Supporting Information

A PEG bridged tertiary amine functionalized ionic liquid exhibiting

thermoregulated reversible biphase behavior with

cyclohexane/isopropanol: synthesis and application in Knoevenagel

condensation

Jun Luo^{*}, Tantan Xin, Yinglei Wang

School of Chemical Engineering, Nanjing University of Science & Technology, Nanjing, 210094, P R China

> E-mail: luojun@njust.edu.cn. Fax: 86-25-84315030.

Table of Contents

1. General	p. S2
2. Additional preparation experiments and identification data	p.S2-S8
3. Solubility test	p.S8-S11
4. Copies of identification spectra of ILs and their intermediates	p. S12-S27

1. General

All of the reagents and solvents are commercially available and were used without further purification.

Melting points were determined on a Perkin – Elmer differential scanning calorimeter and were uncorrected. IR spectra were recorded in KBr disks with a Bomem MB154S FT-IR spectrometer. Mass spectra were taken on an Agilent LC-MS 1100 series instrument in the electrospray ionization (positive ESI) mode. GC analyses were performed on an Agilent 7890A instrument. ¹H NMR spectra were recorded on Bruker DRX500 (500 MHz) and ¹³CNMRspectra on Bruker DRX500 (125 MHz) spectrometer using tetramethylsilane (TMS) as internal standard. Elemental analysis was performed on an Elementar Vario MICRO spectrometer. The thermo gravimetric analysis (TGA) was performed on a TGA/SDTA851e thermal analyzer (Mettler Toledo). Samples were loaded into an alumina crucible and heated at a rate of 20°C ⋅min⁻¹ from 50°C to 600°C under N₂.

2. Additional preparation experiments and identification data

Preparation of intermediate 1:

7.9 g (100 mmol) dry pyridine was added into a solution of 40.0 g (50 mmol) PEG-800 in 120 mL dry dichloromethane, then 13.1 g (110 mmol) thionyl chloride was added dropwise under nitrogen atmosphere, the mixture was stirred at ambient temperature for 12 h, pyridinium chloride formed was filtered of and then solvent was evaporated. Thereafter, ethyl acetate was added to precipitate remanent pyridinium chloride, the pyridinium chloride precipitated was filtered of. This precipitationfiltration process was repeated several times for sure of complete removal of salt. Cl-PEG₈₀₀-Cl **1a** was obtained after removing solvent on a rotary evaporator, 39.94 g, 96%. ¹H NMR (500 MHz, CDCl₃) δ : 3.73-3.75 (t, *J* = 5.0Hz, 4H), 3.60-3.67 (m,

65.0H, (OCH₂CH₂)_n) (Figure S1a)

Cl-PEG₁₀₀₀-Cl (**1b**) was prepared as the same procedure, 95%. ¹H NMR (500 MHz, CDCl₃) δ : 3.76-3.78 (t, *J* = 5.0Hz, 4H), 3.63-3.69 (m, 78.3H, (OCH₂CH₂)_n). (**Figure S1b**)

Preparation of intermediate Im-PEG-Im (2):

Sodium (1.13 g, 50 mmol) was added to 100 mL dry ethanol. After melted, imidazole (3.34 g, 50 mmol) was added and the solution was stirred at 70 °C for 10 h. To this yellow solution, compound **1** (20 g, 23.4 mmol) was added, the mixture was heated to reflux and let react for 10 h. Thereafter, the mixture was filtered, the filtrate was concentrated, the yellow oil containing white solid (NaCl) was saturated with 10 mL deionized water and the pH value was adjusted to 9 with concentrate hydrochloric acid, extracted with dichloromethane, combined the extract liquors, dried over anhydrous sodium sulfate, filtered and concentrated to give intermediate Im-PEG₈₀₀-Im **2a** as a colorless oil. ¹H NMR (500 MHz, CDCl₃) δ : 3.54 - 3.59 (m, 70.62H), 3.69 - 3.71 (t, *J* = 5.5 Hz, 4.36H), 4.05 - 4.07 (t, *J* = 5.5 Hz, 4.25H), 6.95 (s, 2H), 7.00 (s, 2H), 7.48(s, 2H) (**Figure S2a**).

