DIAD-mediated metal-free cross dehydrogenative coupling between tertiary amines and α-fluorinated sulfones

Weizhou Huang,^a Chuanfa Ni^a and Jinbo Hu*^a

^a Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling-Ling Road, Shanghai 200032, China Tel: +86-21-54925174; E-mail: jinbohu@sioc.ac.cn

Table of Contents

1. General Information	2
2. Typical procedure for the coupling reaction between tertiary amines and α -fluor	rinated
sulfones	2
3. Coupling reaction between 1f and 2a	6
4. Reductive desulfonylation	8
5. ¹ H, ¹⁹ F and ¹³ C NMR Spectra	10

1. General Information.

Unless otherwise mentioned, solvents and reagents were purchased from commercial sources and used as received. The solvent DMF were distilled from CaH₂ before being used. ¹H, ¹³C and ¹⁹F NMR spectra were recorded on a 400 MHz or 300 MHz NMR spectrometer. ¹H NMR chemical shifts were determined relative to internal (CH₃)₄Si (TMS) at δ 0.0 or to the signal of the residual protonated solvent: CDCl₃ δ 7.26. ¹³C NMR chemical shifts were determined relative to internal TMS at δ 0.0. ¹⁹F NMR chemical shifts were determined relative to CFCl₃ at δ 0.0. Data for ¹H, ¹³C and ¹⁹F NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, br = broad). Melting points were uncorrected. Mass spactra were obtained on a mass spectrometer. High-resolution mass data were recorded on a high-resolution mass spectrometer in the EI mode.

2. Typical procedure for the coupling reaction between tertiary amines and α-fluorinated sulfones (Table 2 and Scheme 5):

To a 25-mL Schlenk tube with *N*,*N*-dimethylcyclohexylamine **1a** (150 μ L, 1.0 mmol), was dropwise added DIAD (230 μ L, 1.1 mmol) in 1–2 minutes at 0 °C. The mixture was stirred in neat for 1 hour at room temperature. Then DMF (3 mL) and fluorobisphenylsulfonylmethane **2a** (157 mg, 0.5 mmol) were successively added. The resulting mixture was stirred at 50 °C for 3 hours. After cooling to room temperature, saturated brine (20 mL) was added and the mixture was extracted with ethyl acetate (15 mL × 3). The combined organic phase was dried with anhydrous MgSO₄ and evaporated to almost dryness under reduced pressure. Purification by flash column

chromatography on silica gel (200–300 mesh) with petroleum ether/ethyl acetate (5:1) as eluent gave product **3aa** (207 mg, 94% yield). In the case of Me₃N (**1c**), a solution of Me₃N (33 w.t.% in ethanol) was used.

N-(2-Fluoro-2,2-bis(phenylsulfonyl)ethyl)-N-methylcyclohexanamine (3aa)

White solid. M.p.: 140–142 °C. IR (KBr): 2935, 2858, 1583, 1447, 1340, 1150, 1080 cm⁻¹. ¹H NMR: δ 7.96 (d, *J* = 7.8 Hz, 4H), 7.69 (t, *J* = 7.2 Hz, 2H), 7.53 (t, *J* = 7.8 Hz, 4H), 3.62 (d, *J* = 24.0 Hz, 2H), 2.19–2.28 (m, 1H), 1.93 (s, 3H), 1.44–1.72 (m, 4H), 0.95–1.14 (m, 6H). ¹⁹F NMR: δ –146.3 (t, *J* = 24.8 Hz, 1F). ¹³C NMR: δ 136.7, 134.8, 130.9 (d, *J* = 1.7 Hz), 128.5, 116.8 (d, *J* = 271.0 Hz), 64.3, 53.6 (d, *J* = 16.1 Hz), 37.0 (d, *J* = 2.9 Hz), 27.6, 26.0, 25.9. MS (ESI, m/z): 440.4 ([M+H]⁺). Anal. Calcd. for C₂₁H₂₆FNO₄S₂: C, 57.38; H, 5.96; N, 3.19; Found: C, 57.49; H, 6.02; N, 3.11.

