Equilibrium structure and dynamics in organic crystals by Monte Carlo simulation. Critical assessment of force fields and comparison with static packing analysis

Angelo Gavezzotti

Supporting Information

List of parameters of the AA-CLP force field

Refer to A. Gavezzotti, New J. Chem. 2011, 35, 1360 for the description of the force field, and to the document CLPmanual.doc available at http://users.unimi.it/gavezzot or from the author upon request at angelo.gavezzotti@unimi.it

Atomic species considered in the CLP intermolecular energy scheme. See A.Gavezzotti, New J. Chem. 2011, 35, 1360 for all detail and for the explanation of symbols.

	indicator	atomic	ionization	space diffusion	H-bond
		polarizability, Å ³	potential, a.u.	parameter	propensity factor
hydrogen radius 1.10		0.39	0.500		
acetylene CH	1			0.60	0.20
=CH ₂ , arom.CH	2			0.62	0.10
aliphatic	3			0.64	0.05
\dot{CH} , CH_2 , CH_3					
R-OH, R-SH alcohol, thiol	5			0.75	0.99
COO-H acid	6			0.80	0.99
CON)-H amide	7			0.80	0.90
R_2NH , RNH_2 , $(R_3N^+)H$	8			0.80	0.99
H ₂ O (water)	9			0.80	0.99
unnormalized hydrogen atom	99				
from Cambridge files					
carbon 1.77			0.414	1.00	0.00
carbonyl C=(O)	10	1.05			
≡C-	11	1.35			
sp ² or allene C	12	1.35			
sp ³ C	13	1.05			
aromatic core C	14	1.90			
nitrogen 1.64		0.95	0.534		
$(R_nH_{4-n})N^+$	16			0.63	0.00
$(R_nH_{3-n})N$	17			0.63	-0.97
arom.N, R=N(H)	18			0.58	-0.99
-C≡N,-N=N	19			0.70	-0.70
nitro N	20			0.63	0.00
amide N (CONH,CONH ₂)	21			0.63	-0.85
oxygen 1.58		0.75	0.500		
-O-	23			0.45	-0.90
H_2O (water)	24			0.70	-0.99
C=0, CO0 ⁻	27			0.50	-0.99
(C=O)-OH	28			0.50	-0.90
R-OH	29			0.45	-0.99
N=O	30			0.50	-0.95
S=O	31			0.75	-0.90
P=O	32			0.75	-0.90
sulfur 1.81		3.00	0.381		

-S-		34			2.00	-0.5
(C)=S		35			2.00	-0.5
(O)=S		36			2.50	0.0
R-S(H)		37			2.00	-0.5
heteroatoms						
Р	1.9	38	1.54	0.386	3.0	0
AS	1.8	39	3.5	0.400	5.0	0
Se	1.8	40	3.5	0.400	6.0	0
F	1.46	41	0.40	0.640	0.20	0.00
Cl	1.76	42	2.50	0.477	2.40	-0.20
Br	1.87	43	3.27	0.434	1.50	0.00
Ι	2.03	44	5.00	0.384	5.00	0.00
В	1.70	46	1.60	0.305	1.00	0.00
Si	2.00	47	2.00	0.280	1.00	0.00

