Supporting Information

Solid state luminescence of copper(I) (pseudo)halide complexes with neocuproine and aminomethylphosphanes derived from morpholine and thiomorpholine.

Radosław Starosta, Urszula K. Komarnicka, Małgorzata Puchalska and Maciej Barys

- **Table S1.** NMR spectra of chalcogenide derivatives of $P(CH_2N(CH_2CH_2)_2S)_3$ (2), $P(CH_2N(CH_2CH_2)_2O)_3$ (1), $P(CH_2N(CH_2CH_2)_2CH_3)_3$ (3) and $P(CH_2N(CH_2CH_2)_2CH_2CH_3)_3$ (4). (oxides: **a**, sulphides: **b**, selenides: **c**)
- $\begin{array}{l} \textbf{Table S2. NMR spectra of } [Cul(dmp)P(CH_2N(CH_2CH_2)_2O)_3] \ \textbf{(11)}, \ [Cul(dmp)P(CH_2N(CH_2CH_2)_2S)_3] \ \textbf{(21)}, \\ [CuNCS(dmp)P(CH_2N(CH_2CH_2)_2O)_3] \ \textbf{(1T)} \ and \ [CuNCS(dmp)P(CH_2N(CH_2CH_2)_2S)_3] \ \textbf{(2T)} \ and \\ ligands: \ P(CH_2N(CH_2CH_2)_2O)_3 \ \textbf{(1)}, \ P(CH_2N(CH_2CH_2)_2S)_3 \ \textbf{(2)} \ and \ dmp \ (CDCI_3, \ 298 \ K) \end{array}$
- Figure S1 Molecular orbitals (and spin density) for 1I (6-31G** except I 6-311G(d,p) and Cu LanL2Dz with Los Alamos ECP)
- Figure S2. Molecular orbitals (and spin density) for 2I(6-31G** except I 6-311G(d,p) and Cu LanL2Dz with Los Alamos ECP)
- Figure S3. Molecular orbitals (and spin density) for 1T (6-31G** except I 6-311G(d,p) and Cu LanL2Dz with Los Alamos ECP)
- Figure S4. Molecular orbitals (and spin density) for 2T (6-31G** except I 6-311G(d,p) and Cu LanL2Dz with Los Alamos ECP)
- Table S3. DFT geometries obtained with a larger basis set (Cu: 6-311+G**; I: 6-311G**; N, P, O and S: 6-31+G**; C, H: 6-31G** for NBO charges: 6-311+G** except I: 6-311G**) -LEFT and a simple basis set: 6-31G(d,p) except I 6-311G** and Cu LanL2Dz with Los Alamos ECP RIGHT of the iodo and isothiocyanato copper(I) complexes with dmp and 1 or 2 in ground singlet and triplet states
- **Figure S5.** Molecular geometries in ground singlet and first triplet states determined with DFT methods (B3Lyp/Cu: 6-311+G*; I: 6-311G**; N, P, O and S: 6-31+G**;C, H: 6-31G**)
- Table S4. UV-Vis transitions (in nanometres) from TDDFT calculations obtained with a simple basis set (6-31G** except I: 6-311G(d,p) and Cu: LanL2Dz with Los Alamos ECP)

Figure S6. Molecular orbitals for the optimized geometries (6-311+G** except I: 6-311G**)

Table S1.

NMR spectra of chalcogenide derivatives of $P(CH_2N(CH_2CH_2)_2S)_3$ (**2**), $P(CH_2N(CH_2CH_2)_2O)_3$ (**1**), $P(CH_2N(CH_2CH_2)_2CH_3)_3$ (**3**) and $P(CH_2N(CH_2CH_2)_2CH_2)_2CH_3)_3$ (**4**). (oxides: **a**, sulphides: **b**, selenides: **c**)

