Supporting information

Chiral Couramin-based Fluorescence Sensor for Highly Enantioselective

Recognition of Phenylalaninol

Jiemin Jiao, Xunhua Liu, Xuerong Mao, Junfeng Li, Yixiang Cheng*, Chengjian Zhu**

Key Lab of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China E-mail: <u>yxcheng@nju.edu.cn</u> (Y.-X.Cheng) and <u>cjzhu@nju.edu.cn</u> (C.-J.Zhu)

Contents:

1. Material and Methods

2. Enantioselective Recognition of L1 with phenylalaninol

- 2.1 General procedures
- 2.2 Investigation of solvents
- 2.3 Fluorescence investigation of L1 with phenylalaninol
- 2.4 ¹H NMR studies on the interaction of L1 with (*L*)-phenylalaninol
- 3. Enantioselective Recognition of L1 with other amino alcohols.
 - 3.1 Fluorescence investigation of L1 with phenylglycinol
 - 3.2 Fluorescence spectrum of L1 with alaninol and valinol
- 4. Fluorescence spectrum of L2 with amino alcohols.
- 5. NMR, IR and MS Spectra

1. Material and Methods

NMR spectra were recorded on Bruker-300 spectrometer 300 MHz for ¹H NMR and 75 MHz for ¹³C NMR and reported as parts per million (ppm) from the internal standard TMS. Electrospray ionization mass spectra (ESI-MS) were measured on a Thermo Finnigan LCQ Fleet system. FT-IR spectra were taken on a Nexus 870 FT-IR spectrometer. Fluorescence spectra were obtained from a RF-5310 PC spectrometer. C, H, and N of elemental analyses were performed on an Elementar Vario MICRO analyzer. Specific rotation was determined with a Ruololph Research Analyfical Autopol I. All solvents and reagents were commercially available A.R. grade. All the solvents were dried using standard percedures immediatly before usage.

2. Enantioselective Recognition of L1 with phenylalaninol

2.1 General Procedures

 1.0×10^{-6} mol/L solution of host compounds L1 in different kinds of solvents and 0.01 mol/L solution of (*L*)-/(*D*)-phenylalaninol in THF were freshly prepared for each measurement. The resulting solution was allowed to stand at room temperature for 4 h before the fluorescence measurement.

2.2. Investigation of solvents

Figure S1. Fluorescence spectra of L1 (1.0×10^{-6} mol/L in toluene) with and without (*L*)-/(*D*)-phenylalaninol (1.0×10^{-2} mol/L in THF) at 1:110 molar ratio ($\lambda_{ex} = 337$ nm, $\lambda_{em} = 387$ nm).

Figure S2. Fluorecence spectra of L1 (1.0×10^{-6} mol/L in CH₂Cl₂) with and without (*L*)-/(*D*)-phenylalaninol (1.0×10^{-2} mol/L in THF) at 1:110 molar ratio ($\lambda_{ex} = 338$ nm, ($\lambda_{em} = 409$ nm).

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2012

2.3. Fluorescence investigation of L1 with phenylalaninol

Figure S3. Fluorescence Jobs plot of L1 and (*L*)-phenylalaninol. Total concentration of L1 and (*L*)-phenylalaninol is 5.0×10^{-6} mol/L in THF, measured at $\lambda = 409$ nm.

Figure S4. Relationship between $(I-I_0)^{-1}$ and $[c]^{-1}$. I: fluorescence intensity of **L1** with (*L*)-phenylalaninol; I_0 : fluorescence intensity of **L1** without (*L*)-phenylalaninol; [c]: concentration of (*L*)-phenylalaninol in mixed solution.

		0 0	
Equation	$y = a + b^*x$		
Weight	No Weighting		
Residual Sum of Squares	2.52416E-6		
Pearson's r	0.99933		
Adj. R-Square	0.99848		
		Value	Standard Error
В	Intercept	0.00199	3.4544E-4
	Slope	0.11259	0.00146

Table S1: Parameters of the fitting curve in Figure S4

Figure S5. Fluorescence Jobs plot of **L1** and (*D*)-phenylalaninol. Total concentration of **L1** and (*D*)-phenylalaninol is 5.0×10^{-6} mol/L in THF, measured at $\lambda = 409$ nm.

Figure S6. Relationship between $(I-I_0)^{-1}$ and $[c]^{-1}$. I: fluorescence intensity of **L1** with (*D*)-phenylalaninol; I₀: fluorescence intensity of **L1** without (*D*)-phenylalaninol; [c]: concentration of (*D*)-phenylalaninol in mixed solution.

Equation	$y = a + b^*x$		
Weight	No Weighting		
Residual Sum of	2 51279E A		
Squares	3.312/8E-4		
Pearson's r	0.9986		
Adj. R-Square	0.99686		
		Value	Standard Error
D	Intercept	0.01028	0.00313
D	Slope	4.25758	0.07966

Table S2: Parameters of the fitting curve in Figure S6

2.4 ¹H NMR studies on the interaction of L1 with (*L*)-phenylalaninol

Figure S7. Partial ¹H NMR spectra of L1+(L)-phenylalaninol (in CDCl₃). The total concentration of L1+(L)-phenylalaninol was maintained at 2.0×10⁻³ mol/L