Im-PEG₁₀₀₀-Im (**2b**) was prepared as the same procedure. ¹H NMR (500 MHz, CDCl₃) δ : 3.53-3.58 (m, 87.34H), 3.68-3.70 (t, *J* = 5.5 Hz, 4.42H), 4.04-4.06 (t, *J* = 5.5 Hz, 4.22H), 6.94 (s, 2H), 6.97 (s, 2H), 7.47(s, 2H) (**Figure S2b**).

To a solution of Im-PEG₈₀₀-Im (**2a**, 10.0 g, 11.1 mmol) in 100 mL dry ethanol was added dropwise a solution of 1-(2-chloroethyl) piperidine hydrochloride (4.3 g, 23.3 mmol) in 50 mL dry ethanol within 3 h at 80 $^{\circ}$ C under nitrogen atmosphere, the mixture was stirred for another 30 h at the same temperature. After concentration, the brown oily residue was dissolved in deionized waster (15 mL), the pH value was adjusted to 9 with aqueous KOH. Ethanol (30 mL) was added to make major inorganic salt precipitate. The inorganic salt precipitated was filtered of, the liquor was concentrated to give an oily residue. The residue was saturated with dichloromethane for further precipitation of remain salt coated by ionic liquid, the inorganic salt was filtered of and the filtrate was concentrated. This process was repeated several times to make sure of complete removal of inorganic salt. The target product PEG₈₀₀-DPIL(Cl) (**3**) was obtained as a brown oil, 12.9 g, 91%. ¹H NMR (500 MHz, CDCl₃) δ: 1.29-1.30 (m, 4H), 1.39-1.43 (m, 8H), 2.31 (s, 8H), 2.61-2.63 (t, J = 5.60 Hz, 4H), 3.43-3.52 (m, 75H). 3.74-3.76 (t, J = 4.50 Hz, 4H), 4.27-4.29 (t, J = 4.50 Hz, 4.20 Hz, 4.20 5.55 Hz, 4H), 4.46-4.48 (t, J = 4.50 Hz, 4H), 7.54 (s, 2H), 7.61 (s, 2H), 10.04 (s, 2H) (Figure S3); ¹³C NMR (125 MHz, D₂O) δ: 23.22, 24.67, 46.04, 49.20, 53.73, 57.03, 68.37, 69.54, 69.61, 122.37, 122.94 (**Figure S4**); IR (cm⁻¹) 2863, 1563, 1455, 1349, 1301, 1251, 1095, 1038, 946, 846, 757, 727, 695 (Figure S5); ESI-MS (m/z): 545.35 $(M^{2+}/2, n = 16), 567.40 (M^{2+}/2, n = 17), 589.50 (M^{2+}/2, n = 18), 611.55 (M^{2+}/2, n = 19)$ (Figure S6); Anal. calcd for C_{55,52}H_{105,04}Cl₂N₆O_{16,76}: C, 55.88; H, 8.79; N, 7.03; found: C, 56.07; H, 8.95; N, 6.91%.

[PEG₁₀₀₀-DPIL]Cl (**5**) was prepared as the same procedure. ¹H NMR (500 MHz,

D₂O) δ: 1.40-1.41 (s, 4H), 1.53-1.55 (m, 8H), 2.56 (s, 8H), 2.91-2.93 (t, *J* = 6.95 Hz, 4H), 3.54-3.63 (m, 89.96H). 3.84-3.86 (t, *J* = 4.90 Hz, 4H), 4.34-4.39 (m, 8H), 7.53 (s, 4H) (Figure S7).

Preparation of 1-(2-(1*H*-imidazol-1-yl)ethyl) piperidine (4)