N-(2-Fluoro-2,2-bis(phenylsulfonyl)ethyl)-N-methylpropan-2-amine (3ba)

White solid. M.p.: 90–92 °C. IR (KBr): 2972, 2866, 1584, 1448, 1335, 1148, 1080 cm⁻¹. ¹H NMR: δ 7.96 (d, J = 7.8 Hz, 4H), 7.69 (t, J = 7.5 Hz, 2H), 7.53 (t, J = 7.8 Hz, 4H), 3.56 (d, J = 24.3 Hz, 2H), 2.70–2.79 (m, 1H), 1.89 (s, 3H), 0.78 (d, J = 6.6 Hz, 6H). ¹⁹F NMR: δ –146.6 (t, J = 24.3 Hz, 1F). ¹³C NMR: δ 136.6, 134.7, 130.8 (d, J = 1.6 Hz), 128.4, 116.7 (d, J = 271.3 Hz), 55.0, 53.3 (d, J = 11.4 Hz), 35.8, 16.9. MS (ESI, m/z): 400.3 ([M+H]⁺). Anal. Calcd. for C₁₈H₂₂FNO₄S₂: C, 54.12; H, 5.55; N, 3.51; Found: C, 54.18; H, 5.54; N, 3.40.

2-Fluoro-N,N-dimethyl-2,2-bis(phenylsulfonyl)ethanamine (3ca)

White solid. M.p.: 119–121 °C. IR (KBr): 3072, 2957, 2788, 1580, 1446, 1330, 1143, 1077, 822, 756 cm⁻¹. ¹H NMR: δ 7.97 (d, *J* = 7.8 Hz, 4H), 7.69 (t, *J* = 7.2 Hz, 2H), 7.54 (t, *J* = 7.5 Hz, 4H), 3.45 (d, *J* = 25.2 Hz, 2H), 2.04 (s, 6H). ¹⁹F NMR: δ –147.6 (t, *J* = 26.3 Hz, 1F). ¹³C NMR: δ 136.5, 134.8, 130.9 (d, *J* = 1.1 Hz), 128.4, 116.5 (d, *J* = 270.8 Hz), 56.7 (d, *J* = 15.9 Hz), 46.1 (d, *J* = 2.2 Hz). MS (ESI, *m/z*): 372.2 ([M+H]⁺). Anal. Calcd. for C₁₆H₁₈FNO₄S₂: C, 51.74; H, 4.88; N, 3.77; Found: C, 51.58; H, 4.93; N, 3.54.

N-(2-(Benzyloxy)ethyl)-2-fluoro-N-methyl-2,2-bis(phenylsulfonyl)ethanamine (3da)

White solid. M.p.: 76–78 °C. IR (KBr): 2951, 2898, 2870, 1580, 1447, 1344, 1178, 1075, 869, 751 cm⁻¹. ¹H NMR: δ 7.94 (d, *J* = 8.1 Hz, 4H), 7.65 (t, *J* = 7.5 Hz, 2H), 7.48 (t, *J* = 8.1 Hz, 4H), 7.27–7.38 (m, 5H), 4.43 (s, 2H), 3.66 (d, *J* = 24.6 Hz, 2H), 3.35 (t, *J* = 5.7 Hz, 2H), 2.60 (t, *J* = 5.7 Hz, 2H), 2.03 (s, 3H). ¹⁹F NMR: δ –146.1 (t, *J* = 25.4 Hz, 1F). ¹³C NMR: δ 138.1, 136.5, 134.7, 130.9, 128.4, 128.3, 127.61, 127.57, 116.5 (d, *J* = 270.4 Hz), 73.0, 67.3, 57.4, 55.6 (d, *J* = 15.4 Hz), 42.9. MS (ESI, *m/z*): 492.3 ([M+H]⁺). Anal. Calcd. for C₂₄H₂₆FNO₅S₂: C, 58.64; H, 5.33; N, 2.85; Found: C, 58.43; H, 5.43; N, 2.85.

