Supporting Information

C/N-sensitized self-assembly of mesostructured TiO₂ nanospheres with significantly enhanced photocatalytic activity

Guobao Zhou, ^a Xiangwen Liu, ^b Caiyun Nan, ^b Yunxin Liu, ^b Dingsheng Wang, ^b and Xiaoqing Chen*^a

^aCollege of Chemistry and Chemical Engineering, Key Laboratory of Resources Chemistry of Nonferrous Metals, Central South University, Changsha, 410083, China.

^bCollege of Chemistry, Department of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China. E-mail: <u>xqchen@csu.edu.cn</u>; Tel: +86-731-88830833.

Figure S1. The schematic diagram of photodegradation progress, illumination distance and strength, initial amounts of RhB and photocatalysts, stirring speed were all maintained the same.

Figure S2. Size distribution histogram of (a) $C/N-TiO_2$ QDs and (b) $C/N-TiO_2$ nanospheres. ~300 particles are measured to get the size distribution.

Figure S3. SEM images of miroporous C/N-TiO₂ nanospheres after degradation of RhB several cycling uses.

Figure S4. C/N-TiO₂ nanospheres and C/N-TiO₂ QDs dissolved in deionized water.

Figure S5. UV-vis spectral changes of RhB as a function of irradiation time and the wavelength position of its major absorption band moved toward the blue region. The wavelength shift is caused by de-ethylation of RhB because of attack by one of the active oxygen species on the N-ethyl group^[1].

Figure S6. XPS spectra of (a) N 1s and (b) C 1s region for C/N-TiO₂ nanospheres after degradation of RhB several cyclings.

Samples	Mean Value	Standard Error	R^2
P25	0.00192	0.000109	0.9838
C/N-TiO ₂ QDs-300	0.00198	0.000154	0.9704
C/N-TiO ₂ QDs-200	0.00108	0.000101	0.9571
C/N-TiO ₂ QDs	0.00807	0.000254	0.9950
C/N-TiO ₂ nanospheres-300	0.00763	0.000476	0.9808
C/N-TiO ₂ nanospheres-200	0.00559	0.000260	0.9892
C/N-TiO ₂ nanospheres	0.147	0.0159	0.9715
C/N-TiO ₂ nanospheres $(2.5 \times)$	0.0913	0.00626	0.9769
First Cycling	0.147	0.0102	0.9715
Second Cycling	0.139	0.00667	0.9886
Third Cycling	0.160	0.0145	0.9621
Fourth Cycling	0.143	0.0167	0.9354

Table S1. Values, Standard Error and R^2 of TiO₂ based catalysts during degrading rhodamine B (according to Figure 7,8,9).

[1] T. X. Wu, G. M. Liu, J. C. Zhao, H. Hidaka and N. Serpone, J. Phys. Chem. B., 1998, **102**, 5845.