	2 (CDC	l ₃)			2 (ace	tone-d ₆)			1 (acet	one-d ₆)	(a)		3 (ace	one-d ₆)	(a)		4 (ace	tone-d ₆)	(a)	
Compound Type:		2a	2b	2c		2a	2b	2c		1a	1b	1c		3a	3b	3c		4a	4b	4c
σ(Ρ)	-60.30	48.73	44.53	27.62	-61.76	46.46	43.53	27.93 705.97	-62.77	44.22	42.38	26.31	-60.87	45.02	43.26	27.44	-61.12	44.93	43.26	27.35
σ(Se)				-322				-314.8				-303.9				-307.3				-306.4
¹ J(SeP)				701.90)			704.68				709.76	6			707.45	5			707.50
σ(C ¹) (d)	59.41	53.75	57.14	56.90	59.88	54.76	57.95	57.74	59.31	55.01	58.01	57.78	58.69	54.30	57.49	57.27	59.03	54.38	57.61	57.25
¹ J(C ¹ P)	5.6	81.9	66.4	58.9	5.7	81.5	66.40	59.4	4.3	81.2	67.0	59.8	3.5	81.9	67.6	60.3	4.7	82.2	67.6	60.0
$\sigma(C^2)$ (d)	56.25	57.04	57.33	57.33	57.32	58.00	58.22	58.23	56.11	56.83	56.95	56.91	55.21	56.32	56.36	56.34	55.73	56.53	56.62	56.47
³ J(C ² P)	8.0	7.5	7.1	6.6	8.5	7.5	6.6	7.1	8.1	7.4	7.2	6.9	7.9	7.4	6.9	6.8	8.0	7.4	6.9	6.5
σ(C ³) (s)	27.93	27.92	27.86	27.78	28.61	28.57	28.43	28.37	67.57	67.61	67.52	67.45	55.73	56.17	56.02	55.93	53.84	53.93	53.82	53.62
σ(C ⁴) (s)	-	-	-	-	-	-	-	-	-	-	-	-	46.25	46.37	46.30	46.34	52.88	52.89	52.85	52.73
σ(C ⁵)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	12.71	12.67	12.65	12.64
σ(H ¹) (d)	2.59	2.78	2.96	3.11	2.63	2.82	3.01	3.16	2.64	2.82	3.03	3.18	2.58	2.75	2.97	3.12	2.58	2.75	2.97	3.12
² J(H ¹ P)	2.7	6.7	4.7	4.1	3.1	6.8	4.9	4.1	2.9	7.2	5.2	4.6	3.0	7.2	5.4	4.4	2.9	7.1	5.2	4.6
σ(H ²)	2.78	2.87	-	3.00	2.77	2.88	2.98	3.00	2.49	2.61	2.72	2.74	2.50	2.62	2.73	2.74	2.50	2.62	2.73	2.75
σ(H ³)	2.63	2.62	2.64	2.65	2.60	2.62	2.63	2.63	3.58	3.59	3.59	3.60	2.31	2.32	2.34	2.33	2.36	2.37	2.38	2.38
σ(H ⁴) ³ J(H ⁴ H ⁵)	-	-	-	-	-	-	-	-	-	-	-	-	2.15	2.15	2.16	2.15	2.29 7.17	2.29 7.20	2.30 7.20	2.30 7.14
σ(H⁵) ³J(H⁴H⁵)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.99 7.20	0.99 7.20	0.99 7.15	0.99 7.14

(a) data from: R. Starosta, B. Bażanów, W. Barszczewski, Dalton Trans., 2010, 39, 7548-7555

Table S2.

NMR spectra of $[Cul(dmp)P(CH_2N(CH_2CH_2)_2O)_3]$ (11), $[Cul(dmp)P(CH_2N(CH_2CH_2)_2S)_3]$ (21), $[CuNCS(dmp)P(CH_2N(CH_2CH_2)_2O)_3]$ (17) and $[CuNCS(dmp)P(CH_2N(CH_2CH_2)_2S)_3]$ (27) and ligands: $P(CH_2N(CH_2CH_2)_2O)_3$ (1), $P(CH_2N(CH_2CH_2)_2S)_3$ (2) and dmp (CDCl₃, 298 K)

