Synthesis, characterization of the amido-conjugates of 1, 1'-methylenebis(2-naphthol) and the recognition of Cu²⁺ in aqueous acetonitrile

Garima Singh Baghel, Jugun Prakash Chinta and Chebrolu P. Rao*

Bioinorganic Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076, India

cprao@iitb.ac.in

Electronic Supplementary Information

Contents	Page No
S01. Characterization data for $L_1 - L_5$, L_6 and L_7	2
S02. Single crystal XRD structure of L_2	9
S03. Fluorescence titration studies of L_1 - L_7 with metal ions	11
S04. Control fluorescence titration studies	16
S05. Minimum detection limit experiment	16
S06. Absorption titration studies	17
S07. Job's plots	18
S08. Mass spectral studies of L_6 and L_7 with Cu^{2+}	18
S09. Competitive metal ion titrations	19
S10. ¹ H NMR titration studies	20
S11. Computational studies	21

Figure S01(a). Characterization of $L_1(a)$ ¹H NMR, (b) ¹³C NMR and (c) HRMS

Figure S01(b). Characterization of L_2 : (a) ¹H NMR, (b) ¹³C NMR and (c) HRMS

Figure S01(c). Characterization of L_3 : (a) ¹H NMR, (b) ¹³C NMR and (c) HRMS

Figure S01(d). Characterization of L_4 : (a) ¹H NMR, (b) ¹³C NMR and (c) HRMS

Figure S01(e). Characterization of L_5 : (a) ¹H NMR, (b) ¹³C NMR and (c) HRMS

Figure S01(f). Characterization of L_6 : (a) ¹H NMR, (b) ¹³C NMR and (c) HRMS

Figure S01(g). Characterization of L_7 : (a) ¹H NMR, (b) ¹³C NMR and (c) HRMS

S02. Single crystal XRD structure for ligand L_2 .

Table S02(a). Table of bond lengths (Å) and bond angles (°) for ligand L_2 .

O(1)-C(11)	1.402(3)	C(17)-C(18)	1.524(4)	C(10)-H(10)	0.9300
O(1)-C(12)	1.422(3)	C(17)-H(17A)	0.9700	C(12)-C(13)	1.502(3)
O(2)-C(13)	1.239(3)	C(17)-H(17B)	0.9700	C(12)-H(12A)	0.9700
O(3)-C(15)	1.342(4)	C(18)-C(19)	1.491(4)	C(12)-H(12B)	0.9700
O(3)-C(16)	1.450(4)	C(18)-H(18A)	0.9700	C(14)-C(15)	1.512(4)
O(4)-C(15)	1.202(4)	C(18)-H(18B)	0.9700	C(14)-C(17)	1.529(4)
O(5)-C(19)	1.196(3)	C(20)-H(20A)	0.9600	C(14)-H(14)	0.9800
O(6)-C(19)	1.342(3)	C(20)-H(20B)	0.9600	C(16)-H(16A)	0.9600
O(6)-C(20)	1.455(4)	C(20)-H(20C)	0.9600	C(16)-H(16B)	0.9600
N(1)-C(13)	1.334(3)	C(7)-C(8)	1.419(4)	C(16)-H(16C)	0.9600
N(1)-C(14)	1.443(3)	C(7)-H(7)	0.9300	C(2)-C(11)	1.368(3)
N(1)-H(1N)	0.83(3)	C(8)-C(9)	1.416(4)	C(2)-C(3)	1.435(4)
C(1)-C(2)#1	1.522(3)	C(9)-C(10)	1.355(4)	C(3)-C(4)	1.422(3)
C(1)-C(2)	1.522(3)	C(9)-H(9)	0.9300	C(3)-C(8)	1.427(4)
C(1)-H(1)	0.95(2)	C(10)-C(11)	1.403(4)	C(4)-C(5)	1.368(4)
C(5)-H(5)	0.9300	C(6)-C(7)	1.365(3)	C(4)-H(4)	0.9300
C(5)-C(6)	1.398(4)	C(6)-H(6)	0.9300		

