Supplementary information (SI)

Bis-silylated terephthalate as a building block precursor for highly fluorescent organic-inorganic hybrid materials

Daniela Pletsch, Fabiano da Silveira Santos, Fabiano Severo Rodembusch, Valter Stefani* and Leandra Franciscato Campo*

1. NMR Characterization

Figure SI1. Description numbers applied to dye 3 to describe de NMR spectra.

Figure SI2. ¹H-NMR of the dye **3** in CDCl₃.

Figure SI3. Description numbers applied to silsesquioxane 5 to describe de NMR spectra.

Figure SI4. ¹H-NMR of the silsesquioxane 5 in CDCl₃.

Figure SI5. ¹³C-NMR of the silsesquioxane **5** in DMSO- d^6 .

Figure SI6. FTIR of the dye 3 in KBr.

Figure SI7. FTIR of the silsesquioxane 5 in KBr.

2. Theoretical calculations

Figure SI8. Theoretical structure of dye 5 optimized at PM3 level.

Atoms	d (Å)	Atoms	D (Å)	Atoms	d (Å)
C(1)-C(2)	1.389	C(19)-C(20)	1.516	C(31)-H(96)	1.111
C(1)-C(6)	1.403	C(19)-H(73)	1.097	C(32)-C(33)	1.506
C(1)-H(108)	1.117	C(19)-H(74)	1.098	C(32)-H(93)	1.110
C(2)-C(3)	1.415	C(19)-H(75)	1.098	C(32)-H(94)	1.115
C(2)-C(14)	1.489	C(20)-H(103)	1.106	C(33)-Si(34)	1.916
C(3)-C(4)	1.399	C(20)-H(104)	1.106	C(33)-H(91)	1.104
C(3)-N(9)	1.432	C(21)-N(22)	1.434	C(33)-H(92)	1.104
C(4)-C(5)	1.396	C(21)-O(35)	1.231	Si(34)-O(39)	1.702
C(4)-H(107)	1.100	N(22)-C(24)	1.486	Si(34)-O(40)	1.701
C(5)-C(6)	1.413	N(22)-H(23)	0.999	Si(34)-O(41)	1.701
C(5)-C(12)	1.487	C(24)-C(25)	1.527	O(37)-C(43)	1.394
C(6)-N(7)	1.425	C(24)-H(101)	1.111	O(38)-C(45)	1.397
N(7)-C(21)	1.422	C(24)-H(102)	1.109	O(39)-C(46)	1.397
N(7)-H(8)	1.014	C(25)-C(26)	1.506	O(40)-C(48)	1.398
N(9)-C(28)	1.427	C(25)-H(99)	1.115	O(41)-C(47)	1.397
N(9)-H(10)	1.013	C(25)-H(100)	1.110	O(42)-C(44)	1.391
O(11)-C(12)	1.355	C(26)-Si(27)	1.916	C(43)-C(52)	1.523
O(11)-C(20)	1.432	C(26)-H(97)	1.104	C(43)-H(89)	1.107
C(12)-O(15)	1.227	C(26)-H(98)	1.104	C(43)-H(90)	1.113
O(13)-C(14)	1.354	Si(27)-O(37)	1.699	C(44)-C(53)	1.523
O(13)-C(18)	1.432	Si(27)-O(38)	1.698	C(44)-H(87)	1.106
C(14)-O(16)	1.226	Si(27)-O(42)	1.702	C(44)-H(88)	1.109
C(17)-C(18)	1.516	C(28)-N(29)	1.437	C(45)-C(54)	1.522
C(17)-H(76)	1.097	C(28)-O(36)	1.227	C(45)-H(85)	1.107
C(17)-H(77)	1.098	N(29)-C(31)	1.485	C(45)-H(86)	1.114
C(17)-H(78)	1.098	N(29)-H(30)	0.999	C(46)-C(51)	1.522
C(18)-H(105)	1.106	C(31)-C(32)	1.527	C(46)-H(83)	1.110
C(18)-H(106)	1.106	C(31)-H(95)	1.109	C(46)-H(84)	1.109
C(47)-C(50)	1.522				

Table SI1. Bond distances from theoretical calculations.

_

C(47)-H(81)	1.109
C(47)-H(82)	1.115
C(48)-C(49)	1.522
C(48)-H(79)	1.109
C(48)-H(80)	1.109
C(49)-H(70)	1.097
C(49)-H(71)	1.098
C(49)-H(72)	1.098
C(50)-H(67)	1.097
C(50)-H(68)	1.098
C(50)-H(69)	1.098
C(51)-H(64)	1.097
C(51)-H(65)	1.098
C(51)-H(66)	1.098
C(52)-H(61)	1.097
C(52)-H(62)	1.099
C(52)-H(63)	1.098
C(53)-H(58)	1.097
C(53)-H(59)	1.104
C(53)-H(60)	1.099
C(54)-H(55)	1.097
C(54)-H(56)	1.098
C(54)-H(57)	1.098

3. X-ray diffraction

Figure SI9. X-ray diffraction patterns of the DPM1.

Figure SI10. X-ray diffraction patterns of the DPM2.

Figure SI11. SEM picture of the DPM1.

Figure SI12. SEM picture of the DPM2.

4. Excitation Spectra

Figure SI13. Excitation spectra of dye **3** in 1,4-dioxane at two different observation wavelengths 536 nm and 488 nm.

Figure SI14. Normalized excitation spectra of dye **3** in 1,4-dioxane at two different observation wavelengths 536 nm and 488 nm.

5. Time Resolved Fluorescence Experiments

Dye	Abs.	Slit	Led	cut-on	Start	End	Channels	Integration	Avonago
		(nm)	(nm)	filter (nm)	(ns)	(ns)		time (s)	Average
3	0.502	0.30	405	400	45	500	250	1	2
5	0.088	0.40	380	380	55	400	172	1	3

Table SI2. Experimental data from the time resolved fluorescence spectroscopy.

Table SI3. Relevant data from the time resolved fluorescence spectroscopy.

Dye	a_1	τ_1 (ns)	a_2	τ_2 (ns)	χ^2
3	0.4596	$15.06 \pm 6.217 e-002$	0.9332	$0.04683 \pm 1.685e + 000$	1.117
5	0.4748	$9.295 \pm 3.637e-001$	-	-	1.033

6. Thermogravimetric Analysis

Figure SI14. (a) TGA and (b) DTG curves of dye 5 and the obtained materials DPM1 and DPM2.