Supporting Information

One-pot Pyrolytic Synthesis of C-N-codoped Mesoporous Anatase TiO₂ with Enhenced Photo-degradation Properties

Liang Li^{a*}, Jingjing Shi^a, Gengnan Li^a, Yinyin Yuan^a, Yongsheng Li^a, Wenru Zhao^a and Jianlin Shi^{a,b*}

^a Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China ;

^b State Key Laboratory of High Performance Ceramic and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China;

Tel: +86-21-64250740; Fax: +86-21-64250740; E-mail: liliang@ecust.edu.cn; jlshi@sunm.shcnc.ac.cn.

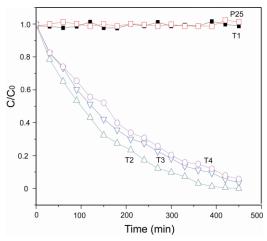


Fig. 1 Photocatalytic degradation of benzonic acid under visible light irradiation.

A 300 W Xe arc lamp was used as the visible light source and the visible wavelength was controlled through a 420 nm cutoff filter ($\lambda \ge 420$ nm). In a typical process, 30 mg of the mesoporous structured titania material was dispersed into 100 ml benzonic acid aqueous solution (15 mg/L) with stirring in the dark for 30 min to achieve adsorption equilibrium prior to light irradiation. During the irradiation, 2 mL of the mixture was taken at a given time interval and centrifuged for 5 min to remove the photocatalyst powers and the absorbance spectrum was monitored using a UV–vis spectrophotometer.

Sample	S _{BET} (m ² /g)	V _{BJH} (cm ³ /g)	Pore diameter D (nm)
T1	129	0.17	4.1
T2	107	0.4	3.5
Т3	64	0.18	8.4
T4	52	0.14	7.7

Table 1 Pore structure parameters of calcined materials