8-(2-Fluoro-2,2-bis(phenylsulfonyl)ethyl)-8-azabicyclo[3.2.1]octan-3-ol (3ea)

White solid. M.p.: 140–142 °C. IR (KBr): 3587, 2949, 1584, 1448, 1328, 1150, 1071, 760 cm⁻¹. ¹H NMR: δ 7.95 (d, *J* = 7.2 Hz, 4H), 7.69 (t, *J* = 7.5 Hz, 2H), 7.53 (t, J = 7.5 Hz, 2H), 7.

4H), 3.76–3.81 (m, 1H), 3.50 (d, J = 21.6 Hz, 2H), 2.93–2.99 (m, 2H), 1.90–1.96 (m, 2H), 1.58–1.69 (m, 4H), 1.36–1.42 (m, 2H). ¹⁹F NMR: δ –148.3 (t, J = 20.9 Hz, 1F). ¹³C NMR: δ 136.8, 134.7, 130.7, 128.5, 116.1 (d, J = 269.8 Hz), 64.1, 59.7, 50.5, 37.3, 26.2. MS (ESI, m/z): 454.5 ([M+H]⁺). Anal. Calcd. for C₂₁H₂₄FNO₅S₂: C, 55.61; H, 5.33; N, 3.09; Found: C, 55.65; H, 5.56; N, 2.90.

Ethyl 3-(cyclohexyl(methyl)amino)-2-fluoro-2-(phenylsulfonyl)propanoate (3ab)

Colorless oil. IR (film): 2931, 2855, 2801, 1764, 1584, 1449, 1336, 1262, 1161, 1085, 859, 688, 604 cm⁻¹. ¹H NMR: δ 7.91 (d, *J* = 7.5 Hz, 2H), 7.72 (t, *J* = 7.2 Hz, 1H), 7.58 (t, *J* = 8.1 Hz, 2H), 4.15–4.25 (m, 2H), 3.73 (dd, *J* = 36.9 Hz, 14.7 Hz, 1H), 3.11 (t, *J* = 14.1 Hz, 1H), 2.30–2.42 (m, 1H), 2.27 (s, 3H), 1.56–1.79 (m, 4H), 1.00–1.26 (m, 9H). ¹⁹F NMR: δ –158.3 (dd, *J* = 36.4 Hz, 12.7 Hz, 1F). ¹³C NMR: δ 163.0 (d, *J* = 26.0 Hz), 134.9, 130.01, 130.00, 129.1, 108.6 (d, *J* = 235.3 Hz), 64.6, 62.8, 54.1 (d, *J* = 17.6 Hz), 38.6, 28.6, 28.3, 25.8, 25.9, 26.0, 13.9. MS (ESI, *m/z*): 372.4 ([M+H]⁺). HRMS (ESI): calcd. for C₁₈H₂₇FNO₄S⁺([M+H]⁺): 372.1639; Found: 372.1649.

Ethyl 3-(cyclohexyl(methyl)amino)-2-fluoro-2-(pyridin-2-ylsulfonyl)propanoate (3ac)

White solid. M.p.: 67–69 °C. IR (KBr): 2983, 2829, 2857, 1764, 1579, 1450, 1338, 1259, 1069, 791 cm⁻¹. ¹H NMR: δ 8.78 (d, *J* = 4.5 Hz, 1H), 8.12 (d, *J* = 7.8 Hz, 1H), 8.00 (t, *J* = 7.8 Hz, 1H), 7.62 (dd, *J* = 7.5 Hz, 4.8 Hz, 1H), 4.30–4.41 (m, 2H), 3.82 (dd, *J* = 37.8 Hz, 15.0 Hz, 1H), 3.35 (t, *J* = 14.4 Hz, 1H), 2.32–2.42 (m, 1H), 2.28 (s, 3H), 1.58–1.78 (m,

