## Supporting Information for

Amorphous Array of Poly(*N*-isopropylacrylamide) Brush-Coated Silica Particles for Thermally Tunable Angle-Independent Photonic Band Gap Materials

Yoshie Gotoh,<sup>a</sup> Hiromasa Suzuki,<sup>a</sup> Naomi Kumano,<sup>a</sup> Takahiro Seki,<sup>a</sup> Kiyofumi Katagiri,<sup>b</sup> and Yukikazu Takeoka <sup>a\*</sup>

<sup>a</sup>Department of Molecular Design & Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan E-mail: <u>ytakeoka@apchem.nagoya-u.ac.jp</u>

<sup>b</sup>Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan

\*To whom correspondence should be addressed. E-mail: <u>ytakeoka@apchem.nagoya-u.ac.jp</u>

Table 1S

| ample No. | [M] : [I] : [Cu <sub>1</sub> ] : [L]<br>(M / DMSO) (w/w) | Temperature<br>(°C) | Reaction time<br>(h) | Conversion<br>(%) | $M_{\rm n-theol}/10000$ | M <sub>n-GPC</sub> / 10000 | $M_{\rm w}\!/M_{\rm n}$ |
|-----------|----------------------------------------------------------|---------------------|----------------------|-------------------|-------------------------|----------------------------|-------------------------|
| 1'        | 500 : 1 : 1 : 1<br>(1/2)                                 | 20                  | 5                    | 81                | 4.58                    | 3.77                       | 1.26                    |
| 2'        |                                                          |                     |                      | 63                | 3.56                    | 3.34                       | 1.20                    |
| 3'        |                                                          |                     |                      | 80                | 4.52                    | 3.80                       | 1.24                    |
| 4'        |                                                          |                     |                      | 70                | 3.96                    | 3.58                       | 1.21                    |
| 5'        |                                                          |                     |                      | 85                | 4.80                    | 3.52                       | 1.27                    |
| 6'        |                                                          |                     |                      | 71                | 4.00                    | 3.49                       | 1.26                    |
| 7'        |                                                          |                     |                      | 80                | 4.52                    | 2.85                       | 1.20                    |
| 8'        |                                                          |                     |                      | 77                | 4.35                    | 3.62                       | 1.20                    |
| 9'        |                                                          |                     |                      | 70                | 3.96                    | 4.42                       | 1.24                    |
| 10'       |                                                          |                     |                      | 65                | 3.69                    | 4.26                       | 1.32                    |
| 11'       |                                                          |                     |                      | 84                | 4.75                    | 4.26                       | 1.32                    |
| 12'       |                                                          |                     |                      | 72                | 4.07                    | 3.74                       | 1.24                    |
| 13'       |                                                          |                     |                      | 92                | 5.20                    | 4.09                       | 1.27                    |
| 14'       |                                                          |                     |                      | 70                | 3.96                    | 2.56                       | 1.29                    |
| Ave.      |                                                          |                     |                      | 76                |                         | 3.66                       | 1.25                    |



5-hexen-1-yl 2-chloro-2-methylpropionate



Figure S1. Synthetic route of 6-(2-chloro)propionyloxyhexyltriethoxysilane (CPH-tES).



Figure S2. <sup>1</sup>H NMR spectrum of 5-hexen-1-yl 2-chloro-2-methylpropionate in CDCl<sub>3</sub>.



Figure S3. <sup>1</sup>H NMR spectrum of CPH-tES in CDCl<sub>3</sub>.



Figure S4. Diffuse reflectance FT-IR spectra of bare SiO<sub>2</sub> particle (bare SiPs) and Initiator Coated SiO<sub>2</sub> particle (IC-SiPs).



Figure S5. <sup>1</sup>H-NMR spectra of ATRP reaction solution for NIPA before purification in *d*-DMSO. This data was used to determine the monomer conversion.



Figure S6. GPC traces for free PNIPA of sample 1-4.



Figure S7. FT-IR spectra of bare  $SiO_2$  particle and PNIPA-SiPs with different polymer chain length. The presence of PNIPA in the resulting particles was confirmed by these diffuse reflectance FT-IR spectra.



Figure S8. Thermogravimetric Analysis in air: TG of (a) free PNIPA, (b) bare  $SiO_2$  particle and PNIPA-SiPs of sample 1-4.



|               | <i>M</i> <sub>n</sub> / 10 <sup>4</sup> | M <sub>w</sub> / M <sub>n</sub> |
|---------------|-----------------------------------------|---------------------------------|
| free PNIPA    | 4.61                                    | 1.21                            |
| grafted PNIPA | 4.10                                    | 1.31                            |

Figure S9. GPC chart of free PNIPA and grafted PNIPA.



Figure S10. Plots of  $L_d/L_{c,w}$  versus weight average molecular weight,  $M_w$ .



Figure S11. Temperature dependence of the hydrodynamic diameter for PNIPA-SiPs with PNIPA of  $M_n = 1.41 \times 10^4$ .



A-2-2 50k.tif Print Mag: 25100x @ 51 mm

100 nm HV=200.0kV Direct Mag: 50000x

Figure S12. TEM image of PNIPA-SiP using 207 nm silica particles modified with PNIPA of  $M_n = 25,500$ , and  $M_w/M_n = 1.29$ .



Figure S13. Transmission spectra of the thin membrane of colloidal crystal composed of PNIPA-SiP with 207 nm silica core particle and PNIPA of  $M_n = 2.55 \times 10^4$  measured at various angles at 25° C. This thin membrane was prepared from the ethanol suspension of the PNIPA-SiPs.



Figure S14. Photographs of the thin membrane of colloidal crystal (left) and the amorphous array (right) composed of PNIPA-SiP with 207 nm silica core particle and PNIPA of  $M_n = 2.55 \times 10^4$  measured at various angles at 25° C. Both of them are opaque due to the multiple scattering of light from the presence of disordered portions.