Imidazole (8.9 g, 130 mmol) was melted at 100 °C then NaOH (4.8 g, 120 mmol) was added with stirring. After the solid NaOH melted, toluene (50 mL) was added to azeotropic removal of water for 3 h. After which, toluene was removed by rotary evaporation under reduced pressure. Subsequently, 1-(2-chloroethyl) piperidine hydrochloride (11.1 g, 60 mmol) and CH₃CN (80 mL) was added. The mixture was stirred at 80°C for 12 h and filtered. The filtrate was concentrated under reduced pressure, the yellow residue obtained was dissolved in 100 mL CH₂Cl₂ and extracted by water for several times to remove inorganic salts and excess of imidazole. After removal of solvent, 1-(2-(1*H*-imidazol-1-yl)ethyl) piperidine (4) was obtained and used for the next reaction without further purification (9.8 g, 91 % yield). ¹H NMR (500 MHz, CDCl₃) δ : 1.19-1.22 (m, 2H), 1.30-1.36 (m, 4H), 2.16-2.17 (s, 2H), 2.36-2.40 (t, *J* = 6.65 Hz, 2H), 3.75-3.79 (t, *J* = 6.65 Hz, 2H), 6.74 (s, 1H), 6.78 (s, 1H), 7.29 (s, 1H) (**Figure S8**); ¹³C NMR (126MHz, CDCl₃) δ : 24.01, 25.80, 44.59, 54.46, 59.20, 119.08, 128.76, 137.13 (**Figure S9**); ESI-MS (m/z): 179 (M⁺).

Preparation of *N*,*N*-diethyl-2-(1*H*-imidazol-1-yl)ethanamine (6):

Imidazole (8.9 g, 130 mmol) was melted at 100 °C and NaOH (4.8 g, 120 mmol) was added with stirring. After the solid NaOH thawed, toluene (50 mL) was added to

azeotropic removal of water for 3 h. Then, the toluene was evaporated under reduced pressure. Subsequently, 2-chloro-*N*,*N*-diethylethanamine hydrochloride (10.3 g, 60 mmol) and CH₃CN (80 mL) was added. The mixture was stirred at 80°C for 12 h and then filtered. The filtrate was concentrated under reduced pressure, the yellow residue obtained was dissolved in 100 mL CH₂Cl₂ and extracted by water several times to remove inorganic salts and excess of imidazole. After removal of solvent, *N*,*N*-diethyl-2-(1*H*-imidazol-1-yl) ethanamine (**6**) was obtained and used for the next reaction without further purification (8.7 g, 87 % yield). ¹H NMR (500 MHz, CDCl₃) δ : 0.91-0.94 (t, *J* = 15 Hz, 6H), 2.45-2.50 (q, *J* = 15 Hz, 4H), 2.66-2.69 (t, *J* = 10 Hz, 2H), 3.90-3.93 (t, *J* = 10 Hz, 2H), 6.91 (s, 1H), 6.98 (s, 1H), 7.46 (s, 1H) (**Figure S10**); ESI-MS: m/z 167.

To a solution of Im-PEG₈₀₀-Im (**2**, 10.0 g, 11.1 mmol) in 100 mL dry ethanol was added dropwise a solution of 2-chloro-*N*,*N*-diethylethanamine hydrochloride (4.0 g, 23.3 mmol) in 30 mL dry ethanol within 2 h at 80 °C under nitrogen atmosphere, then stirred for another 30 h at the same temperature. The following workup was just the same as described above. The target product PEG₈₀₀-DEIL(Cl) (**7**) was obtained as a brown oil, 11.9 g, 92%. ¹H NMR (500 MHz, CDCl₃) δ : 0.80-0.83 (t, *J* = 14.1 Hz, 12.11H), 2.42-2.47 (q, *J* = 14.1 Hz, 8.04H), 2.73-2.75 (t, *J* = 5.1 Hz, 4H), 3.51 (m, 66.32H), 3.75-3.77 (t, *J* = 4.3 Hz, 4.12H). 4.25-4.27 (t, *J* = 5.1 Hz, 3.93H), 4.47-4.49 (t, *J* = 4.3 Hz, 3.98H), 7.52 (s, 2H), 7.60 (s, 2H), 9.95 (s, 2H) (**Figure S11**);¹³C NMR (126 MHz, CDCl₃) δ : 11.55, 46.76, 47.99, 49.48, 52.59, 69.11,70.13, 70.17, 70.26, 70.36, 77.47, 122.33, 122.74, 137.24 ppm (**Figure S12**).

[PEG₁₀₀₀-DEIL]Cl (**8**) was prepared as the same procedure. ¹H NMR (500 MHz, D₂O) δ : 0.96-0.98 (t, *J* = 14.4 Hz, 12.06H), 2.56-2.58 (q, *J* = 14.4 Hz, 8.0H), 2.94-2.97 (t, *J* = 6.8 Hz, 3.94H), 3.62-3.70 (m, 88.93H), 3.86-3.88 (t, *J* = 4.7 Hz, 4.07H). 4.31-4.33 (t, *J* = 6.8 Hz, 4.0H), 4.36-4.38 (t, *J* = 4.7 Hz, 3.98H), 7.55 (s, 2H), 7.56 (s, 1.83H) (**Figure S13**); ¹³C NMR (126MHz, D₂O) δ : 10.20, 46.69, 46.74, 49.21, 51.09, 68.39, 69.55, 69.62, 122.34, 122.97 ppm (**Figure S14**).

