Rhodamine – based bis sulfonamide as sensing probe for Cu^{2+} and Hg^{2+} ions

Kumaresh Ghosh^{*a}, Tanmay Sarkar^a, Asmita Samadder^b, Anisur Rahman Khuda-Bukhsh^b

^aDepartment of Chemistry, University of Kalyani, Kalyani-741235, India. Email: ghosh_k2003@yahoo.co.in, Fax: +913325828282; Tel: +913325828750; ^bDepartment of Zoology, University of Kalyani, Kalyani-741235.

1. Change in absorbance of receptor 1 with various metal ions in MeCN/water (4/1,v/v; 10 μ M tris HCl buffer; pH = 6.8)

Figure 1S. Absorption titration spectra for **1** (c = 2.14 x 10^{-5} M) with (a) Co^{2+} , (b) Zn^{2+} , (c) Ag^{+} , (d) Mg^{2+} , (e) Ni^{2+} , (f) Cd^{2+} , (g) Pb^{2+} , (h) Fe^{2+} in MeCN/water (4/1,v/v; 10 µM tris HCl buffer; pH = 6.8) (in all cases [cation] = 4.18 x 10^{-4} M).

2.Change in emission of receptor 1 with Zn^{2+} , Fe^{2+} , Cd^{2+} , Co^{2+} , Pb^{2+} , Mg^{2+} , Ni $^{2+}$, Ag^+ in MeCN/Water (4/1,v/v; 10 μ M tris HCl buffer; pH 6.8).

Figure 2S. Change in emission of receptor **1** ($c = 2.14 \times 10^{-5}$ M) upon addition of (a) Zn²⁺, (b) Fe²⁺, (c) Cd²⁺, (d) Co²⁺, (e) Pb²⁺, (f) Mg²⁺, (g) Ag⁺, (h) Ni²⁺ in MeCN/water (4/1, v/v; 10 µM tris HCl buffer; pH = 6.8) (in all cases [cation] 4.18 x 10⁻⁴ M) [$\lambda_{exc} = 510$ nm].

3. a) Change in emission of receptor 1 with $Cu(NO_3)_2$ in MeCN/water (4/1,v/v; 10 μ M tris HCl buffer; pH 6.8).

Figure 3S. Change in emission of receptor **1** ($c = 2.14 \text{ x } 10^{-5} \text{ M}$) upon addition of Cu(NO₃)₂ in MeCN/water (4/1, v/v; 10 μ M tris HCl buffer; pH = 6.8) (in all cases [cation] 4.18 x 10⁻⁴ M) [$\lambda_{exc} = 510 \text{ nm}$].

3. b) Change in emission of receptor 1 with Hg(NO₃)₂ in MeCN/water (4/1,v/v; 10 μM tris HCl buffer; pH 6.8)

Figure 4S. Change in emission of receptor 1 ($c = 2.14 \times 10^{-5}$ M) upon addition of Hg(NO₃)₂ in MeCN/water (4/1, v/v; 10 μ M tris HCl buffer; pH = 6.8) ([cation] 4.18 $\times 10^{-4}$ M) [$\lambda_{exc} = 510$ nm].

4. UV Job plots for 1 with Cu^{2+} and Hg^{2+} measured at 556 nm.

Figure 5S. UV Job plot for **1** with (a) Cu^{2+} ; (b) Hg^{2+} in MeCN/Water (4/1,v/v; 10 μ M tris HCl buffer; pH = 6.8) ([H] = [G] = 5 x 10^{-5} M).

5. ¹H NMR of 1 (CDCl₃, 400 MHz):

Figure 6S. ¹H NMR of receptor 1.

6. ¹³C NMR of 1 (CDCl₃, 100 MHz):

Figure 7S. ¹³C NMR of receptor 1.

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012

7. Mass of 1

Figure 8S. FAB mass of receptor 1.

8. Emission and absorption studies of model compound 3 with Cu^{2+} and Hg^{2+} ions.

Figure 9S. Absorption titration spectra for **3** ($c = 2.14 \times 10^{-5} \text{ M}$) with (a) Cu²⁺ and (b) Hg²⁺ ions ([cation] = 4.18 \times 10^{-4} \text{ M}) in MeCN/water (4/1,v/v; 10 μ M tris HCl buffer; pH = 6.8).

