Electronic Supplementary Information (ESI)

A cyanurate gel derived by unusual hydrogen-bonding interaction in binary system

Sung Ho Jung, Hyejin Lee, Sunhong Park and Jong Hwa Jung*

Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 660-701, Korea.

E-mail: jonghwa@gnu.ac.kr

Experimental Section

Preparation of gel 1. Tris(2-carboxyethyl) isocyanurate (1) and 4,4'-bipyridine (2) is dissolved in aqueous solution [200 μ L, 1~5 wt % in H₂O] in vial by heating. Interestingly, it turns into gel-type phase upon cooling, and the gel-like phase is regenerated by heating and cooling process. The gelation state of the material was evaluated by "stable-to-inversion" of the test tube.

Preparation of crystal structure for $1 \cdot (2)_{1.5}$.

A mixture of Tris(2-carboxyethyl) isocyanurate (10 mg, 0.029 mmol) and 4,4'-bipyridine (9 mg, 0.059 mmol) is added in water (5 mL) in a 10 mL vial. The vial was kept at 80 °C for 4h, followed by cooling to room temperature over 6h. The colorless crystals, $1 \cdot (2)_{1.5}$ suitable for X-ray amalysis were obtained.

Reference

- Bruker, APEX2 Version 2009.1-0 Data Collection and Processing Software; Bruker AXS Inc., Madison, Wisconsin, U.S.A. 2008.
- Bruker, SHELXTL-PC Version 6.22 Program for Solution and Refinement of Crystal Structures; Bruker AXS Inc., Madison, Wisconsin, U.S.A. 2001.

Empirical formula	$C_{27}H_{27}N_6O_9$
Fw	579.55
Crystal system	Triclinic
Space group	<i>P</i> -1
Temperature (K)	173(2)
<i>a</i> /Å	8.3257(7)
b/Å	11.2037(9)
c /Å	15.5132(13)
$\alpha / ^{\circ}$	70.668(4)
β /°	75.604(4)
γ /°	84.442(4)
$V/\text{\AA}^3$	1322.42(19)
Ζ	2
$D_{\rm calc}$ / g cm ⁻³	1.455
<i>F</i> (000)	606
μ /mm ⁻¹	0.112
θ range /°	1.43 to 26.50
Reflns collected	27241
Independent reflns	5476
$R_1; wR_2 [I > 2\sigma(I)]$	0.0488, 0.1392
R_1 ; wR_2 (all data)	0.0549,0.1459
$\operatorname{GOF}(F^2)$	1.047

Table S1. Crystal data and structural refinement for $1 \cdot (2)_{1.5}$

D-H···A	D-H(Å)	H…A (Å)	D…A (Å)	D-H…A (deg)	Symmetry –for-A
O5-H5A…N5	0.82	1.91	2.696(5)	160	- <i>x</i> , 1- <i>y</i> , 1- <i>z</i>
O7-H5A ⋯N4	0.82	1.85	2.661(4)	167	1+x, -1+y, z
O8-H5A …N6	0.82	1.80	2.624(1)	174	<i>x</i> , 1+ <i>y</i> , <i>z</i>
C16-H16A…O6	0.93	2.63	3.528(0)	162	x, 1+y, z
C17-H17A…O2	0.93	2.30	3.197(6)	162	x, 1+y, z
C19-H19A…O4	0.93	2.36	3.286(3)	171	<i>x, y, z</i>
C20-H20A…O4	0.93	2.46	3.222(8)	123	-x, 1-y, 1-z
C22-H22A…O6	0.93	2.59	3.516(2)	177	x, 1+y, z
C23-H23A…O1	0.93	2.44	3.306(5)	155	1+x, -1+y, z
C24-H24A…O9	0.93	2.30	3.174(7)	157	1+x, -1+y, z
					-

Table S2. Geometrical parameters of hydrogen bonds in crystal $1 \cdot (2)_{1.5.}$

Fig. S1 Photographs of gels 1 with (a) leq, (b) 2eq and (c) 3eq of 2 in water.

Fig. S2 (A) UV-vis and (B) fluorescence spectra (excitation at λ =380 nm) of (a) sol 1 (9.4 mM) and gel 1 (9.4 mM) and with (b) 1.0 equiv, (c) 2.0 equiv (d) 3.0 equiv, (e) 4.0 equiv and (f) 5.0 equiv of 2 in H₂O. (C) The photograph of (a) sol 1 (9.4 mM) and gel 1 (9.4 mM) and with (b) 1.0 equiv, (c) 2.0 equiv (d) 3.0 equiv, (e) 4.0 equiv and (f) 5.0 equiv of 2 in H₂O by irradiation of UV lamp.

Figure S3. Fluorescence micrograph of gel 1 with 1.0 equiv of 2.

Fig. S4 Powder X-ray diffraction pattern of (a) xerogel **1** with 1.0 equiv of **2** and (b) crystal **1** obtained from 2.0 equivalent of **2**, xerogel **1** with (c) 2.0 and (d) 3.0 equiv of **2**, and (e) free **2** (4,4-bipyridine): *The pattern was originated from non-hydrogen-bonded 4,4-bipyridine

Fig. S5 DSC thermogram of gel 1 with 1.0 eqivalent of 2.

Figure S6. Dynamic oscillatory and steady shear measurements of gel 1 at different concentration of 2 at 25 °C: A) strain sweep at a frequency of 1 rad s⁻¹; B) frequency sweep at a strain of 0.01%; C) time sweep at a strain of 0.01% and frequency of 1 rad s⁻¹; 1: $2=1:1 \equiv : G', \bullet : G''; 1: 2=1:3 \square : G', \circ : G''$.