4H), 1.35 (t, J = 7.2 Hz, 3H), 1.02–1.31 (m, 6H). ¹⁹F NMR: δ –157.9 (dd, J = 39.5 Hz, 12.4 Hz, 1F). ¹³C NMR: δ 162.6 (d, J = 26.5 Hz), 154.0, 150.3, 138.2, 128.3, 125.6 (d, J = 1.7 Hz), 108.4 (d, J = 234.1 Hz), 64.7, 63.0, 54.7 (d, J = 17.3 Hz), 38.6 (d, J = 3.5 Hz), 28.4 (d, J = 16.5 Hz), 25.8, 25.9, 26.0, 21.9, 13.9. MS (ESI, m/z): 373.2 ([M+H]⁺). Anal. Calcd. for C₁₇H₂₅FN₂O₄S: C, 54.82; H, 6.77; N, 7.52; Found: C, 54.90; H, 6.72; N, 7.50.

8-(2-Fluoro-2-(phenylsulfonyl)ethyl)-8-azabicyclo[3.2.1]octan-3-ol (14)

White solid. M.p.: 115–117 °C. IR (KBr): 3311, 2952, 2890, 1584, 1448, 1332, 1162, 1048, 915, 750 cm⁻¹. ¹H NMR: δ 7.94 (d, *J* = 7.5 Hz, 2H), 7.72 (t, *J* = 7.5 Hz, 1H), 7.60 (t, *J* = 7.5 Hz, 2H), 5.25 (ddd, *J* = 49.5 Hz, 8.4 Hz, 1.8 Hz, 1H), 3.98 (t, *J* = 4.8 Hz, 1H), 3.05–3.22 (m, 3H), 2.77–2.91 (m, 1H), 1.97–2.14 (m, 4H), 1.83–1.90 (m, 2H), 1.60–1.66 (m, 2H). ¹⁹F NMR: δ –179.1 (m, 1F). ¹³C NMR: δ 135.7, 134.5, 129.3, 129.2, 103.0 (d, *J* = 220.0 Hz), 64.3, 59.6, 59.5, 50.3 (d, *J* = 18.9 Hz), 38.96, 38.95, 26.2, 26.0. MS (ESI, *m/z*): 314.2 ([M+H]⁺). Anal. Calcd. for C₁₅H₂₀FNO₃S: C, 57.49; H, 6.43; N, 4.47; Found: C, 57.32; H, 6.64; N, 4.67.

3. Coupling reaction between *N*,*N*-dimethylbenzyl amine (1f) and fluorobisphenylsulfonylmethane (2a)

To a Schlenk tube with *N*,*N*-dimethylcyclohexylamine **1a** (406 mg, 3.0 mmol), was dropwise added DIAD (667 mg, 3.3 mmol) in 5 minutes at 0 °C. The mixture was stirred in neat for 1 hour at room temperature. Then DMF (6 mL) and fluorobisphenylsulfonylmethane **2a** (471 mg, 1.5 mmol) were successively added. The resulting mixture was stirred at 60 °C for 30 hours. After cooling to room temperature, the yields of the fluoroalkylated products (39% + 35%) were determined by ¹⁹F NMR with the remaining (PhSO₂)₂CHF as the internal standard. The mixture was extracted with ethyl acetate (30 mL × 3) from brine (30 mL). The combined organic phase was dried with anhydrous MgSO₄ and evaporated to almost dryness under reduced pressure. After flash column chromatography (PE/EA 6:1) and recrystalization (PE/EA), the analytically pure samples **3fa** and **3ca** were obtained for characterization.

When *N*,*N*-dimethyl-1-(naphthalen-2-yl)methanamine was used instead of **1f**, 2-naphthaldehyde was isolated in 79% yield (based on **2a**) after aqueous workup (flash column chromatography, PE/EA 10:1).

