Unprecedented Directed Oxidative Cross-Coupling of Sulfahydantoins with Aldehydes *via* a Radical Sulfonate-Sulfinate Conversion.

Yoann Aubin,^{*a*} Evelina Colacino,^{*a*} Djamel Bouchouk,^{*a,b*} Isabelle Chataigner,^{*c*} María del Mar Sánchez,^{*a*} Jean Martinez,^{*a*} Georges Dewynter.^{*a*,*}

^{*a*} Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS – UM I-UM II Université de Montpellier II, Place E. Bataillon, 34095 Montpellier Cedex 5, France. E-mail: <u>dewynter@univ-montp2.fr</u>

^b LCOA Groupe de Chimie Bio-Organique, Université Badji Mokhatar, Annaba – Algeria

^c Université de Rouen, COBRA - UMR 6014 CNRS, rue Tesnière, 76728 Mont Saint-Aignan, France.

Experimental (Instrumentation, Analysis and Starting Materials).

All reagents were commercially available and used without any further purification. All reactions were carried out under an atmosphere of dry Argon using anhydrous dichloromethane. Anhydrous triethylamine was obtained by distillation from KOH under Argon. Solvents utilized were of spectroscopic grade. ¹H and ¹³C NMR analyses were performed with Bruker Avance DPX 200 MHz, Bruker Avance AM 300 MHz or Bruker AC-400 MHz and are reported in *ppm* and calibrated using residual undeuterated solvents as an internal reference. Data are reported as: br = broad, s = singlet, d = doublet, t = triplet, q =quartet, qui, quintet, m = multiplet; coupling constant(s) in Hz, integration. The prefix app is occasionally applied when the true signal multiplicity was unresolved. Carbon (¹³C) NMR spectra are reported in ppm (δ) relative to residual CHCl₃ (δ 77.16) unless noted otherwise. Mass spectra (electrospray ionization mode, ESIMS) were recorded on a Micromass (Manchester, UK) Q-TOF quadrupole mass spectrometer fitted with an electrospray interface. The mass spectrometer was calibrated in the positive- and negative-ion ESI mode. The samples were dissolved in a mixture H₂O/CH₃CN (50/50 v/v). Analytical high performance liquid chromatography (HPLC) was performed on a Waters Millenium 717 equipped with an Autosampler, with a variable wavelength diode detector using a CHROMOLITH RP18 column (50 x 4,6 mm), flow 5 mL/min, linear gradient CH₃CN in water 0-100% (+ 0.1% TFA) in 4.5 min. HRMS analyses were performed by IBMM analytical services.

General experimental procedures.

Synthesis of 6 (Two steps).^{1,2}

Step 1: To a solution of chlorosulfonyl isocyanate **5** (22 mL, 0.252 mol) in CH₂Cl₂ (100 mL), was added 2-chloroethanol (17 mL, 0.252 mol) at 0 °C. The mixture was stirred for 30 min at r.t. Then the mixture was added to a solution of Gly-OMe (28 g, 0.222 mol) and NEt₃ (30 mL, 0.222 mol) in CH₂Cl₂ (100 mL) at 0 °C. The mixture was stirred for 1 day at r.t. then a solution of NEt₃ (60 mL, 0.444 mol) in CH₂Cl₂ (60 mL) was added. The organic layer was washed with HCl (0.1 M), water and brine then dried over Na₂SO₄. Solvents were removed under *vacuum* and the resulting residue was purified by silica gel chromatography (gradient: AcOEt/CH₂Cl₂ (v/v), 10/90-30/70) to give *N*-sulfonyloxazolidinone **5a** as a white solid (43.5 g, 82%). M.p. 72-73 °C; ¹H NMR (CDCl₃, 200 MHz): δ (ppm) 4.50-4.28 (m, 2H); 4.10-3.98 (m, 4 H); 3.76 (s, 3 H); HRMS (*m/z*): [M+H]⁺ calculated for C₆H₁₁N₂O₆S 239.0338, found 239.0328.

