{-4}
3.00×10 ⁻¹	6.35×10 ⁻⁴
5.00×10 ⁻¹	1.37×10 ⁻³

Table S-21. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [12C4]=0.33M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	2.92×10 ⁻⁵
4.00×10 ⁻²	6.21×10 ⁻⁵
8.01×10 ⁻²	1.35×10^{-4}
1.50×10 ⁻¹	2.85×10^{-4}
3.00×10 ⁻¹	7.11×10^{-4}
5.00×10 ⁻¹	1.49×10 ⁻³

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	3.88×10 ⁻⁵
4.00×10 ⁻²	8.21×10 ⁻⁵
8.01×10 ⁻²	1.77×10^{-4}
1.50×10 ⁻¹	3.64×10 ⁻⁴
3.00×10 ⁻¹	8.69×10 ⁻⁴
4.94×10 ⁻¹	1.72×10 ⁻³

Table S-22. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [12C4]=0.55M; T=25.0°C.

Table S-23. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [15C5]=0.10M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	2.08×10 ⁻⁵
4.00×10 ⁻²	4.49×10 ⁻⁵
8.01×10 ⁻²	1.00×10^{-4}
1.50×10 ⁻¹	2.17×10 ⁻⁴
3.00×10 ⁻¹	5.82×10 ⁻⁴
5.00×10 ⁻¹	1.28×10 ⁻³

Table S-24. Influence of *n*-butylamine concentration on k_{obs} for he CDNB S_NAr in the presence of polyethers. [15C5]=0.20M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹	
2.00×10 ⁻²	2.67×10 ⁻⁵	_
4.00×10 ⁻²	5.74×10 ⁻⁵	
8.01×10 ⁻²	1.25×10^{-4}	
1.50×10 ⁻¹	2.69×10^{-4}	
3.00×10 ⁻¹	6.80×10^{-4}	
5.00×10 ⁻¹	1.46×10 ⁻³	

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	3.41×10 ⁻⁵
4.00×10 ⁻²	7.03×10 ⁻⁵
8.01×10 ⁻²	1.52×10 ⁻⁴
1.50×10 ⁻¹	3.17×10 ⁻⁴
3.00×10 ⁻¹	7.78×10^{-4}
5.00×10 ⁻¹	1.62×10 ⁻³

Table S-25. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [15C5]=0.31M; T=25.0°C.

Table S-26. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_NAr in the presence of polyethers. [15C5]=0.51M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.00×10 ⁻²	4.64×10 ⁻⁵
4.00×10 ⁻²	9.65×10 ⁻⁵
8.01×10 ⁻²	2.08×10^{-4}
1.50×10 ⁻¹	4.18×10 ⁻⁴
3.00×10 ⁻¹	9.87×10 ⁻⁴
4.94×10 ⁻¹	1.95×10 ⁻³

Table S-27. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_NAr in the presence of polyethers. [18C6]=0.10M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
2.01×10 ⁻²	2.34×10 ⁻⁵
4.03×10 ⁻²	4.95×10 ⁻⁵
8.06×10 ⁻²	1.10×10 ⁻⁴
1.51×10 ⁻¹	2.39×10 ⁻⁴
3.02×10^{-1}	6.17×10 ⁻⁴
5.03×10 ⁻¹	1.34×10 ⁻³

[BuNH ₂], M	k_{obs} , s ⁻¹
2.01×10 ⁻²	3.44×10 ⁻⁵
4.03×10 ⁻²	7.03×10 ⁻⁵
8.06×10 ⁻²	1.50×10 ⁻⁴
1.51×10 ⁻¹	3.07×10 ⁻⁴
3.02×10 ⁻¹	7.50×10^{-4}
5.03×10 ⁻¹	1.56×10 ⁻³

Table S-28. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [18C6]=0.25M; T=25.0°C.

Table S-29. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_NAr in the presence of polyethers. [18C6]=0.35M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
1.99×10 ⁻²	4.77×10 ⁻⁵
3.99×10 ⁻²	9.25×10 ⁻⁵
7.97×10 ⁻²	1.84×10 ⁻⁴
1.49×10 ⁻¹	3.67×10 ⁻⁴
2.99×10 ⁻¹	8.62×10^{-4}
4.98×10 ⁻¹	1.74×10^{-3}

Table S-30. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_NAr in the presence of polyethers. [18C6]=0.50M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
1.99×10 ⁻²	5.75×10 ⁻⁵
3.99×10 ⁻²	1.13×10 ⁻⁴
7.97×10 ⁻²	2.28×10^{-4}
1.49×10 ⁻¹	4.48×10 ⁻⁴
2.99×10 ⁻¹	1.02×10^{-3}
4.92×10 ⁻¹	1.97×10 ⁻³

Figure S-19. Influence of *n*-butylamine concentration on k_{obs} for the S_N Ar reaction of 1-fluoro-4-nitrobenzene. T=25°C. [FNB]= 1.5×10^{-4} M. (•) [G4]=0M; (•) [G4]=0.10M; (•) [G4]=0.20M and (\Box) [G4]=0.30M.

