Electronic Supplementary Information

Synthesis, Structure, Circular Dichroism of $\Delta(-)_{546}$ -Di- μ -hydroxotetrakis(S-prolinato)dicobalt(III) Complex and NMR Study of its Interaction with Chiral and non-Chiral Probes in Solutions

Alexander Prikhod´ko,^a* Fabrice Pointillart,^b Stéphane Golhen,^b Konstantin S. Gavrilenko,^c Lahcène Ouahab,^b Sergey V. Kolotilov^d*

10

25

^a Karlsruhe Institute of Technology, Institute of Catalysis Research and Technology (IKFT), Postfach 3640, 76021 Karlsruhe, Germany. E-mail: alexander.prichodko@gmx.de; Fax: +49-0721-608-22244;

¹⁵ ^b Organométalliques: Matériaux et Catalyse, Institut des Sciences Chimiques de Rennes, UMR 6226 CNRS-Universite de Rennes 1 Campus de Beaulieu, 35042 Rennes Cedex, France. E-mail: lahcene.ouahab@univ-rennes1.fr; Fax: +33-0223-23-6840; Tel: +33-0223-23-56-59

^c Research-And-Education Chemicobyologycal Center, National Taras Shevchenko University of Kyiv, Chervonotkackaya str., 61, ₂₀ 03022, Kiev

^d L.V. Pisarzhevskii Institute of PhysicalChemistry of the National Academy of Sciences of the Ukraine, Prospekt Nauki 31, Kiev, 03028, Ukraine. E-mail: svk001@mail.ru; Fax: +38-044-525-6216; Tel: +38-044-525-6661

Table S1. pK values and details of concentrations measurement by NMR for the carboxylic acids used in NMR study of solubility of 1 in CD₃OD.

Acid	pK (according to https://scifinder.cas.org/)	Peaks in ¹ H-NMR spectra used for integration – I(X)
NO ₂ COOH 2-Nitrobenzoic acid	2.19±0.25	7.90-7.67 ppm (m, 4H, C ₆ H ₄)
S-proline and R-proline	2.35±0.20	4.01-3.95 ppm (m, 1H, α)
N-Benzoyl-S-proline	3.68±0.20	7.58-7.42 ppm (m, 5H, C ₆ H ₅)
H О N-Benzoyl-S-alanine	3.86±0.10	7.87-7.84 ppm (m, 2H, C ₆ H ₅)
CI-COOH 4-Chlorobenzoic acid	3.97±0.10	8.02-7.98 ppm (d, 2H, C ₆ H ₄)
H_3C — COOH 4-Methylbenzoic acid	4.37±0.10	7.92-7.89 ppm (d, 2H, C ₆ H ₄)
H_2N — COOH 4-Aminobenzoic acid	4.86±0.10	6.65-6.63 ppm (d, 2H, C ₆ H ₄)

Note: Although pK values, listed in Table S2, were determined for aqueous solutions, we suggest that the tendency for CD_3OD is the same.

Angle	Value, deg	Angle	Value, deg
O(1)-Co(1)-O(2)	80.62(11)	O(2)–Co(2)–O(1)	80.18(10)
O(2)–Co(1)–O(7)	94.01(12)	O(2)–Co(2)–O(5)	88.45(12)
O(1)–Co(1)–O(7)	172.53(13)	O(3)–Co(2)–O(5)	177.30(12)
O(1)-Co(1)-O(9)	94.11(13)	O(2)–Co(2)–O(3)	93.15(12)
O(2)–Co(1)–O(9)	172.12(12)	O(3)–Co(2)–O(1)	89.17(12)
O(7)–Co(1)–O(9)	91.74(12)	O(5)–Co(2)–O(1)	93.25(12)
O(1)–Co(1)–N(2)	88.60(13)	O(2)–Co(2)–N(3)	175.08(14)
O(2)–Co(1)–N(2)	92.47(13)	O(3)–Co(2)–N(3)	86.46(15)
O(7)–Co(1)–N(2)	86.43(13)	O(5)–Co(2)–N(3)	92.12(15)
O(9)–Co(1)–N(2)	93.26(13)	O(1)–Co(2)–N(3)	94.91(14)
O(1)-Co(1)-N(1)	92.44(13)	O(2)–Co(2)–N(4)	92.77(13)
O(2)–Co(1)–N(1)	88.44(12)	O(3)–Co(2)–N(4)	91.91(14)
O(7)–Co(1)–N(1)	92.60(13)	O(5)–Co(2)–N(4)	85.84(13)
O(9)–Co(1)–N(1)	85.92(13)	O(1)–Co(2)–N(4)	172.91(14)
N(2)-Co(1)-N(1)	178.71(13)	N(3)-Co(2)-N(4)	92.15(16)
Co(1)-O(1)-Co(2)	99.11(12)	Co(2)–O(2)–Co(1)	100.09(12)

Table S2. Selected angles in $Co_2(\mu$ -OH)₂(S-Pro)₄·4H₂O.

⁵ Figure S1. Connectivity of the resonances in HH-COSY spectra of **1** in CD₃OD.

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012

Figure S2. HH-COSY and ¹H-NMR spectra of **2** solution in mixture of dimethylsulfoxide- d_6 (80 %) ⁵ and deuterium oxide (20% by volume).

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012

5

A). solution of TMB (0.0094 mol· L^{-1});

B). solution of TMB (0.0094 mol·L⁻¹) and S-proline (0.0425 mol·L⁻¹).

Figure S4. ¹H-NMR spectra in methanol- d_4 :

10

A). solution of TMB (0.0094 mol·L⁻¹) and $\text{Co}_2(\mu\text{-OH})_2(\text{S-prol})_4$ (0.0140 mol·L⁻¹) – saturated at ambient temperature;

B). solution of TMB (0.0094 mol·L⁻¹), S-proline (0.0529 mol·L⁻¹) and $Co_2(\mu$ -OH)_2(S-prol)_4 (0.0254 mol·L⁻¹);

C). solution of TMB (0.0094 mol·L⁻¹), S-proline (0.1247 mol·L⁻¹) and $Co_2(\mu$ -OH)₂(S-prol)₄ (0.0365 mol·L⁻¹).

Figure S5. Representative parts of ¹H NMR spectra showing: A) changes in peaks of S-proline under increasing concentration of **1**; B) changes of the ¹H NMR spectra under increasing concentration of N-¹⁰ benzoyl-S-alanine (the spectrum on the top corresponds to pure N-benzoyl-S-alanine).

Figure S6. ¹H-NMR (A) and HH-COSY (B) spectra showing appearance of additional peaks (presumably belonging to new dinuclear cobalt(III) species); estimated concentrations of the components: $c(TMB) = 0.0094 \text{ mol} \cdot L^{-1}$; $c(1) = 0.07 \text{ mol} \cdot L^{-1}$; $c(N-\text{benzoyl-S-alanine}) = 0.7 \text{ mol} \cdot L^{-1}$. Inset shows the model of possible interactions.

Figure S7. DEPT 135 spectrum, estimated concentrations of the components: $c(TMB) = 0.0094 \text{ mol} \cdot L^{-1}$; $c(1) = 0.07 \text{ mol} \cdot L^{-1}$; $c(N-\text{benzoyl-S-alanine}) = 0.7 \text{ mol} \cdot L^{-1}$). Inset shows the model of possible interactions.

5

Figure S8. H-bonds in crystal structure of $Co_2(\mu$ -OH)₂(S-Pro)₄ (1·4H₂O).