Step 2: To a solution of the *N*-sulfonyloxazolidinone **5a** (30 g, 126 mmol) in CH₃CN (100 mL), NEt₃ (18 mL, 129 mmol) and benzylamine (14 mL, 128 mmol) were added. The mixture was stirred for 5 h at reflux. The mixture was concentrated then residue was purified by silica gel chromatography (gradient: AcOEt/CH₂Cl₂ (v/v), 0/100-5/95) to give compound **6** as a solid (26.4 g, 81%) M.p.: 41-42 °C; ¹H NMR (CDCl₃, 200 MHz): δ (ppm) 7.33 (m, 5H) 5.02 (*app* t, *J* = 5.7 Hz, 1H); 4.79 (*app* t, *J* = 6.1 Hz, 1H); 4.24 (d, *J* = 6.1 Hz, 2H); 3.80 (d, *J* = 5.7 Hz, 2H); 3.74 (s, 3H); HRMS (*m/z*): [M+H]⁺ calculated for C₁₀H₁₅N₂O₄S 259.0753, found 259.0761.

Synthesis of 7. To a solution of $6^{1,2}$ (5.4 g, 20 mmol) in CH₃CN (400 mL) and *tert*-BuOH (200 mL) was added *tert*-BuOK (3.8 g, 34 mol) at r.t. The resulting suspension was stirred for 1 h 30 at 50 °C then NH₄Cl saturated (50 mL) was added. The mixture was concentrated to about 50 mL. The aqueous layer was extracted with AcOEt (5 times). The combined organic layers were dried over Na₂SO₄. Solvent was removed under *vacuum* and the resulting residue was purified by silica gel chromatography (gradient: AcOEt/CH₂Cl₂ (v/v), 0/100-5/95) to give compound 7¹ as a solid (2.667 g, 53%). M.p.: 147-148 °C; ¹H NMR (CDCl₃, 200 MHz): δ (ppm) 7.46-7.30 (m, 5H); 4,86 (*br* s, 1H); 4.73 (s, 2H); 4.03 (s, 2H); HRMS (*m/z*): [M+H]⁺ calculated for C₉H₁₁N₂O₃S 227.0490, found 227.0493.

Synthesis of 8. To a solution of sulfahydantoin 7 (2.26 g, 10 mmol) in CH_2Cl_2 (40 mL) NEt₃ (2.1 mL, 15 mmol) and MsCl (1.2 mL, 15 mmol) were added at 0 °C. The resulting suspension was stirred for 1 h at 0 °C. NH₄Cl (5 mL) was added dropwise to the mixture. The

aqueous layer was extracted with CH_2CL_2 (3 times). The combined organic layers were washed with NaHCO₃ (1 time) dried over Na₂SO₄. Solvent was removed under *vacuum* and the resulting residue was purified by silica gel chromatography using an AcOEt/CH₂Cl₂ gradient (gradient: AcOEt/CH₂Cl₂ (v/v), 0/100-5/95) to give compound **8** as a white solid (3.038 g, 91%, M.p.: 147-148 °C).

¹H NMR (400 M*Hz*, DMSO-*d*₆): δ (ppm) 7.41-7.36 (m, 4H), 7.35-7.31 (m, 1H), 4.93 (s, 2H), 4.83 (s, 2H), 3.53 (s, 3H); ¹³C NMR (100 M*Hz*, DMSO-*d*₆): δ (ppm) 160.6, 134.0, 128.6, 128.1 (2 signals overlapped), 51.8, 43.6, 39.4; HRMS (*m*/*z*): [M+H]⁺ calculated for C₁₀H₁₃N₂O₅S₂ 305.0266, found 305.0269.

Typical experimental procedure for the radical couplings of 8 with aldehydes (Table 1).