Figure S-20. Influence of *n*-butylamine concentration on k_{obs} for the S_N Ar reaction of 1-fluoro-4-nitrobenzene. T=25°C. [FNB]=1.5×10⁻⁴M. (•) [G5]=0M; (•) [G5]=0.10M; (•) [G5]=0.20M and (□) [G5]=0.30M.

Figure S-21. Influence of *n*-butylamine concentration on k_{obs} for the S_N Ar reaction of 1-fluoro-4-nitrobenzene. T=25°C. [FNB]= 1.5×10^{-4} M. (•) [18C6]=0M; (•) [18C6]=0M; (•) [18C6]=0.20M; (□) [18C6]=0.30M and (▲) [18C6]=0.51M.

Figure S-22. Influence of *n*-butylamine concentration on $k_{obs}/[BuNH_2]$ (Equation [2]) for the S_NAr reaction of 1-fluoro-4-nitrobenzene. T=25°C. [FNB]=1.5×10⁻⁴M. (•) [G4]=0M; (•) [G4]=0.10M; (•) [G4]=0.20M and (□) [G4]=0.30M.

Figure S-23. Influence of *n*-butylamine concentration on $k_{obs}/[BuNH_2]$ (Equation [2]) for the S_NAr reaction of 1-fluoro-4-nitrobenzene. T=25°C. [FNB]=1.5×10⁻⁴M. (•) [G5]=0M; (•) [G5]=0.10M; (•) [G5]=0.20M and (□) [G5]=0.30M.

Figure S-24. Influence of *n*-butylamine concentration on $k_{obs}/[BuNH_2]$ (Equation [2]) for the S_N Ar reaction of 1-fluoro-4-nitrobenzene. T=25°C. [FNB]=1.5×10⁻⁴M. (•) [18C6]=0M; (•) [18C6]=0.10M; (•) [18C6]=0.20M; (□) [18C6]=0.30M and (▲) [18C6]=0.51M.

Figure S-25. Influence of G5 concentration on α and β terms (Equation 2) for the *S*_NAr reaction of 1-fluoro-4-nitrobenzene. (•) α and (•) β .

Figure S-26. Influence of 18C6 concentration on α and β terms (Equation 2) for the *S*_NAr reaction of 1-fluoro-4-nitrobenzene. (•) α and (\circ) β .

[BuNH ₂], M	k_{obs} , s ⁻¹
8.07×10 ⁻²	5.48×10 ⁻⁹
1.01×10^{-1}	8.13×10 ⁻⁹
2.02×10^{-1}	2.96×10 ⁻⁸
3.03×10^{-1}	7.77×10 ⁻⁸
5.04×10^{-1}	2.31×10 ⁻⁷
8.33×10 ⁻¹	6.29×10 ⁻⁷

Table S-31. Influence of *n*-butylamine concentration on k_{obs} for the FNB S_NAr in the absence of polyethers. T=25.0°C.

Table S-32. Influence of *n*-butylamine concentration on k_{obs} for the FNB S_N Ar in the presence of polyethers. [G4]=0.10M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
8.33×10 ⁻²	2.68×10 ⁻⁸
2.08×10 ⁻¹	9.54×10 ⁻⁸
3.12×10 ⁻¹	1.74×10 ⁻⁷
5.21×10 ⁻¹	3.72×10 ⁻⁷
8.33×10 ⁻¹	9.01×10 ⁻⁷

Table S-33. Influence of *n*-butylamine concentration on k_{obs} for the FNB S_N Ar in the presence of polyethers. [G4]=0.20M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
8.33×10 ⁻²	5.63×10 ⁻⁸
2.08×10 ⁻¹	1.61×10 ⁻⁷
3.12×10 ⁻¹	2.53×10 ⁻⁷
5.21×10 ⁻¹	5.70×10 ⁻⁷
8.33×10 ⁻¹	1.13×10 ⁻⁶

[BuNH ₂], M	k_{obs} , s ⁻¹
8.33×10 ⁻²	7.11×10 ⁻⁸
2.08×10 ⁻¹	2.13×10 ⁻⁷
3.12×10 ⁻¹	3.69×10 ⁻⁷
5.21×10 ⁻¹	7.41×10 ⁻⁷
8.33×10 ⁻¹	1.57×10 ⁻⁶

Table S-34. Influence of *n*-butylamine concentration on k_{obs} for the FNB S_NAr in the presence of polyethers. [G4]=0.30M; T=25.0°C.