C(11)-O(1)-C(12)	118.16(19)	H(12A)-C(12)-H(12B	108.3	C(19)-C(18)-H(18B)	109.1
C(15)-O(3)-C(16)	116.1(3)	O(2)-C(13)-N(1)	123.3(3)	C(17)-C(18)-H(18B)	109.1
C(19)-O(6)-C(20)	115.7(2)	O(2)-C(13)-C(12)	120.1(2)	H(18A)-C(18)-H(18B)	107.9
C(13)-N(1)-C(14)	122.7(2)	N(1)-C(13)-C(12)	116.6(2)	O(5)-C(19)-O(6)	122.8(3)
C(13)-N(1)-H(1N)	116.4(18)	N(1)-C(14)-C(15)	111.0(3)	O(5)-C(19)-C(18)	125.6(3)
C(14)-N(1)-H(1N)	120.5(18)	N(1)-C(14)-C(17)	111.2(2)	O(6)-C(19)-C(18)	111.7(2)
C(2)#1-C(1)-C(2)	120.8(3)	C(15)-C(14)-C(17)	110.9(2)	O(6)-C(20)-H(20A)	109.5
C(2)#1-C(1)-H(1)	106.9(13)	N(1)-C(14)-H(14)	107.9	O(6)-C(20)-H(20B)	109.5
C(2)-C(1)-H(1)	108.9(13)	C(15)-C(14)-H(14)	107.9	H(20A)-C(20)-H(20B)	109.5
C(11)-C(2)-C(3)	117.6(2)	C(17)-C(14)-H(14)	107.9	O(6)-C(20)-H(20C)	109.5
C(11)-C(2)-C(1)	120.2(2)	O(4)-C(15)-O(3)	123.6(3)	H(20A)-C(20)-H(20C)	109.5
C(3)-C(2)-C(1)	122.1(2)	O(4)-C(15)-C(14)	126.6(3)	H(20B)-C(20)-H(20C)	109.5
C(4)-C(3)-C(8)	117.4(2)	O(3)-C(15)-C(14)	109.8(3)	C(10)-C(9)-C(8)	120.3(3)
C(4)-C(3)-C(2)	123.1(2)	O(3)-C(16)-H(16A)	109.5	C(10)-C(9)-H(9)	119.8
C(8)-C(3)-C(2)	119.5(2)	O(3)-C(16)-H(16B)	109.5	C(8)-C(9)-H(9)	119.8
C(5)-C(4)-C(3)	121.1(3)	H(16A)-C(16)-H(16B)	109.5	C(9)-C(10)-C(11)	120.0(2)
C(5)-C(4)-H(4)	119.5	O(3)-C(16)-H(16C)	109.5	C(9)-C(10)-H(10)	120.0
C(3)-C(4)-H(4)	119.5	H(16A)-C(16)-H(16C)	109.5	C(11)-C(10)-H(10)	120.0
C(4)-C(5)-C(6)	121.4(2)	H(16B)-C(16)-H(16C)	109.5	C(2)-C(11)-O(1)	118.2(2)
C(4)-C(5)-H(5)	119.3	C(18)-C(17)-C(14)	112.7(2)	C(2)-C(11)-C(10)	123.0(2)
C(6)-C(5)-H(5)	119.3	C(18)-C(17)-H(17A)	109.1	O(1)-C(11)-C(10)	118.5(2)
C(7)-C(6)-C(5)	119.3(3)	C(14)-C(17)-H(17A)	109.1	O(1)-C(12)-C(13)	108.8(2)
C(7)-C(6)-H(6)	120.3	C(18)-C(17)-H(17B)	109.1	O(1)-C(12)-H(12A)	109.9
C(5)-C(6)-H(6)	120.3	C(14)-C(17)-H(17B)	109.1	C(13)-C(12)-H(12A)	109.9
C(6)-C(7)-C(8)	121.3(3)	H(17A)-C(17)-H(17B)	107.8	O(1)-C(12)-H(12B)	109.9
C(6)-C(7)-H(7)	119.4	C(19)-C(18)-C(17)	112.3(2)	C(13)-C(12)-H(12B)	109.9
C(8)-C(7)-H(7)	119.4	C(19)-C(18)-H(18A)	109.1	C(9)-C(8)-C(3)	119.2(2)
C(9)-C(8)-C(7)	121.4(3)	C(17)-C(18)-H(18A)	109.1	C(7)-C(8)-C(3)	119.4(2)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y,-z+2

Table S02(b). Table of torsion angles (°) for ligand L_2 .