To a solution containing Ms-sulfahydantoin **8** (1.65 mmol, 502 mg) and the suitable aldehyde (1.65 mmol, 502 mg) in CH₂Cl₂ (4 mL), DBU (3.63 mmol, 550 mg) was slowly added (1.82 mmol, 130 mg) at room temperature. The reaction was stirred for 2 hours, then the reaction mixture was quenched with diluted HCl 0,1% (1 time) at 0 °C. The aqueous layer was extracted with CH₂Cl₂ (3 times). The organic layer was dried over anhydrous Na₂SO₄ filtered and concentrated under reduce pressure. The residue was quickly purified by column chromatography on silica gel (3g) (gradient: AcOEt/CH₂Cl₂ (v/v), 5/95-20/80) to afford:

4a as a white solid (Yield: 80%, Mp: 107-108 °C); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.36 (s, 1H), 7.44-7.39 (m, 2H), 7.38-7.31 (m, 3H), 5.38 (*br* s, 1H), 4.76 (*A*B, *J* = 15.3 *Hz*, 1H), 4.69 (*A*B, *J* = 15.3 *Hz*, 1H), 4.45 (*br* s, 1H), 1.29 (s, 3H), 1.22 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 201.4, 164.6, 132.7, 127.8, 127.7, 127.5, 62.6, 49.0, 43.5, 17.7, 16.5; HRMS (*m/z*): [M+H]⁺ calculated for C₁₃H₁₇N₂O₄S 297.0908, found 297.0909.

Major diasteroisomer 4b as a bright white solid (Yield: 45%, Mp: 97-98 °C); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.28 (s, 1H), 7.45-7.40 (m, 2H), 7.37-7.30 (m, 3H), 5.57 (br d, J = 6.7 Hz, 1H), 4.75 (*A*B, J = 15.3 Hz, 1H), 4.69 (*A*B, J = 15.3 Hz, 1H), 4.55 (d, J = 6.8 Hz, 1H), 1.97 (*app* ABX₃, J = 15.0, 7.5 Hz, 1H), 1.78 (*app* ABX₃, J = 15.0, 7.5 Hz, 1H), 1.78 (*app* ABX₃, J = 15.0, 7.5 Hz, 1H), 1.21 (s, 3H), 0.90 (*app* ABX₃, J = 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 203.7, 165.8, 134.0, 128.9, 128.8, 128.6, 61.2, 53.8, 44.5, 26.1, 15.6, 8.3; HRMS (*m*/z): [M+H]⁺ calculated for C₁₄H₁₉N₂O₄S, 311.1066, found 311.1076.

Minor diasteroisomer 4b as a bright white solid (Yield: 24%, Mp: 94-95°C); ¹H NMR (400 MHz, CDCl₃): δ (ppm) 9.49 (s, 1H), 7.42-7.37 (m, 2H), 7.36-7.30 (m, 3H), 5.54 (*br* d, *J* = 4.9 *Hz*, 1H), 4.74 (*A*B, *J* = 15.3 *Hz*, 1H), 4.66 (A*B*, *J* = 15.3 *Hz*, 1H), 4.52 (br d, *J* = 4.9 *Hz*), 1.73 (*app A*BX₃, *J* = 15.0, 7.4 *Hz*, 1H), 1.64 (*app*)

ABX₃, J = 15.1, 7.6 Hz, 1H), 1,16 (s, 3H), 0.86 (*app* ABX₃, J = 15.1, 7.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 202.7, 166.4, 133.8, 129.0, 128.9, 128.7, 63.6, 52.8, 44.8, 26.3, 14.6, 7.9; HRMS (*m*/*z*): [M+H]⁺ calculated for C₁₄H₁₉N₂O₄S, 311.1066, found 311.1068.