Table S-35. Influence of *n*-butylamine concentration on k_{obs} for the FNB S_N Ar in the presence of polyethers. [G5]=0.10M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
1.04×10 ⁻¹	5.44×10 ⁻⁸
2.08×10 ⁻¹	1.13×10 ⁻⁷
3.12×10 ⁻¹	1.91×10 ⁻⁷
5.21×10 ⁻¹	4.36×10 ⁻⁷
8.33×10 ⁻¹	1.02×10^{-6}

Table S-36. Influence of *n*-butylamine concentration on k_{obs} for the FNB S_N Ar in the presence of polyethers. [G5]=0.20M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
1.04×10 ⁻¹	7.59×10 ⁻⁸
2.08×10^{-1}	1.84×10 ⁻⁷
3.12×10 ⁻¹	3.14×10 ⁻⁷
5.21×10 ⁻¹	5.76×10 ⁻⁷
8.33×10 ⁻¹	1.37×10 ⁻⁶

[BuNH ₂], M	k_{obs} , s ⁻¹
1.04×10 ⁻¹	1.09×10 ⁻⁷
2.08×10^{-1}	2.40×10 ⁻⁷
3.12×10 ⁻¹	4.13×10 ⁻⁷
4.91×10 ⁻¹	7.62×10 ⁻⁷
8.33×10 ⁻¹	1.67×10 ⁻⁶

Table S-37. Influence of *n*-butylamine concentration on k_{obs} for the FNB S_NAr in the presence of polyethers. [G5]=0.30M; T=25.0°C.

Table S-38. Influence of *n*-butylamine concentration on k_{obs} for the FNB S_NAr in the presence of polyethers. [18C6]=0.10M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
8.07×10 ⁻²	2.45×10 ⁻⁸
1.01×10 ⁻¹	3.16×10 ⁻⁸
2.02×10 ⁻¹	7.34×10 ⁻⁸
3.03×10 ⁻¹	1.41×10 ⁻⁷
5.04×10 ⁻¹	3.43×10 ⁻⁷
8.07×10 ⁻¹	8.61×10 ⁻⁷

Table S-39. Influence of *n*-butylamine concentration on k_{obs} for the CDNB S_N Ar in the presence of polyethers. [18C6]=0.20M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
8.33×10 ⁻²	2.49×10 ⁻⁸
1.04×10 ⁻¹	3.45×10 ⁻⁸
2.08×10^{-1}	8.42×10^{-8}
3.12×10 ⁻¹	1.75×10 ⁻⁷
5.21×10 ⁻¹	4.07×10 ⁻⁷
8.33×10 ⁻¹	9.54×10 ⁻⁷

[BuNH ₂], M	k_{obs} , s ⁻¹
8.33×10 ⁻²	3.47×10 ⁻⁸
1.04×10^{-1}	4.80×10 ⁻⁸
2.08×10^{-1}	1.20×10 ⁻⁷
3.12×10 ⁻¹	2.18×10 ⁻⁷
5.21×10 ⁻¹	5.06×10 ⁻⁷
8.33×10 ⁻¹	1.16×10 ⁻⁶

Table S-40. Influence of *n*-butylamine concentration on k_{obs} for the FNB S_NAr in the presence of polyethers. [G5]=0.30M; T=25.0°C.

Table S-41. Influence of *n*-butylamine concentration on k_{obs} for the FNB S_NAr in the presence of polyethers. [18C6]=0.51M; T=25.0°C.

[BuNH ₂], M	k_{obs} , s ⁻¹
8.33×10 ⁻²	6.10×10 ⁻⁸
1.04×10 ⁻¹	7.94×10 ⁻⁸
2.08×10 ⁻¹	1.93×10 ⁻⁷
3.12×10 ⁻¹	3.30×10 ⁻⁷
5.21×10 ⁻¹	7.20×10 ⁻⁷
8.33×10 ⁻¹	1.54×10 ⁻⁶