Figure 10S: Change in fluorescence spectra of **3** ($c = 2.14 \times 10^{-5}$ M) in MeCN/water (4/1,v/v) 10 μ M tris HCl buffer (pH 6.8) upon addition of Cu²⁺ ($c = 4.18 \times 10^{-4}$ M) ions (a) [$\lambda_{exc} = 270$ nm]; (b)[$\lambda_{exc} = 290$ nm].

Figure 11S: Change in fluorescence spectra of **3** ($c = 2.14 \times 10^{-5}$ M) in MeCN/water (4/1,v/v) 10 μ M tris HCl buffer (pH 6.8) upon addition of Hg²⁺ ($c = 4.18 \times 10^{-4}$ M) ions (a) [$\lambda_{exc} = 270$ nm]; (b)[$\lambda_{exc} = 290$ nm].

9. Change in ¹H NMR of receptor 1 in the presence and absence of Cu²⁺ and Hg²⁺ ions.

Figure 12S. Partial ¹H NMR (400 MHz) of (a) 1 (6.2 x 10^{-3} M); with 1 equiv. amount of (b) Hg(ClO₄)₂ and (c) Cu(ClO₄)₂ in CDCl₃.

10. Test of Reversibility in the complexation.

Figure 13S. Change in (a) Absorption and (b) Fluorescence spectra of copper complex of **1** ($c = 3.15 \times 10^{-5}$ M) in MeCN/water (4/1, v/v; 10 μ M tris HCl buffer, pH 6.8) upon addition of EDA(ethylene diamine) ($c = 2.6 \times 10^{-3}$ M).

Figure 14S. Change in (a) Absorption and (b) Fluorescence spectra of mercury complex of 1 ($c = 3.15 \times 10^{-5}$ M) in MeCN/water (4/1,v/v; 10 μ M tris HCl buffer; pH 6.8) upon addition of EDA(ethylene diamine) ($c = 2.6 \times 10^{-3}$ M).

11. Detection limit for Hg^{2+} ion.

Figure 15S: Change in fluorescence spectra of **1** ($c = 2.14 \times 10^{-5}$ M) in MeCN/water (4/1,v/v) 10 µM tris HCl buffer (pH 6.8) upon addition of² (a) Hg²⁺ ($c = 4.18 \times 10^{-4}$ M); (b)) Hg²⁺ ($c = 4.18 \times 10^{-5}$ M); (c)) Hg²⁺ ($c = 4.18 \times 10^{-6}$ M)

Figure 16S. Emission spectra of Cu-complex of **1** ([**1**] = $2.14 \times 10^{-5} \text{ M}$) in CH₃CN and after addition of water in different proportions.

Partial IR Spectra:

Figure 17S: Partial FT IR (v in cm⁻¹, KBr) Spectra of (a) Receptor 1; (b) $1 + Hg(ClO_4)_2$; (c) $1 + Cu(ClO_4)_2$.

Figure 18S: Partial ¹H NMR (400 MHz) spectra of (a) Receptor 1 (CDCl₃) (b) Receptor 1 after mixing with few drops of D_2O_{-}

12. Synthesis and characterization of model compound 2

Scheme 2. (i) CH₂Cl₂, Et₃N, stirring for 8 h.

Synthesis of N1,N3-dibutylbenzene-1,3-disulfonamide 3:

To a stirred solution of benzene-1, 3-disulfonyl dichloride (0.1 g, 0.363 mmol) in dry CH_2Cl_2 (20 mL) was added butyl amine (0.053 g, 0.727 mmol) dropwise followed by the addition of Et_3N . Stirring was continued for 8 h. After completion of reaction, monitored by TLC, solvent was evaporated off and water was added to the residue. The aqueous layer was extracted with $CHCl_3$ (25 mL x 3) and dried over anhydrous Na_2SO_4 . Purification of the crude mass by silica gel column chromatography using 15% ethyl acetate in petroleum ether as eluent yielded the desired compound **3** (0.100 g, 79%), mp 98 °C.

¹H NMR (400 MHz, CDCl₃): δ 8.42 (s, 1H), 8.07 (d, 2H, J = 4 Hz), 7.69 (t, 1H, J = 8 Hz), 5.12 (t, 2NH, J = 6 Hz), 2.93-2.98 (m, 4H), 1.42-1.49 (m, 4H), 1.24-1.13 (m, 4H), 0.85 (t, 6H, J = 8 Hz). FT IR (v in cm⁻¹, KBr) 3254, 2960, 2934, 1465, 1432, 1322, 1178.