4d as a bright white solid (Yield: 58%, Mp: 137-138 °C); ¹H NMR (400 M*Hz*, CDCl₃): δ (ppm) 9.64 (s, 1H), 7.43-7.38 (m, 2H), 7.37-7.30 (m, 3H), 5.27 (d, J = 8.1 Hz, 1H), 4.75 (*A*B, J = 15.3 Hz, 1H), 4.68 (*AB*, J = 15.3 Hz, 1H), 4.30 (d, J = 8.1 Hz, 1H), 1.29 (s, 3H), 1.80-1.30 (m, 10H); ¹³C NMR (100 M*Hz*, CDCl₃): δ (ppm) 205.1, 166.6, 133.9, 128.9 (2 signals overlapped), 128.6, 64.1, 52.1, 44.9, 28.9, 27.3, 24.9, 21.7, 21.6; HRMS (*m/z*): [M+H]⁺ calculated for C₁₆H₂₁N₂O₄S, 337.1220, found 337.1222.

Mixture of diastereoisomers 1:1 4e as a foam (Yield: 85%); ¹H NMR (400 M*Hz*, CDCl₃): δ (ppm) 9.47 (s, 1H), 7.46-7.22 (m, 9H), 7.14-7.10 (m, 1H), 5.66 (*br* d, *J* = 6.0 *Hz*, 1H), 4.89 (d, *J* = 6.1 *Hz*, 1H), 4.70 (*A*B, *J* = 15.3 *Hz*, 1H), 4.63 (*A*B, *J* = 15.3 *Hz*, 1H), 1,75 (s, 3H); δ (ppm) 9.26 (s, 1H), 7.46-7.22 (m, 9H), 7.14-7.10 (m, 1H), 5.79 (*br* d, *J* = 6.5 Hz, 1H), 4.93 (d, *J* = 6.6 *Hz*, 1H), 4.59 (*A*B, *J* = 15.5 *Hz*, 1H), 4.54 (*A*B, *J* = 15.5 *Hz*, 1H), 1,67 (s, 3H); ¹³C NMR (100 M*Hz*, CDCl₃): δ (ppm) 199.2, 198.5, 164.9, 164.7, 133.7, 133.4, 133.3, 129.1, 129.0, 128.7 (3 signals overlapped), 128.6, 128.5, 128.4, 128.3 (2 signals overlapped), 128.1, 127.9, 64.0, 63.8, 57.4, 57.2, 44.2, 43.8, 15.7, 13.6; HRMS (*m*/*z*): [M+H]⁺ calculated for C₁₈H₁₉N₂O₄S, 359.1066, found 359.1060.

15: white solid (Mp. 222-224°C) ¹H NMR (300 M*Hz*, DMSO-*d*₆): δ (ppm) 9.25 (*br* s, 2H), 7.40-7.28 (m, 10H), 5.01 (s, 2H), 4.74 (*A*B, *J* = 16.1 *Hz*, 2H), 4.67 (*A*B, *J* = 16.1 *Hz*, 2H), ¹³C NMR (75 M*Hz*, DMSO-*d*₆): δ (ppm) 165.21, 134.67, 128.42, 127.87, 127.77, 60.47, 43.47; HRMS (*m*/*z*): [M+H]⁺ calculated for C₁₈H₁₉N₄O₆S₂, 451.0746, found 451.0754.

Synthesis of 16. To a solution of aldehyde 4a (36 mg, 0.12 mmol) in THF (4 mL) and H₂O (0.5 mL) NaBH₄ (46 mg, 1.21 mmol) was added. at 0 °C. The resulting suspension was stirred overnight at r.t., saturated NH₄Cl (0.5 mL) was added dropwise to the mixture, then evaporated. The residue was diluted with water and extracted with CH_2Cl_2 (3 times). The combined organic layers were dried over Na₂SO₄. Solvent was removed under vacuum and the resulting residue was purified by silica gel chromatography to give compound 16 (21 mg, 63%).