C(2)#1-C(1)-C(2)-C(11)	121.9(2)	N(1)-C(14)-C(17)-C(18)	58.9(3)
C(2)#1-C(1)-C(2)-C(3)	-61.6(2)	C(15)-C(14)-C(17)-C(18)	-177.2(2)
C(11)-C(2)-C(3)-C(4)	-179.0(2)	C(14)-C(17)-C(18)-C(19)	-176.6(2)
C(1)-C(2)-C(3)-C(4)	4.4(4)	C(20)-O(6)-C(19)-O(5)	0.5(4)
C(11)-C(2)-C(3)-C(8)	-0.2(4)	C(20)-O(6)-C(19)-C(18)	-179.0(2)
C(1)-C(2)-C(3)-C(8)	-176.8(2)	C(17)-C(18)-C(19)-O(5)	23.0(4)
C(8)-C(3)-C(4)-C(5)	-4.1(4)	C(17)-C(18)-C(19)-O(6)	-157.5(2)
C(2)-C(3)-C(4)-C(5)	174.7(2)	C(12)-O(1)-C(11)-C(10)	-68.3(3)
C(3)-C(4)-C(5)-C(6)	0.9(4)	C(9)-C(10)-C(11)-C(2)	4.5(4)
C(4)-C(5)-C(6)-C(7)	1.9(4)	C(9)-C(10)-C(11)-O(1)	-168.4(2)
C(5)-C(6)-C(7)-C(8)	-1.4(4)	C(11)-O(1)-C(12)-C(13)	160.7(2)
C(6)-C(7)-C(8)-C(9)	178.8(3)	C(14)-N(1)-C(13)-O(2)	-2.5(4)
C(6)-C(7)-C(8)-C(3)	-2.0(4)	C(14)-N(1)-C(13)-C(12)	177.6(2)
C(4)-C(3)-C(8)-C(9)	-176.2(2)	O(1)-C(12)-C(13)-O(2)	155.1(2)
C(2)-C(3)-C(8)-C(9)	5.0(4)	O(1)-C(12)-C(13)-N(1)	-25.0(3)
C(4)-C(3)-C(8)-C(7)	4.6(4)	C(13)-N(1)-C(14)-C(15)	91.6(3)
C(2)-C(3)-C(8)-C(7)	-174.2(2)	C(13)-N(1)-C(14)-C(17)	-144.5(3)
$C(7)-\overline{C(8)-C(9)-C(10)}$	174.0(3)	C(16)-O(3)-C(15)-O(4)	-1.0(5)
C(3)-C(8)-C(9)-C(10)	-5.2(4)	C(16)-O(3)-C(15)-C(14)	179.5(3)

C(8)-C(9)-C(10)-C(11)	0.6(4)	N(1)-C(14)-C(15)-O(4)	12.4(4)
C(3)-C(2)-C(11)-O(1)	168.3(2)	C(17)-C(14)-C(15)-O(4)	-111.7(3)
C(1)-C(2)-C(11)-O(1)	-15.0(3)	N(1)-C(14)-C(15)-O(3)	-168.2(2)
C(3)-C(2)-C(11)-C(10)	-4.6(4)	C(17)-C(14)-C(15)-O(3)	67.7(3)
C(1)-C(2)-C(11)-C(10)	172.1(2)	C(12)-O(1)-C(11)-C(2)	118.4(2)

Symmetry transformations used to generate equivalent atoms: #1 x,-y,-z+2

S03. Fluorescence titration studies of L_1 - L_7 with metal ions

Figure S03(a). Fluorescence spectral traces obtained during the titration of L with Cu^{2+} in aqueous acetonitrile solution (1:1): (a) for L₇; (b) for L₆; (c) for L₅.

Figure S03(b). Plot of relative fluorescence intensity as a function of mole ratio of metal ion to the ligand concentration in different solvent systems. This is done for all the metal ions for which the titrations were carried out. (a) in CH₃OH; (b) in CH₃CN; (c) and CH₃CN: H₂O (1:1). The symbols correspond to, $\blacksquare = Na^+$; $\blacksquare = Mg^{2+}$; $\blacksquare = Ca^{2+}$; $\blacksquare = Fe^{2+}$; $\blacklozenge = Co^{2+}$; $\blacklozenge = Co^{2+}$; $\blacklozenge = Cu^{2+}$ and $\bigstar = Zn^{2+}$.