	1 ^(a)	2	dmp ^(a)	1I ^(a)	21	1T	2T
Р	-62.8	-60.3		-28.5*	-29.6*	-29.9*	-29.9*
C ^{NCS}						130.65	Not observed
C ^{1-P}	56.79 (4.3)	59.41 (5.6)		55.8*	55.50*	56.50*	57.10*
C ^{2-P}	55.71 (8.1)	56.25 (8.0)		55.53 (4.7)*	56.98 (5.65)	55.39 (6.59)	56.66 (7.06)
C ^{3-P}	67.57	27.93		66.71	27.81	66.80	27.77
H ^{1P}	2.64 (2.95)	2.59 (2.7)		2.88	2.86	2.74*	2.74
H^{2P}	2.49	2.78		2.52	2.74	2.44*	2.79
H ^{3P}	3.58	2.63		3.48	2.39	3.44*	2.55
C ^{2,9}			159.07	159.14	159.09	158.58	158.69
C ^{3,8}			123.29	124.92	125.00	124.89	125.05
C ^{4,7}			136.07	136.59	136.66	136.69	136.79
C ^{5,6}			125.22	125.41	125.48	125.42	125.55
C ^{11,12}			145.03	142.88	142.87	142.74	142.84
C ^{13,14}			126.58	127.09	127.13	126.95	127.07
C ^{15,16}			25.64	27.60	27.66	27.10	27.19
H ^{3,8}			7.42 (8.16)	7.64 (8.16)	7.63 (8.35)	7.62 (8.16)	7.68 (8.16)
H ^{4,7}			8.04 (8.16)	8.25 (8.16)	8.24 (8.15)	8.23 (8.16)	8.27 (8.28)
H ^{5,6}			7.62	7.79	7.77	7.73	7.80
H ^{15,16}			2.90	3.24	3.19	3.13	3.13

(a) data from: R. Starosta, M. Puchalska, J. Cybińska, M. Barys, A.V. Mudring, Dalton Trans., 2011, 40, 2459-2468

Figure S1

Molecular orbitals (and spin density) for 1I (6-31G** except I - 6-311G(d,p) and Cu - LanL2Dz with Los Alamos ECP)

Ground singlet state

LUMO+1

HOMO-1

HOMO-2

HOMO-3

HOMO-4

HOMO-5

HOMO-6

Optimized triplet state SOMO (181) Spin density

Figure S2.

Molecular orbitals (and spin density) for $2I(6-31G^{**} \text{ except } I - 6-311G(d,p) \text{ and } Cu - LanL2Dz \text{ with Los Alamos ECP})$

Ground singlet state

LUMO+1

LUMO

HOMO-2

HOMO

HOMO-1

HOMO-4

HOMO-5

HOMO-6

Optimized triplet state

Spin density Science

SOMO (170)

I

Figure S3.

Molecular orbitals (and spin density) for 1T (6-31G** except I - 6-311G(d,p) and Cu - LanL2Dz with Los Alamos ECP)

Ground singlet state

HOMO-1

HOMO-4

HOMO-5

HOMO-2

HOMO-6

Optimized triplet state

SOMO (170)

Figure S4.

Molecular orbitals (and spin density) for 2T (6-31G** except I - 6-311G(d,p) and Cu - LanL2Dz with Los Alamos ECP)

Ground singlet state

Spin density

SOMO (182)

Table S3.

DFT geometries obtained with a larger basis set (Cu: $6-311+G^{**}$; I: $6-311G^{**}$; N, P, O and S: $6-31+G^{**}$; C, H: $6-31G^{**}$) -LEFT and a simple basis set: 6-31G(d,p) except I - $6-311G^{**}$ and Cu - LanL2Dz with Los Alamos ECP - RIGHT of the iodo and isothiocyanato copper(I) complexes with dmp and **1** or **2** in ground singlet and triplet states