Synthesis of 17. The aldehyde **4a** (75 mg, 0,25 mmol) was placed in a flask with 5 mL of *tert*-butyl alcohol to which was added a solution of 2-methyl-2-butene (400 μ L, 3.75 mmol) in THF (2 mL) followed by a solution of sodium hypochlorite (0.203 mg, 2.25 mmol) and monobasic sodium phosphate (234 mg, 1.5 mmol) in 2.5 mL of water.^{2,3} As the oxidant was added the solution became bright yellow. The reaction was stirred overnight at r.t., changing from yellow to colorless. It was then concentrated under *vacuum*, diluted with saturated NaHCO₃, and extracted once with hexane. The aqueous phase was then acidified with 2 M HCl and extracted with AcOEt (3 times). The combined organic layers then dried over Na₂SO₄. The product was concentrated and the residue was purified by column chromatography on silica gel to afford affording the acid **17** as a solid (44 mg, 56%).

¹H NMR (400 M*Hz*, DMSO-*d*₆): δ (ppm) 7.41 (d, J = 7.1 Hz, 2H), 7.32 (m, 2H), 7.28 (t, J = 7.2 Hz, 1H), 4.72 (*A*B, J = 15.6 Hz, 1H), 4.66 (*AB*, J = 15.6 Hz, 1H), 4;59 (s, 1H), 1.27 (s, 3H), 1.27 (s, 3H); ¹³C NMR (100 M*Hz*, MeOD): δ (ppm) 168.55, 158.67, 126.68, 120.12, 120.01, 119.57, 57.37, 37.83, 35.49, 13.22, 11.62; HRMS (*m*/*z*): [M+H]⁺ calculated for C₁₃H₁₇N₂O₅S, 313.0858, found 313.0868.

DFT calculations.

Enolate A

1	6	0	1.944181	0.656037	1.409232
2	7	0	1.003603	0.718485	0.265217
3	16	0	0.192461	- 0.752131	0.196252
4	7	0	0.336173	- 1.025916	1.895794
5	6	0	1.516299	- 0.320952	2.300942
6	6	0	1.457484	1.308952	- 0.996967
7	8	0	0.955187	- 1.788367	- 0.514955
8	8	0	- 1.205273	- 0.555236	- 0.210045
9	16	0	- 1.152173	- 0.712743	2.882722
10	8	0	- 2.206642	- 1.628346	2.415729
11	8	0	2.944280	1.406600	1.404895
12	8	0	- 0.656003	- 0.851948	4.263733
13	6	0	- 1.659188	1.006304	2.644326
14	1	0	2.197591	0.686035	- 1.512434

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012

0
~

15	1	0	0.597321	1.478608	- 1.648315
16	1	0	1.915532	2.266934	- 0.750294
17	1	0	- 2.405256	1.219841	3.411990
18	1	0	- 0.773581	1.629035	2.779918
19	1	0	- 2.072251	1.101897	1.641549
20	1	0	2.084238	- 0.698775	3.136465

Transformation A to B :

TS1	
de de de	$E_e = -1438.661946$ a.u. (freq = -127.0728) (ΔEe [‡] = 0.07 kcal.mol ⁻¹) $E^\circ = -1438.532260$ a.u., H = -1438.518048 a.u., G = -1438.572125 a.u.

1	6 0.000002748	- 0.00000013	0.000003723
2	6 - 0.00000030	0.000005037	- 0.000008790
<mark>3</mark>	7 - 0.000002880	0.000004994	0.000001855
<mark>4</mark>	0.000002459	0.000002738	- 0.000008096
<mark>5</mark>	7 0.00000996	- 0.000001132	- 0.000000762
<mark>6</mark>	8 - 0.000000489	0.000005541	- 0.00000627
7	<mark>6 0.00000865</mark>	0.000006952	- 0.00000877
<mark>8</mark>	8 - 0.000001261	- 0.000005802	- 0.000009356
<mark>9</mark>	8 0.00000163	- 0.000001644	- 0.000001502
10	16 - 0.000001089	- 0.000006173	0.000002253
11	6 - 0.00000836	- 0.000003534	0.000004598
12	8 - 0.000002511	- 0.000011166	0.000001839
13	8 0.000001845	- 0.000009231	0.000003485
14	1 0.00000255	0.000008399	- 0.000006336
15	1 0.00000868	0.000007928	- 0.000000697
<u>16</u>	1 0.00000786	0.000009796	0.00000420
17	1 - 0.00000070	- 0.000002290	- 0.000003504
18	1 - 0.00000793	- 0.000003521	0.000006430
<mark>19</mark>	1 0.00000058	- 0.000005486	0.000008883
20	1 - 0.000001082	- 0.000001394	0.00007061