Preparation of PEG₈₀₀-DPIL(Cl) (3) via route two

To the solution of **4** (6.3 g, 37.5 mmol) in 30 mL acetonitrile was added in portions the solution of **1** (9.0 g, 10.0 mmol) in 30 mL acetonitrile at ambient temperature under nitrogen atmosphere. The mixture was stirred for 7 days. Thereafter, the solvent was removed in vacuum, the residue obtained was dissolved in 150 mL deionized water and extracted with CH_2Cl_2 (5×20 mL) to remove unreacted raw materials. After removal of water on a rotary evaporator, the piperidine-functionalized PEG-800 bridged dicationic ionic liquid PEG₈₀₀-DPIL(Cl) (**3**) was obtained as a brown oil, 12.0 g, 93 % yield.

Prepation of PEG₈₀₀-DPIL(BF₄) (9):

9, PEG₈₀₀-DPIL(BF₄)

To the solution of **3** (6.0 g, 5 mmol) in CH_2Cl_2 (50 mL) was added NaBF₄ (4.4 g, 20 mmol) and stirred at ambient temperature for 36 h, filtered and evaporated to give a pale yellow oil product **9**, 6.2 g, 95% yield.

Prepation of PEG₈₀₀-DPIL(PF₆) (10):

10, PEG₈₀₀-DPIL(PF₆)

To the solution of **3** (6.0 g, 5 mmol) in CH_2Cl_2 (50 mL) was added KPF₆ (7.4 g, 20 mmol) and stirred at ambient temperature for 36 h, filtered and evaporated to give a pale yellow oil product **10**, 6.9 g, 98% yield.

3. Solubility test

The solubility of PEG-DPILs and PEG-DEILs in some solvents were tested at different temperatures. The results are listed in **Table S1~S7**.

		100011109		100111 00111	P • • • • • • • • •	
Solvents	3	5	7	8	9	10
H_2O	S	S	S	S	S	S
MeOH	S	S	S	S	S	8
EtOH	S	S	S	S	S	ps
Isopropanol	ps	S	S	S	i	i
CH_2Cl_2	S	S	S	S	S	S
AcOEt	i	i	i	i	i	ps
Acetone	ps	S	S	S	S	S
Et ₂ O	i	i	i	i	i	i
Cyclohexane	i	i	i	i	i	i
heptane	i	i	i	i	i	i
Petroleum	:	:	;	:	:	:
Ether	1	1	I	1	1	1
Toluene	i	ps	i	ps	i	i
DMF	S	S	S	S	S	S
DMSO	S	S	S	S	S	S

Table S1 Solubility of ILs at room temperature^{*a*}

^{*a*} s: soluble; i: insoluble; ps: partly soluble.

14010 02 04					
Solvents	40°C	60°C	80°C	100°C	
EtOH	S	S	S	-	
Isopropanol	S	S	S	-	
AcOEt	i	i	i	-	
Cyclohexane	i	i	i	i	
n-heptane	i	i	i	i	
Toluene	i	i	i	i	

Table S2 Solubility of PEG₈₀₀-DPIL(Cl) (**3**) at different temperature^{*a*}

^{*a*} s: soluble; i: insoluble; ps: partly soluble.

		1000	,	I · · · · ·
Solvents	40°C	60°C	80°C	100°C
EtOH	S	S	S	-
Isopropanol	S	S	S	-
AcOEt	i	i	i	-
Cyclohexane	i	i	i	i
n-heptane	i	i	i	i
Toluene	ps	ps	ps	ps

Table S3 Solubility of PEG_{1000} -DPIL(Cl) (5) at different temperature^{*a*}

^{*a*} s: soluble; i: insoluble; ps: partly soluble.