	Cu: 6-31 6-31+G**	1+G**; I: 6-3 '; C, H: 6-31	11G** N, P, (G*	O and S:	C, H, N, F Cu: LanL2	C, H, N, P, O, S: 6-31G**; I: 6-311G**; Cu: LanL2Dz with Los Alamos ECP				
	11	21	1T	2T	1I ^[a]	21	1T	2T		
¹ A ₁										
Cu-P	2.3052	2.3018	2.2995	2.3012	2.3515	2.3498	2.3509	2.3461		
Cu-I(N)	2.6736	2.6742	1.9622	1.9609	2.6775	2.6812	1.9918	1.9916		
N-C			1.1855	1.1855			1.1870	1.1868		
C-S			1.6343	1.6341			1.6334	1.6338		
P-Cu-I(N)	110.48	110.27	113.75	116.48	110.76	110.16	112.02	114.93		
Cu-N-C			177.45	177.32			175.50	172.78		
N-C-S			179.32	179.45			179.06	179.19		
S4	57.55	57.21	56.53	57.07	56.49	56.06	54.48	54.36		
α	86.45	86.02	83.76	84.69	86.76	85.76	84.04	85.16		
β	141.92	142.22	132.51	129.40	143.24	143.91	132.67	131.17		
Ŷ	107.58	107.51	113.77	114.13	106.02	105.93	115.31	113.90		
β-γ	34.34	34.71	18.74	15.27	37.22	37.98	17.36	17.27		
³ A ₁										
Cu-P	2.5000	2.5185	2.5271	2.5491	2.5018	2.5136	2.6022	2.6213		
Cu-I(N)	2.6271	2.6149	1.9074	1.9075	2.6658	2.6626	1.9253	1.9266		
av.(P-Cx)*										
N-C			1.1892	1.1895			1.1912	1.1915		
C-S			1.6169	1.6165			1.6161	1.6159		
P-Cu-I(N)	99.16	99.13	92.05	91.69	97.64	97.72	90.47	90.46		
Cu-N-C			165.59	165.50			162.04	161.38		
N-C-S			179.03	179.01			178.97	179.01		
S4	52.23	53.75	49.77	51.11	49.85	50.86	49.29	50.93		
α	73.94	72.94	67.66	68.36	70.63	70.98	67.06	69.56		
β	133.47	126.85	116.38	119.08	142.95	141.70	114.93	118.75		
Ŷ	127.34	134.01	151.56	149.24	119.44	120.59	154.61	150.83		
β-γ	6.33	-7.16	-35.16	-30.16	23.25	21.11	-39.68	-32.08		

[a] From ref. A32

Figure S5.

Molecular geometries in ground singlet and first triplet states determined with DFT methods (B3Lyp/Cu: 6-311+G*; I: 6-311G**; N, P, O and S: 6-31+G**;C, H: 6-31G**)

9

Table S4.

UV-Vis transitions (in nanometres) from TDDFT calculations obtained with a simple basis set (6-31G** except I: 6-311G(d,p) and Cu: LanL2Dz with Los Alamos ECP)

	[2]			
	1I ^¹	21	1T	2T
First triplet transition	T₁: 565.52	T ₁ : 562.86	T ₁ :674.68	T ₁ :666.24
transition type:	H→L (93%) H1→L (7%)	H→L (91%) H1→L (9%)	H→L (97%) H1→L (3%)	H→L (98%) H1→L (2%)
1 st (edge) singlet trans.	S ₁ : 557.20	S ₁ : 554.45	S ₁ :670.46	S ₁ : 662.88
(oscillator strength)	(0.0021)	(0.0023)	(0.0020)	(0.0012)
transition type:	H→L (100%)	H→L (100%)	H→L (100%)	H→L (100%)
2 nd triplet transition	T ₂ : 551.36	T ₂ : 549.40	T ₂ :656.54	T ₂ :649.67
transition type:	H2→L (11%)	H2→L (15%)	H→L (3%)	H→L (2%)
	H1→L (79%)	H1→L (74%)	H1→L (97%)	H1→L (98%)
1 st intense singlet trans.	S ₄ : 499.78	S ₄ : 498.43	S ₅ : 442.70	S₅: 439.14
(oscillator strength)	(0.0252)	(0.0321)	(0.0225)	(0.0195)
transition type:	H2→L (56%)	H2→L (67%)	H2→L (62%)	H3→L (63%)
	H1→L1 (44%)	H1→L1 (33%)	H4→L (25%)	H5→L (14%)
2 nd intense singlet trans.	S₅: 495.06	S₅: 493.36	S ₆ : 423.42	S ₆ : 416.02
(oscillator strength)	(0.0373)	(0.0310)	(0.0360)	(0.0338)
transition type:	H2→L (41%)	H2→L (30%)	H2→L (29%)	H3→L (27%)
	H1→L1 (59%)	H2→L1 (70%)	H3→L (31%)	H5→L (53%)

[a] From ref. A32; [b] H - HOMO - highest occupied molecular orbital; L -LUMO - lowest unoccupied molecular orbital; H1, H2... - orbitals of lower energy than HOMO (in descending order); L1, L2... - orbitals of higher energy than LUMO (in ascending order); [c]- most calculated transitions are complex, the percentage is given for dominating participation.

1T 21 **2T** 11 L1 L Η H1 T H2 **H3** H5 H4