Intermediate

 $E_e = -1438.701743 \text{ a.u.} (-24.90 \text{ kcal.mol-1})$

_	
_	

1	7	- 0.404344	- 0.786492	- 0.204678
2	<mark>6</mark>	- 0.440022	0.4772710	0.0236580
<mark>3</mark>	<mark>6</mark>	- 1.802873	1.1092320	0.2328250
4	7	0.1225390	- 2.745718	0.1302370
5	<mark>16</mark>	- 2.016798	- 1.389224	- 0.247304
<mark>6</mark>	<mark>8</mark>	- 2.007316	2.2890540	0.4661750
7	<mark>6</mark>	- 4.189532	0.3007120	0.2654860
<mark>8</mark>	<mark>6</mark>	- 4.189532	0.3007120	0.2654860
<mark>9</mark>	<mark>8</mark>	- 2.359106	- 1.789977	<mark>- 1.608587</mark>
0	<mark>8</mark>	- 2.235126	- 2.328529	0.8572500
.1	<mark>16</mark>	3.4139320	0.6407630	- 0.103747
2	<mark>8</mark>	2.3632100	1.7792480	0.0368180
.3	<mark>6</mark>	3.5774730	0.0978270	1.6461150
4	<mark>8</mark>	4.8181340	1.2010570	- 0.386739
.5	1	- 4.692348	0.0734490	- 0.678618
.6	1	<mark>- 4.569156</mark>	- 0.344226	1.0618430
.7	1	- 4.354617	1.3459080	0.5291380
8	1	3.9926270	0.9386260	<mark>2.211975</mark> 0
9	1	2.5917030	- 0.175639	2.0335250
20	1	4.2510990	- 0.764843	1.6718500
21	1	0 4928280	1.0623580	0.0834080

TS2

Ee = - 1438.704913 a.u.	. (freq = -112.4924) (-26.89 kcal.mol-1)
$E^\circ = -1438.575584$ a.u.	
H = -1438.560516 a.u.	
G = -1438.618619 a.u.	

1	6 - 0.00000877	0.000001004	0.00000387
2	6 0.000001034	- 0.000001745	- 0.000000562
<mark>3</mark>	7 - 0.000003227	0.000004802	0.000003047
<mark>4</mark>	16 - 0.00000303	- 0.000001196	0.000001587
<mark>5</mark>	7 - 0.000002709	0.00000209	0.000002597
<mark>6</mark>	8 - 0.00000929	- 0.000002319	- 0.000000697
7	6 - 0.000002290	- 0.000002289	- 0.000001373
<mark>8</mark>	8 - 0.000003005	0.000000593	0.000001013
<mark>9</mark>	8 0.000000115	0.00000586	0.000001269
<mark>10</mark>	16 0.00000407	- 0.000004338	0.000000402
11	6 0.000002227	0.00000909	0.00000286
12	8 0.000003373	0.00000448	- 0.000001962

Sulfinate **B**

$E_e = -1438.714253 a.u.$
$E^{\circ} = -1438.583216 a.u.$
H = -1438.568152 a.u.
G = -1438.627017 a.u.