Figure S03(c). Plot of relative fluorescence intensity as a function of mole ratio of metal ion to the ligand concentration in different solvent systems. (a) in CH₃OH; (b) in CH₃CN; (c) and CH₃CN: H₂O (1:1). The symbols carry same meaning as that given in **Figure S3(b)**.

Figure S03(d). Plot of relative fluorescence intensity as a function of mole ratio of metal ion to the ligand concentration in different solvent systems. (a) in CH₃OH; (b) in CH₃CN; (c) and CH₃CN: H₂O (1:1). The symbols carry same meaning as that given in **Figure S3(b)**.

Figure S03(e). Plot of relative fluorescence intensity as a function of mole ratio of metal ion to the ligand concentration in different solvent systems. (a) in CH_3OH ; (b) in CH_3CN ; (c) and CH_3CN : H_2O (1:1). The symbols carry same meaning as that given in **Figure S3(b)**.

Figure S03(f). Plot of relative fluorescence intensity as a function of mole ratio of metal ion to the ligand concentration in different solvent systems. (a) in CH_3OH ; (b) in CH_3CN ; (c) and CH_3CN : H_2O (1:1). The symbols carry same meaning as that given in **Figure S3(b)**.

Figure S03(g). Plot of relative fluorescence intensity as a function of mole ratio of metal ion to the ligand concentration in different solvent systems. (a) in CH_3OH ; (b) in CH_3CN ; (c) and CH_3CN : H_2O (1:1). The symbols carry same meaning as that given in **Figure S3(b)**.

Figure S03(h). Plot of relative fluorescence intensity as a function of mole ratio of metal ion to the ligand concentration in different solvent systems. (a) in CH₃OH; (b) in CH₃CN; (c) and CH₃CN: H₂O (1:1). The symbols carry same meaning as that given in **Figure S3(b)**.

S04. Control fluorescence titration studies

Figure S04. Plots of relative fluorescence intensity (I/I_0) *vs*. $[M^{n+}]/[Control molecules]$ mole ratios: (a) Titration of benzimidazole by M^{n+} ; (b) Titration of imidazole by M^{n+} ; (c) Titration of indole by M^{n+} ; The symbols correspond to, $\blacksquare = Na^+$; $\blacksquare = Mg^{2+}$; $\blacksquare = Ca^{2+}$; $\blacksquare = Mn^{2+}$; $\blacksquare = Fe^{2+}$; $\blacksquare = Co^{2+}$; $\blacksquare = Cu^{2+}$ and $\bigstar = Zn^{2+}$.

S05. Minimum detection limit experiment

Figure S05(a). Dilution experiments carried out by keeping the $[Cu^{2+}]/[L_6]$ mole ratio at 1:1: (a) in methanol (b) in aqueous acetonitrile.

Figure S05(b). Dilution experiments carried out by keeping the $[Cu^{2+}]/[L_7]$ mole ratio at 1:1: (a) in methanol (b) in aqueous acetonitrile.

S06. Absorption titration studies

Figure S06. Absorption spectral traces for the titration of $L_1 - L_7$ with Cu^{2+} in 50% aqueous acetonitrile: (a) L_1 , (b) L_3 , (c) L_4 , (d) L_5 , (e) L_6 , and (f) L_7 .

Titration of L with Cu^{2+} in 50% aqueous acetonitrile: Plot of absorbance *vs.* mole ratio of [Cu2+]/[L] for (a) 280 nm band, (b) for 330 nm band (c) for 820 nm band. The symbols correspond to, $B = L_1$; $\Lambda = L_2$; $\beta = L_3$; $\Omega = L_4$; $\blacksquare = L_5$; $7 = L_6$; and $O = L_7$.

Figure S07. Job's plots for the titration of **L** with Cu^{2+} in aqueous acetonitrile where n_m is mole fraction of the metal ion added and A is absorbance. The symbols correspond to, $\blacksquare = L_5$, $\blacktriangle = L_6$ and $O = L_7$.

S08. Mass spectral studies of L₆ and L₇ with Cu²⁺

Figure S08. ESI mass spectrum showing the molecular ion peak for 1:1 complex formed between Cu^{2+} and L_6 (a) & Cu^{2+} and L_7 (b).

