Electronic Supplementary Information (ESI) for

α-Fe₂O₃ nanoparticles anchored on graphene with 3D quasi-laminated architecture: in situ wet chemistry synthesis and enhanced electrochemical performance for lithium ion batteries

Dezhi Chen,^{a, b} Wei Wei,^a Ruining Wang,^a Jingcao Zhu,^a Lin Guo^a*

Supporting information:

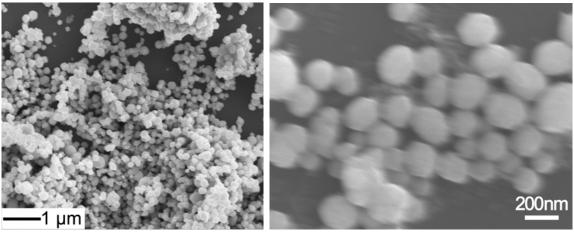


Fig. S1. SEM image of pure α-Fe₂O₃ particle with the same procedure in the absence of GO.

Fig. S2. Digital photo of dried α-Fe₂O₃/graphene composite at 80°C for 24h.

a School of Chemistry and Environment, Beihang University, Beijing, P. R. China, 100191. guolin@buaa.edu.cn; fax:+86-010-82338162; Tel.:+86-010-82338162

^b School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, P. R. China, 330063.

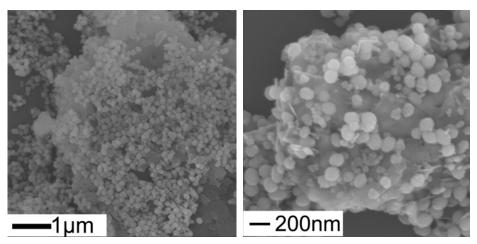


Fig. S3. SEM image of α -Fe₂O₃/graphene composite under the same procedure without PVP.