1	7	0	0.565121	0.813285	- 0.418716
2	6	0	0.221436	- 0.097871	0.610891
3	6	0	1.234187	- 0.009908	1.782495
4	7	0	2.319340	0.682458	1.354674
5	16	0	2.111923	1.168437	- 0.324988
6	8	0	1.072317	- 0.502649	2.896817
7	6	0	3.561194	0.852932	2.090474
8	8	0	3.066025	0.347423	- 1.114308
9	8	0	2.376207	2.621143	- 0.419662
10	16	0	- 0.876657	- 2.047048	- 0.852864
11	8	0	- 2.038836	- 2.614597	- 0.071989
12	6	0	0.112846	- 3.479698	- 1.375406
13	8	0	0.308125	- 1.537930	0.235805
14	1	0	4.381763	0.342678	1.577002
15	1	0	3.800848	1.914518	2.193272
16	1	0	3.422224	0.412788	3.079800
17	1	0	- 0.795919	0.079010	0.971529
18	1	0	0.371492	- 4.057422	- 0.485326
19	1	0	- 0.511471	- 4.066528	- 2.05214
20	1	0	1.007633	- 3.121630	- 1.887479

Radical C

a.u.
a.u
a.u
a.u
, ,

1	7	0	2.415985	- 0.464554	0.469736
2	16	0	1.293498	- 0.427744	1.753788

3	7	0	0.109428	0.372187	0.947376
4	6	0	0.613029	0.769361	- 0.258933
5	6	0	1.942797	0.357265	- 0.587846
6	8	0	1.853887	0.347885	2.888660
7	8	0	0.891264	- 1.806176	2.114816
8	8	0	2.629085	0.609992	- 1.601475
9	6	0	3.825975	- 0.755344	0.687234
10	1	0	4.311338	0.007075	1.307940
11	1	0	3.937628	- 1.734282	1.159382
12	1	0	4.302846	- 0.775372	- 0.294273
13	1	0	- 0.004452	1.353679	- 0.929798

Aldehyde **D**

9	$E_e = -153.851001 a.u.$
	E° = - 153.795581 a.u.
	H = - 153.790731 a.u.
0	G = -153.820563 a.u.

1	6	0	0.017317	- 0 006586	- 0.032058
2	6	0	0.01/51/	0.122145	1 4(0070
2	0	0	0.056/86	- 0.133145	1.4608/8
3	8	0	0.816261	0.481837	2.191195
4	1	0	- 0.670648	- 0.845411	1.901067
5	1	0	- 0.988324	0.305080	- 0.341090
6	1	0	0.760222	0.707948	- 0.391756
7	1	0	0.190242	- 0.992022	- 0.482377

Radical E

_	$E_e = -153.192383 a.u.$
	$E^\circ = -153.149650 a.u.$
	H = -153.145188 a.u.
0	G = -153.174575 a.u.

1	6	0	0.066787	- 0.019576	- 0.059231
2	6	0	- 0.140743	- 0.276090	1.326458
3	8	0	1.172845	- 0.158989	- 0.618163
4	1	0	- 0.803648	0.317203	- 0.647245
5	1	0	- 1.119801	- 0.142509	1.774482
6	1	0	0.688033	- 0.609204	1.943537

	$E_e = -1003.439493 a.u.$
P	$E^\circ = -1003.307457$ a.u.
	H = -1003.294376 a.u.
	G = -1003.347325 a.u.

1	6	0	2.079268	1.513532	- 0.291606
2	7	0	0.896845	0.886036	- 0.496565
3	16	0	0.667186	- 0.385813	0.706051
4	7	0	1.829879	0.050456	1.667133
5	6	0	2.731941	0.982792	0.995767
6	6	0	0.071351	1.012741	- 1.686317
7	8	0	0.810973	- 1.665684	- 0.047478
8	8	0	- 0.691856	- 0.236732	1.287064
9	6	0	4.117819	0.371181	0.667799
10	6	0	5.129609	1.369178	0.173564
11	8	0	5.934224	1.151585	- 0.718800
12	8	0	2.587637	2.373135	- 1.020198
13	1	0	0.117627	0.097549	- 2.284745
14	1	0	- 0.966357	1.210292	- 1.405806
15	1	0	0.456911	1.849478	- 2.272214
16	1	0	2.895193	1.852925	1.647677
17	1	0	4.510486	- 0.032807	1.612137
18	1	0	4.035077	- 0.459324	- 0.039730
19	1	0	5.147768	2.342148	0.704695

$E_e = -1592.504607 a.u.$
$E^{\circ} = -1592.313435 a.u.$
H = -1592.294986 a.u.
G = -1592.358713 a.u.