Figure S09(a). Plots of relative fluorescence intensity (I/I₀): (a) Titration of {L₆ + 5 equivalents Cu^{2+} } by M^{2+} ; (b) Titration of {L₆ + equivalents M^{2+} } by Cu^{2+} . The symbols correspond to, $\blacksquare = Na^+$; $\blacksquare = Mg^{2+}$; $\blacksquare = Ca^{2+}$; $\blacksquare = Cu^{2+}$; $\blacksquare = Zn^{2+}$.

Figure S09(b). Plots of relative fluorescence intensity (I/I₀): (a) Titration of {L₇ + 5 equivalents Cu^{2+} } by M^{2+} ; (b) Titration of {L₇ + equivalents M^{2+} } by Cu^{2+} . The symbols correspond to, $\blacksquare = Na^+$; $\blacksquare = Mg^{2+}$; $\blacksquare = Ca^{2+}$; $\blacksquare = Cu^{2+}$; $\blacksquare = Zn^{2+}$.

\

S10. ¹H NMR titration studies

Figure S10. ¹H NMR spectra measured during the titration of L_7 with different mole ratios of Zn^{2+} (in DMSO-d₆): (a) 0, (b) 0.02, (c) 0.04, (d) 0.08, (e) 0.1 and (f) 0.2.

S11. Computational studies

All the calculations were performed by using Gaussian 03 package. The initial guess for the structure of L_6 was obtained by appropriately modifying the crystal structure of L_2 of *mbn* and optimizing the same in a cascade fashion starting from AM1 \rightarrow HF/3-21G \rightarrow HF/6-31G. In order to bring both the arms on the same side to form a binding core, appropriate changes were made in the dihedral angles of the arms of L_6 to mimic the dipicolyl derivative present in the crystal structure of its copper complex that was reported by us recently, and the model was optimized in HF/6-31G. At this stage, Cu²⁺ was placed away from the binding core (s) of the optimized structure of L_6 so that there are no interactions present between L_6 and Cu²⁺ in the initial guess structure. This optimization has been carried out by DFT methods using B3LYP/3-21g* initially and the resultant structure was further optimized by B3LYP/6-31g*. The resultant structure has been further subjected to the interaction with one acetonitrile molecule. Further optimization carried out in presence of acetonitrile in B3LYP/6-31g*

Ζ	Cartesian Coordinates				
	Х	У	Z		
1	-8.373639000	-1.019379000	1.855630000		
1	-3.299142000	-6.106402000	-3.253501000		
1	-0.874047000	-5.786668000	-3.092272000		
1	-7.479328000	0.679648000	0.330020000		
6	-2.886415000	-5.419693000	-2.540044000		
6	-7.327887000	-0.994857000	1.617927000		
6	-1.540143000	-5.240453000	-2.450897000		
6	-6.830206000	-0.053489000	0.770904000		
1	-6.842412000	-2.683555000	2.863350000		
1	-4.805375000	-4.842760000	-1.749326000		
6	-6.453383000	-1.943743000	2.190179000		
6	-3.744453000	-4.697036000	-1.682786000		
1	1.063022000	-4.731097000	-2.057072000		
1	-5.616916000	1.723641000	-0.818069000		
6	-5.448405000	-0.009343000	0.449622000		
6	-0.983535000	-4.335703000	-1.509907000		
6	0.420909000	-4.172280000	-1.403280000		
6	-4.942681000	0.992673000	-0.415072000		
6	-5.121329000	-1.927826000	1.899768000		

(a) Cartesian coordinates of L_6 as obtained from HF/6-31G level of optimization

Electronic Supplementary Material (ESI) for New Journal of Chemistry	
This journal is \odot The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012	2