N-Benzyl-2-fluoro-N-methyl-2,2-bis(phenylsulfonyl)ethanamine (3fa)

White solid. M.p.: 151-153 °C. IR (KBr): 2923, 2853, 1580, 1446, 1331, 1144, 1077, 867, 757 cm⁻¹. ¹H NMR: δ 7.97 (d, J = 7.2 Hz, 4H), 7.70 (t, J = 7.2 Hz, 2H), 7.53 (t, J = 8.1 Hz, 4H), 7.21–7.24 (m, 3H), 6.97–7.01 (m, 2H), 3.64 (d, J = 21.9 Hz, 2H), 3.50 (s, 2H), 2.00 (s, 3H). ¹⁹F NMR: δ –147.7 (t, J = 21.2 Hz, 1F). MS (ESI, m/z): 448.3 ([M+H]⁺). HRMS (ESI): calcd. for C₂₂H₂₂FNO₄S₂Na⁺([M+Na]⁺): 470.0867; Found: 470.0875.

2-Naphthaldehyde

¹H NMR: δ 7.54–7.70 (m, 2H), 7.88–7.97 (m, 3H), 8.02 (d, *J* = 7.9 Hz, 1H), 8.35 (s, 1H),

10.17 (s, 1H). The spectrum was identical to that of an authentic sample.

4. Reductive desulfonylation

Under N₂ atmosphere, into a 25-mL Schlenk flask containing Na₂HPO₄ (575 mg, 4 mmol) and anhydrous MeOH (6 mL) was added **3aa** (220 mg, 0.5 mmol) at -20 °C. The reaction mixture was stirred at -20 °C to -10 °C for 1 h. The liquid phase was decanted, and most of the organic phase was removed under vacuum. Then brine (10 mL) was added, followed by extracting with EtOAc (15 mL \times 3). The combined organic phase was dried over anhydrous MgSO₄. The volatile solvents were removed under reduced pressure, and the crude product was purified by flash column chromatography on silica gel (200–300 mesh) with petroleum ether/ethyl acetate (8:1) as eluent to give product **15** (65 mg, 82% yield)

N-(2-Fluoroethyl)-*N*-methylcyclohexanamine (15)

Pale yellow oil. IR (film): 2927, 2854, 2224, 1599, 1455, 1258, 1232, 1034, 757 cm⁻¹. ¹H NMR: δ 4.52 (dt, *J* = 47.4 Hz, 5.4 Hz, 2H), 2.79 (dt, *J* = 25.5 Hz, 5.4 Hz, 2H), 2.37–2.47 (m, 1H), 2.35 (s, 3H), 1.79–1.85 (m, 4H), 1.18–1.28 (m, 6H). ¹⁹F NMR: δ –219.8 (tt, *J* = 47.4 Hz, 25.4 Hz, 1F). ¹³C NMR: δ 82.7 (d, *J* = 167.0 Hz), 63.2, 53.2 (d, *J* = 20.5 Hz),

38.4, 28.5, 26.2, 25.9. MS (ESI, *m*/*z*): 160.1 ([M+H]⁺). HRMS (ESI): calcd. for C₉H₁₉FN⁺ ([M+H]⁺): 160.1496; Found: 160.1500.

References:

- D. Simoni, M. Rossi, V. Bertolasi, M. Roberti, D. Pizzirani, R. Rondanin, R. Baruchello, F. P. Invidiata, M. Tolomeo, S. Grimaudo, S. Merighi, K. Varani, S. Gessi, P. A. Borea, S. Marino, S. Cavallini, C. Bianchi and A. Siniscalchi, *J. Med. Chem.* 2005, 48, 3337.
- 2. G. B. Petrović, R. N. Saičić and Z. M. Čeković, Helv. Chim. Acta, 2003, 86, 3179.

5. ¹H, ¹⁹F and ¹³C NMR Spectra

220

-150

PPM

-50

ō

-100

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

-100

-150

-50

F SO₂Ph Ń SO₂Ph 3ca in Scheme 3 ¹H NMR (CDCl₃, 300 MHz)

SO₂Ph SO₂Ph 3fa in Scheme 3 ¹H NMR (CDCI₃, 300 MHz)

SO₂Ph SO₂Ph 3fa in Scheme 3 ¹⁹F NMR (CDCl₃, 282 MHz)

147.174 147.250 147.327

-146 147

-120

-100

-140

-160

-180

PPM

