Supplementary Data

Lewis acidity and sugar receptor activity of 3-aminosubstituted benzoxaboroles and their *ortho*-aminomethylphenylboronic acids analogues

Agnieszka Adamczyk-Woźniak,^{*} Krzysztof M. Borys, Izabela D. Madura, Alicja Pawełko, Ewelina Tomecka, Kamil Żukowski

	HOBO	HO, B-O NO	HO_B_O N_S	HO B-O	HO_B_OH	HO _B OH	HO _B OH
	1	2a	2b	2c	3 a	3 b	3c
pK _{a1}	7,391	7,484	7,485	7,469	4,895	5,212	6,298
pK _{a2}	7,387	7,480	7,326	7,376	4,943	5,134	6,371
pK _{a3}		7,219	7,324	7,335	4,965	5,252	6,350
pK _a	7,389	7,394	7,378	7,393	4,934	5,199	6,340
+/-	0,002	0,124	0,075	0,056	0,029	0,049	0,031

Table 1. pK_a values of 1, 2a-c and 3a-c determined in three independent experiments

Figure 1. Spectral data and pK_a determination; a) UV/vis spectral scans for compounds **1**, **3c** and phenylboronic acid (PBA) in solutions at various pH values; b) Normalized spectral scans (Aborbance_{310nm} = 0); c) Spectral differences between solutions of the compounds under study; d) pK_a plots

^{*} Corresponding author at: Department of Physical Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Tel. 48222346147, e-mail: agnieszka@ch.pw.edu.pl

Table 2. The apparent binding constants (K [M⁻¹]) of **1**, **2a-c**, **3a-c** with ARS, fructose, galactose and glucose.

	HOBO	HO, B-O N O	HO, B-O N S	HO_B-O	HO_B_OH	HO_B_OH	HO _B OH
	1	2a	2b	2c	$\mathbf{3a}^1$	$\mathbf{3b}^1$	3 c
$K_{\rm ARS}$	659	1750 ± 105	2556	2315 ± 124	2900 ± 120	720 ± 40	3209 ± 159
$K_{\rm Fru}$	50	395.8±31.7	263	930.1 ± 8.9	120 ± 30	55 ± 4	$449 \pm 12,7$
K_{Gal}	19.1 ± 0.6	78.4 ± 12.1	17.46	58.7 ± 0.2	100 ± 20	5.7 ± 0.8	48.5 ± 15.5
$K_{\rm Glu}$	3.9	10.05 ± 0.17	14.22	33.05 ± 1.65	13 ±5	2.4 ± 0.9	32.10 ± 9.02

Figure 2) The apparent binding constants determination by ARS method; a) Fluorescence spectrum of ARS at different concentrations of boronic acid; b) $1/\Delta I_F$ versus $1/C_{\text{boronic acid}}$; c) Titration of fructose into a solution of ARS and boronic acid where 20% of ARS is in a free form; d) [S]/P versus Q

Equations for binding constant determination:

$$\frac{1}{\Delta I_F} = (\Delta k p_0 K_{eq1})^{-1} \frac{1}{[C_{boronicacid}]} + (\Delta k p_0 I_0)^{-1}$$

The binding constant of ARS-phenylboronic acid (K_{ARS}) is the quotient of the intercept and the slope in a plot of $1/\Delta I_F$ versus $1/C_{phenylboronic acid}$. We compared value of K_{ARS} =1331M⁻¹ (obtained in our lab) to the previously reported^{2,3} (K_{ARS}=1300M⁻¹) to validate our method.

The binding constant of fructose-phenylboronic acid (K_{FRU}) is determined by plotting [S]/P versus Q where:

$$P = [L_0] - \frac{1}{QK_{ARS}} - \frac{[I_0]}{Q+1} \qquad \qquad L_0 - 1 \text{ for al concentration of phenyiboromic acid} \\ I_0 - \text{Total concentration of ARS} \\ Q - \text{ratio of concentration of free ARS to complexed ARS}$$

The binding constant of fructose-phenylboronic acid (K_{FRU}) can be calculated by dividing K_{ARS} by the slope of the plot equation:

$$\frac{[S_0]}{P} = \frac{K_{ARS}}{K_{FRU}}Q + 1 \text{ where } [S_0] - \text{Total concentration of fructose}$$

Table 3.	Selected	geometrical	parameters	for	5a.
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				

bond lengths, Å		bond angles, °			
O1–C12	1.3541(15)	C11-N1-C7	112.16(9)		
C1–B1	1.6230(17)	C11-N1-C8	109.83(9)		
O1–B1	1.5152(15)	C8-N1-C7	112.16(9)		
O3–C10	1.4259(15)	C6C1B1	120.08(10)		
O3–C9	1.4243(15)	C2C1B1	122.68(10)		
O4–B1	1.4580(15)	O1-B1-C1	109.74(9)		
O4–C18	1.4306(15)	O4-B1-O1	111.77(10)		
O2–C13	1.3572(15)	O4-B1-O2	110.21(9)		
O2–B1	1.5102(15)	O4-B1-C1	109.55(9)		
N1-C11	1.4940(15)	O2-B1-O1	103.20(9)		
N1-C7	1.5094(15)	O2-B1-C1	112.27(9)		
N1–C8	1.4969(15)	N1-C7-C2	110.97(9)		
torsion angles, °					
C2C1B1O4	-59.21(14)	C2C1B1O2	178.00(10)		
C1-C2-C7-N1	70.77(13)	C11-N1-C7-C2	68.01(12)		
C11-N1-C8-C9	-55.25(13)	C7-N1-C8-C9	179.30(9)		

	HA	DA	D–HA
N1-H104	1.75(2)	2.6250(13)	157(2)
O5–H5AO2 ⁱ	1.97(2)	2.7940(14)	171(2)
C8–H8BO3 ⁱⁱ	2.46	3.3787(15)	154
C11-H11BO1 ⁱⁱⁱ	2.53	3.3267(15)	138
C17-H17O5	2.56	3.3863(17)	145
C9–H9AO5 ^{iv}	2.57	3.2996(17)	131
C10–H10A <i>Cg1</i> ^{iii a}	2.55	3.3643(13)	139
C18–H18B <i>Cg1</i>	2.62	2.8736(14)	95
C18–H18A $Cg2^{\vee}$	2.80	3.4091(14)	121
C5–H5 $Cg2^{vi}$	2.96	3.8364(13)	154

Table 4. Geometry of intra- and intermolecular interactions in 5a (Å,°).

Symmetry codes: (i) x,-1+y,z; (ii) 1-x,2-y,2-z; (iii) 1/2-x,1/2+y,3/2-z; (iv) 1/2+x,3/2-y,1/2+z; (v) 1-x,2-y,1-z;

(vi) -x,2-y,1-z.

 ${}^{a}Cg1$  and Cg2 denote the gravity centers of the phenyl and catechol ring, respectively.

Figure 3. Packing diagram⁴ of 5a (view along [010] direction). The intermolecular hydrogen bonds are denoted with dashed lines.



1 A. Adamczyk-Woźniak et al., Appl. Organometal. Chem., 2008, 22, 427.

- 2 G. Springsteen and B. Wang, Chem. Commun., 2001, 1608.
- 3 G. Springsteen and B. Wang, Tetrahedron, 2002, 58, 5291.
- 4 L. J. Farrugia, J. Appl. Crystallogr., 1999, 32, 837.