6	-3.238232000	-3.815298000	-0.774365000
6	-1.838163000	-3.594833000	-0.657078000
6	-4.561627000	-0.962300000	1.012690000
1	-4.493406000	-2.661462000	2.360082000
1	-3.912154000	-3.279380000	-0.143472000
6	0.942790000	-3.323106000	-0.482986000
6	-3.618470000	1.051379000	-0.705675000
1	-3.222042000	1.845299000	-1.307672000
1	2.002015000	-3.185591000	-0.385418000
6	-1.279013000	-2.678123000	0.298523000
6	-3.166557000	-0.915738000	0.670184000
6	4.918021000	0.624288000	0.850874000
6	1.238713000	4.257335000	-0.280274000
1	5.963104000	0.869067000	0.981775000
1	1.641828000	5.224961000	-0.549578000
1	6.533774000	-4.296606000	0.519024000
1	-2.336455000	7.015271000	-0.398816000
6	0.083677000	-2.588032000	0.365046000
6	-2.745342000	0.087606000	-0.157008000
1	2.646089000	-0.753624000	0.812533000
1	-0.712162000	2.299583000	-0.201937000
8	-2.179625000	4.522169000	-1.518057000
8	6.610602000	-1.592616000	0.264770000
6	-2.140422000	-1.874795000	1.265165000
8	-1.386093000	0.199110000	-0.399592000
8	0.692405000	-1.717507000	1.268990000
6	-1.026216000	4.828056000	-1.314031000
6	5.489017000	-1.819272000	0.689162000
6	-1.626213000	7.160525000	-1.196706000
6	5.629811000	-4.111734000	-0.037599000
1	4.959750000	-4.948942000	0.025796000
1	-1.072870000	8.071870000	-1.058491000
7	3.272158000	-1.096724000	1.507842000
7	-0.320671000	2.526734000	-1.089750000
6	0.148509000	3.871171000	-1.287693000
6	4.673800000	-0.779309000	1.438894000
8	4.903772000	-3.006295000	0.557167000
8	-0.635898000	6.107420000	-1.169217000
1	-2.632353000	-2.572936000	1.926544000
1	-1.469523000	-1.288730000	1.874494000
1	-2.139069000	7.160804000	-2.145086000
1	5.870009000	-3.882661000	-1.063150000
1	-1.604491000	0.008794000	-2.463389000
1	1.242369000	-3.306809000	2.499470000

1	0.589559000	3.912299000	-2.276096000
1	5.060814000	-0.795332000	2.451290000
6	1.325044000	-2.230375000	2.444717000
6	-0.853253000	0.249715000	-1.724329000
6	-0.274988000	1.601985000	-2.050352000
6	2.788322000	-1.873326000	2.493453000
1	0.840138000	-1.801229000	3.309219000
1	-0.061732000	-0.480381000	-1.781804000
8	3.474671000	-2.288243000	3.427733000
8	0.215531000	1.787055000	-3.171855000
1	4.329989000	1.326920000	1.422562000
1	2.028727000	3.519894000	-0.370814000
6	0.737301000	4.292153000	1.123568000
7	-0.431337000	3.871728000	1.526401000
6	-0.481848000	4.074258000	2.898592000
6	0.681024000	4.624004000	3.316714000
7	1.458985000	4.761656000	2.177938000
1	-1.341138000	3.808959000	3.467006000
1	1.020603000	4.922022000	4.280293000
1	2.372415000	5.140689000	2.137328000
6	4.537228000	0.757744000	-0.585455000
7	5.343313000	0.390143000	-1.618640000
6	4.657608000	0.632770000	-2.792295000
6	3.455210000	1.138346000	-2.423163000
7	3.394983000	1.211301000	-1.036580000
1	6.242276000	-0.018380000	-1.521349000
1	5.074366000	0.428927000	-3.750129000
1	2.633289000	1.440616000	-3.028901000

(b) Cartesian coordinates of $[Cu(L_6)]^{2+}$ as obtained from B3LYP/6-31G* level of optimisation.

Ζ	Cartesian coordinates			
	Х	у	Z	
1	9.195723000	-1.116709000	-2.162950000	
1	4.069951000	-3.754648000	4.500673000	
1	1.778346000	-4.344579000	3.762055000	
1	8.536673000	1.007581000	-1.074432000	
6	3.693364000	-3.410043000	3.542174000	
6	8.158539000	-0.932939000	-1.899938000	
6	2.421410000	-3.733184000	3.133420000	
6	7.792246000	0.247627000	-1.297001000	
1	7.470008000	-2.850928000	-2.635966000	
1	5.542440000	-2.422752000	2.985718000	