	Table 54 Solubility of FEO_{800} -DEIL(CI) (7) at different temperature			
Solvents	40°C	60°C	80°C	100°C
EtOH	S	S	S	-
Isopropanol	S	S	S	-
AcOEt	i	i	i	-
Cyclohexane	i	i	i	i
n-heptane	i	i	i	i
Toluene	i	i	i	i

Table S4 Solubility of PEG_{800} -DEIL(Cl) (7) at different temperature^{*a*}

^{*a*} s: soluble; i: insoluble; ps: partly soluble.

		= 1000 (=) (=	,	F
Solvents	40°C	60°C	80°C	100°C
EtOH	S	S	S	-
Isopropanol	S	S	S	-
AcOEt	i	i	i	-
Cyclohexane	i	i	i	i
n-heptane	i	i	i	i
Toluene	ps	ps	ps	ps

Table S5 Solubility of PEG₁₀₀₀-DEIL(Cl) (8) at different temperature^{*a*}

^{*a*} s: soluble; i: insoluble; ps: partly soluble.

Table S6 Solubility of PEG_{800} -DPIL(BF ₄) (9) at different temperature ^{<i>a</i>}				
Solvents	40°C	60°C	80°C	100°C
EtOH	S	S	S	-
Isopropanol	i	i	ps	-
AcOEt	i	i	i	-
Cyclohexane	i	i	i	i
n-heptane	i	i	i	i
Toluene	i	i	i	i

^{*a*} s: soluble; i: insoluble; ps: partly soluble.

Table S7 Solubility of PEG_{800} -DPIL(PF ₆) (10) at different temperature ^{<i>a</i>}				
Solvents	40°C	60°C	80°C	100°C
EtOH	S	S	S	-
Isopropanol	i	ps	ps	-
AcOEt	ps	ps	ps	-
Cyclohexane	i	i	i	i
n-heptane	i	i	i	i
Toluene	i	i	i	i

^{*a*} s: soluble; i: insoluble; ps: partly soluble.

V/mL	Critical temperature/°C
7.0	22
6.0	25
5.5	33
5.1	40
4.7	47
4.2	52
4.0	60
3.8	67
3.6	80
3.4	92
3.2	106
3.0	110

Table S8 The relationship between the critical temperature of

 $\ensuremath{\mathsf{PEG}}_{800}\ensuremath{\text{-}\mathsf{DPIL}}(\ensuremath{\mathsf{Cl}})\ensuremath{/}\ensuremath{\mathsf{CYH}}\xspace{/}\ensuremath{\mathsf{IPA}}\xspace$ with the volume of mixture solvent

4. Copies of identification spectra of ILs and their intermediates

Figure S1a ¹H NMR spectrum of PEG-800 dichloride (1a)

Figure S1b ¹H NMR spectrum of PEG-1000 dichloride (**1b**)

Figure S2a ¹H NMR spectrum of Im-PEG₈₀₀-Im (2a)

Figure S2b ¹H NMR spectrum of Im-PEG₁₀₀₀-Im (**2b**)

Figure S3 ¹H NMR spectrum of PEG₈₀₀-DPIL(Cl) (**3**)

Figure S4 ¹³C NMR spectrum of PEG₈₀₀-DPIL(Cl) (**3**)

Figure S5 FTIR spectrum of PEG₈₀₀-DPIL(Cl) (3)

Figure S6 ESI-MS spectrum of PEG₈₀₀-DPIL(Cl) (3)

Figure S7 ¹H NMR spectrum of PEG₁₀₀₀-DPIL(Cl) (**5**)

Figure S8 ¹H NMR spectrum of 1-(2-(1*H*-imidazol-1-yl)ethyl) piperidine (**4**)

Figure S9 ¹³C NMR spectrum of 1-(2-(1*H*-imidazol-1-yl)ethyl) piperidine (4)

Figure S10¹H NMR spectrum of *N*,*N*-diethyl-2-(1*H*-imidazol-1-yl)ethanamine (6)

Figure S11 ¹H NMR spectrum of PEG₈₀₀-DEIL(Cl) (7)

Figure S12 ¹³C NMR spectrum of PEG₈₀₀-DEIL(Cl) (7)

Figure S13 ¹H NMR spectrum of PEG₁₀₀₀-DEIL(Cl) (8)

Figure S14 ¹³C NMR spectrum of PEG₈₀₀-DEIL(Cl) (8)