The ¹H NMR spectra of **L1** (1.0×10^{-6} mol/L in THF) were determined as addition of (*L*)-/(*D*)-phenylalaninol (1×10^{-2} mol/L in THF) in different molar ratio, as the following figures. The signals of H of guest compound at $\delta = 3.48(b)$, 3.66(a) are shifted downfield, and δ reached maximum at $\delta = 3.64(b)$, 3.78(a) respectively, while the molar ratio of host/guest is 0.5:0.5. $\Delta_{\delta a} = 0.12$, $\Delta_{\delta b} = 0.16$. Meanwhile hydrogen atom at c position also shifts downfield, demonstrating that hydroxyl and amino groups of guest are engaged in recognition process. In addition, low Δ_{δ} value indicates that the interaction of host and guest molecular is not quite strong, thus high molar ratio of guest is required in recognition process. It can be also observed that the signal of H of imine group in host compound at $\delta = 8.26(d_2)$ is shifted to $8.26(d_1)$ at the 1:1 molar ratio of host/guest, which indicates that imine group of chiral host also interacts with guest through H-bonding.

3. Fluorescence spectrum of L1 with other amino alcohols.

3.1 Fluorescence investigation of L1 with phenylglycinol

Figure S8. Fluorecence spectra of L1 (1.0×10^{-5} mol/L in THF) with and without (*L*)-/(*D*)-phenylglycinol (1.0×10^{-2} mol/L in THF) at 1:110 molar ratio ($\lambda_{ex} = 409$ nm).

Figure S9. Fluorecence enhancement of L1 (1.0×10^{-6} mol/L in THF) with different molar ratio of (L)-/(D)-phenylglycinol (1.0×10^{-2} mol/L in THF), from 1:10 to 1:300, $\lambda_{ex} = 409$ nm.

Figure S10. Fluorescence Jobs plot of **L1** and (*L*)-phenylglycinol. Total concentration of **L1** and (*L*)-phenylglycinol is 5.0×10^{-6} mol/L in THF, measured at $\lambda = 409$ nm.

Figure S11. Relationship between $(I-I_0)^{-1}$ and $[c]^{-1}$. I: fluorescence intensity of **L1** with (*L*)-phenylglycinol; I_0 : fluorescence intensity of **L1** without (*L*)-phenylglycinol; [c]: concentration of (*L*)-phenylglycinol in mixed solution.

		0	
Equation	y = a + b*x		
Weight	No Weighting		
Residual Sum of Squares	1.00657E-4		
Pearson's r	0.99443		
Adj. R-Square	0.9875		
		Value	Standard Error
D	Intercept	0.00389	0.00168
d d	Slope	1.13797	0.04264

Table S3: Paramete	rs of the fitting cur	ve in Figure S10 .

Figure S12. Fluorescence Jobs plot of L1 and (*D*)-phenylglycinol. Total concentration of L1 and (*D*)-phenylglycinol is 5.0×10^{-6} mol/L in THF, measured at $\lambda = 409$ nm.

Figure S13. Relationship between $(I-I_0)^{-1}$ and $[c]^{-1}$. I: fluorescence intensity of **L1** with (*D*)-phenylglycinol; I_0 : fluorescence intensity of **L1** without (*D*)-phenylglycinol; [c]: concentration of (*D*)-phenylglycinol in mixed solution.

		0	
Equation	$y = a + b^*x$		
Weight	No Weighting		
Residual Sum of Squares	2.89999E-4		
Pearson's r	0.98898		
Adj. R-Square	0.97535		
		Value	Standard Error
D	Intercept	0.00427	0.00285
D	Slope	1.36785	0.07238

3.2 Fluorescence spectrum of L1 with alaninol and valinol

Figure S14. Fluorecence spectra of L1 (1.0×10^{-6} mol/L in THF) with and without (*L*)-/(*D*)-alaninol (1.0×10^{-2} mol/L in THF) at 1:110 molar ratio ($\lambda_{ex} = 409$ nm).

Figure S15. Fluorecence spectra of L1 (1.0×10^{-6} mol/L in THF) with and without (*L*)-/(*D*)-valinol(1.0×10^{-2} mol/L in THF) at 1:110 molar ratio ($\lambda_{ex} = 409$ nm).

4. Fluorescence spectrum of L2 with four kinds of amino alcohol.

Figure S16. Fluorecence spectra of L2 (1.0×10^{-6} mol/L in THF) with and without (*L*)-/(*D*)-phenylalaninol (1.0×10^{-2} mol/L in THF) at 1:110 molar ratio ($\lambda_{ex} = 409$ nm).

Figure S17. Fluorecence spectra of L2 (1.0×10^{-6} mol/L in THF) with and without (*L*)-/(*D*)-phenylglycinol (1.0×10^{-2} mol/L in THF) at 1:110 molar ratio ($\lambda_{ex} = 409$ nm).

Figure S18. Fluorecence spectra of L2 (1.0×10^{-6} mol/L in THF) with and without (*L*)-/(*D*)-alaninol (1.0×10^{-2} mol/L in THF) at 1:110 molar ratio ($\lambda_{ex} = 409$ nm).

Figure S19. Fluorecence spectra of L2 (1.0×10^{-6} mol/L in THF) with and without (L)-/(D)-valinol(1.0×10^{-2} mol/L in THF) at 1:110 molar ratio ($\lambda_{ex} = 409$ nm).

5. NMR, IR and MS Spectrum

Figure S21. ¹³C NMR of L1

Page 1/1 Figure S24. IR spectrum of L1

Page 1/1 Figure S25. IR spectrum of L2

Figure S27. MS $[M+1]^+$ spectrum of L1

Figure S29. MS $[M+1]^+$ spectrum of L2