6	7.177564000	-1.913992000	-2.170924000
6	4.524279000	-2.650486000	2.683147000
1	0.020751000	-4.307760000	2.098396000
1	6.835989000	2.443276000	-0.075838000
6	6.439011000	0.500890000	-0.948151000
6	1.923547000	-3.305537000	1.870223000
6	0.629392000	-3.684822000	1.448326000
6	6.067533000	1.710423000	-0.305851000
6	5.855173000	-1.697450000	-1.848863000
6	4.068672000	-2.209397000	1.460891000
6	2.746573000	-2.496962000	1.003431000
6	5.432071000	-0.482999000	-1.238566000
1	5.133933000	-2.479860000	-2.057403000
1	4.742782000	-1.653004000	0.828788000
6	0.152304000	-3.298541000	0.218001000
6	4.758535000	1.951156000	0.030382000
1	4.476973000	2.869683000	0.537159000
1	-0.833710000	-3.626009000	-0.093480000
6	2.224961000	-2.049762000	-0.257020000
6	4.059136000	-0.215756000	-0.898026000
6	-4.575535000	-1.100484000	-0.603375000
6	-2.032512000	4.888714000	-1.530193000
1	-5.651321000	-0.950084000	-0.470722000
1	-3.112722000	4.984708000	-1.675439000
1	-6.908633000	-5.393594000	-2.116676000
1	-3.542902000	3.498333000	2.784519000
6	0.953789000	-2.493645000	-0.622974000
6	3.769528000	0.990556000	-0.284191000
1	-3.015350000	-3.560386000	-2.407617000
1	0.106264000	4.330246000	-0.297602000
8	-2.647694000	1.983840000	0.755654000
8	-6.100613000	-3.451276000	-0.435343000
6	2.931345000	-1.156506000	-1.286754000
8	2.438889000	1.251107000	0.074978000
8	0.514682000	-2.090154000	-1.876903000
6	-2.615020000	3.130499000	0.306849000
6	-5.296486000	-3.422368000	-1.343905000
6	-4.162655000	3.848890000	1.957868000
6	-5.848676000	-5.633013000	-2.022061000
1	-5.523652000	-6.297408000	-2.820157000
1	-4.629625000	4.802358000	2.195691000
7	-3.062725000	-2.648847000	-1.962441000
7	-0.324839000	3.410108000	-0.533201000
6	-1.741719000	3.508361000	-0.898417000
6	-4.435045000	-2.189990000	-1.687985000

8	-5.059197000	-4.418662000	-2.193262000
8	-3.324021000	4.120465000	0.799193000
1	3.266259000	-1.795084000	-2.110765000
1	2.144142000	-0.537335000	-1.724074000
1	-4.911535000	3.097614000	1.701959000
1	-5.648508000	-6.066779000	-1.040963000
1	2.230630000	2.548174000	-1.533987000
1	-0.719577000	-3.714007000	-2.295212000
1	-1.940741000	2.731229000	-1.645713000
1	-4.852322000	-1.774784000	-2.617317000
6	-0.662649000	-2.622686000	-2.407900000
6	1.882646000	2.413570000	-0.498684000
6	0.367529000	2.273145000	-0.548707000
6	-1.925423000	-1.944507000	-1.851878000
1	-0.630970000	-2.399832000	-3.481544000
1	2.149566000	3.324956000	0.055482000
8	-1.877684000	-0.789239000	-1.391025000
8	-0.161674000	1.143772000	-0.692966000
1	-4.158531000	-0.167685000	-0.976820000
1	-1.581003000	4.881794000	-2.530873000
6	-1.501009000	6.057119000	-0.746992000
7	-0.329403000	6.075993000	-0.128250000

6	-0.188800000	7.341314000	0.399962000
6	-1.285111000	8.099718000	0.087000000
7	-2.113644000	7.267525000	-0.640288000
1	0.687340000	7.627213000	0.963416000
1	-1.547329000	9.123424000	0.305375000
1	-3.005565000	7.528359000	-1.038954000
6	-3.967521000	-1.416503000	0.729439000
7	-4.578462000	-2.193021000	1.651753000
6	-3.791956000	-2.261233000	2.778666000
6	-2.692528000	-1.497979000	2.506501000
7	-2.805864000	-0.977206000	1.229011000
1	-5.450896000	-2.680895000	1.469464000
1	-4.076369000	-2.827916000	3.651554000
1	-1.837561000	-1.289405000	3.127173000
29	-1.482780000	0.161959000	0.338655000
7	-0.161314000	0.125658000	1.868675000
6	0.798565000	0.136578000	2.514173000
6	2.001561000	0.157503000	3.327882000
1	1.856491000	0.810500000	4.194354000
1	2.239263000	-0.856414000	3.666398000
1	2.828403000	0.529627000	2.716023000

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012