1	7	0	1.153105	0.018487	- 0.102230
2	16	0	1.932188	0.832177	1.153384
3	7	0	0.733891	0.393330	2.292063
4	6	0	- 0.534286	- 0.006033	1.587543
5	6	0	- 0.098973	- 0.514200	0.232715
6	8	0	1.936001	2.273984	0.919389
7	8	0	3.216117	0.189437	1.450484
8	16	0	1.201861	- 0.368005	3.779732
9	8	0	- 0.063218	- 0.586663	4.486672
10	6	0	- 1.578935	1.230726	1.440000
11	6	0	- 1.900142	1.740585	2.866313
12	8	0	- 0.721220	- 1.237763	- 0.524886
13	6	0	1.794575	- 0.123059	- 1.410873
14	8	0	2.237901	0.488511	4.362481
15	8	0	- 2.656808	0.861423	0.734370
16	1	0	1.941041	0.856473	- 1.872247
17	1	0	2.750820	- 0.642797	- 1.317160
18	1	0	1.113111	- 0.715952	- 2.021750
19	1	0	- 1.029753	- 0.790552	2.160082
20	1	0	- 0.961399	2.027378	0.951305

21	1	0	- 2.561041	2.608652	2.767148
22	1	0	- 2.435499	0.967610	3.430682
23	1	0	- 1.013817	2.045351	3.433864
24	6	0	1.911085	- 1.973083	3.376387
25	1	0	2.152921	- 2.438310	4.334003
26	1	0	1.159957	- 2.558374	2.844908
27	1	0	2.805408	- 1.812696	2.776275

Radical 12

<i></i>	$E_e = -588.487521 a.u.$
	$E^{\circ} = -588.442724 a.u.$
	H = -588.436965 a.u.
	G = -588.471007 a.u.

1	16	0	0.116327	- 0.334595	- 0.016767
2	8	0	- 0.127166	- 0.145012	1.446644
3	8	0	1.151543	0.494883	- 0.707476
4	6	0	- 1.480407	- 0.044624	- 0.879177
5	1	0	- 1.323398	- 0.270340	- 1.933253
6	1	0	- 2.216846	- 0.706862	- 0.425713
7	1	0	- 1.731031	1.006548	- 0.723762

Sulfinic acid 13

1	16	0	- 0.122750	0.106880	- 0.137201
2	8	0	0.065865	0.089175	1.355531
3	8	0	1.338048	- 0.342830	- 0.876601
4	6	0	- 0.900069	- 1.477909	- 0.560888
5	1	0	- 0.993404	- 1.548515	- 1.646001
6	1	0	- 0.273334	- 2.279083	- 0.162793
7	1	0	- 1.884417	- 1.485866	- 0.089147
8	1	0	1.860728	0.464147	- 1.022889

Energetic diagram for the carbamate (Scheme 2)

References

- (1) G. Dewynter, M. Abdaoui, Z. Regainia, J.L. Montero, *Tetrahedron*, 1996, **52**, 14217-14224.
- (2) D. Bouchouk, E. Colacino, L. Toupet, N. Aouf, J. Martinez, G. Dewynter, *Tetrahedron Lett.*, 2009, **50**, 1100-1104.
- (3) B. S. Bal, W. E. Childers, H. W. Pinnick, Tetrahedron, 1981, 37, 2091-2096.
- (4) S. Jiang, P. Li, C.C. Lai, J.A. Kelley, P.P. Roller J. Org. Chem., 2006, 71, 7307-7314.

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012

f1 (ppm)

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012

Electronic Supplementary Material (ESI) for New Journal of Chemistry
This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012