С		-
	data symbol/	
	1' H', ' C', 1-1	.0
	2' C',' C',' C',' C',' ',' N',' N',' N','	1-20
	3' N',' ',' O',' O',' ',' ',' O',' O',' O	21-30
	4' 0',' 0',' ',' S',' S',' S',' S',' P','AS','SE',	81-40
	5' F','CL','BR',' I','AL',' B','SI',' ',' ',' '/	41-50
С	average bonding radii version of 8.2011	
	data ravrg/	
	1 0.30,0.30,0.30,0.30,0.30,0.30,0.30,0.30	
	2 0.60,0.70,0.77,0.70,0.00,0.75,0.75,0.65,0.55,0.72,	
	3 0.70,0.00,0.68,0.68,0.00,0.00,0.55,0.68,0.68,0.50,	
	4 0.40,0.40,0.00,1.05,1.05,1.05,1.05,1.05,1.2,1.2,	
	5 0.65,1.00,1.20,1.35,0.00,0.90,1.17,0.0,0.0,0.0/	
С	non-bonded radii	
	data ravdw/	
	1 1.10,1.10,1.10,0.00,1.10,1.10,1.10,1.1	
	2 1.77,1.77,1.77,1.77,0.00,1.64,1.64,1.64,1.64,1.64,	
	3 1.64,0.00,1.58,1.58,0.00,0.00,1.58,1.58,1.58,1.58,	
	4 1.58,1.58,0.00,1.81,1.81,1.81,1.81,1.90,1.80,1.80,	
	5 1.46,1.76,1.87,2.03,0.00,1.70,2.00,0.00,1.70,1.50/	
С	AA-clp and PIXEL atomic polarizabilities	
С	adapted from Miller JACS 112,8573,1990	
	data polat/	
	1 0.39,0.39,0.39,0.00,0.39,0.39,0.39,0.39,	
	2 1.35, 1.35, 1.05, 1.90, 0.00, 1.00, 1.00, 1.05, 1.00, 1.00,	
	3 1.00,0.00,0.75,0.75,0.00,0.00,0.75,0.75,0	
	4 0.75,0.75,0.00,3.00,3.00,3.00,3.00,1.54,3.50,3.50,	
	5 0.40,2.50,3.27,5.00,0.00,1.60,2.00,0.00,2.30,0.40/	
С	AA-clp diffuseness factors	
	data diffu/	
	1 0.60,0.62,0.64,0.00,0.75,0.80,0.80,0.80,0.80,1.00,	
	2 1.00,1.00,1.00,1.00,0.00,0.63,0.63,0.58,0.70,0.63,	
	3 0.63,0.00,0.45,0.70,0.00,0.00,0.50,0.50,0.45,0.50,	
	4 0.75,0.75,0.00,2.00,2.00,2.50,2.00,3.00,5.00,6.00,	
	5 0.20,2.40,1.50,5.00,0.00,1.00,1.00,0.00,1.00,1.0	
С	AA-clp acceptor-donor index	
	data acdo/	
	1 0.20,0.10,0.05,0.00,0.99,0.99,0.90,0.99,0.99,0.00,	
	2 0.00,0.00,0.00,0.00,0.00,0.00,-0.97,-0.99,-0.70,0.00,	
	3 -0.85,0.00,-0.90,-0.99,0.00,0.00,-0.99,-0.90,-0.99,-0.95,	
	4 -0.90,-0.90,0.00,-0.50,-0.50,0.00,-0.50,0.00,0.00,	
	5 0.00,-0.20,0.00,0.00,0.00,0.00,0.00,0.00	
С	Pauling electronegativities	
	data elneg/	
	1 2.10,2.10,2.10,2.10,2.10,2.10,2.10,2.10,	
	2 2.50,2.50,2.50,2.50,0.00,3.00,3.00,3.00,3.00,3.00,	
	3 3.00,0.00,3.50,3.50,0.00,0.00,3.50,3.50,	
	4 3.50, 3.50, 0.00, 2.50, 2.50, 2.50, 2.50, 2.10, 2.20, 2.60,	

^	,	
	4	
	~	

5 4.00, 3.00, 2.80, 2.50, 0.00, 2.00, 1.80, 0.00, 1.80, 0.90/ С ionization potentials data potio/ 1 0.500,0.500,0.500,0.000,0.500,0.500,0.500,0.500,0.500,0.414, 2 0.414,0.414,0.414,0.414,0.000,0.534,0.534,0.534,0.534,0.534, 3 0.534,0.000,0.500,0.500,0.000,0.000,0.500,0.500,0.500,0.500, 4 0.500, 0.500, 0.000, 0.381, 0.381, 0.381, 0.381, 0.386, 0.400, 0.400, 5 0.640,0.477,0.434,0.384,0.000,0.305,0.280,0.000,0.400,0.200/ alpha(s) for Extended Huckel С data alphas/ 1 -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -21.4, 2 -21.4, -21.4, -21.4, -21.4, 0.000, -26.0, -26.0, -26.0, -26.0, -26.0, 3 -26.0,0.000,-32.3,-32.3,0.000,0.000,-32.3,-32.3,-32.3,-32.3, 4 -32.3, -32.3, 0.000, -20.0, -20.0, -20.0, -20.0, -18.6, -17.0, -20.5, 5 -40.0, -26.3, -22.1, -18.0, -12.3, -15.2, -17.3, 0.000, -7.80, 0.000/ alpha(p) for Extended Huckel С data alphap/ 1 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,-11.4, 2 -11.4, -11.4, -11.4, -11.4, 0.000, -13.4, -13.4, -13.4, -13.4, -13.4, 3 -13.4,0.000,-14.8,-14.8,0.000,0.000,-14.8,-14.8,-14.8,-14.8, 4 -14.8, -14.8, 0.000, -11.0, -11.0, -11.0, -11.0, -14.0, -14.0, -14.4, 5 -18.1, -14.2, -13.1, -12.7, -6.50, -8.50, -9.20, 0.000, -3.80, 0.000/ s slater coeff's for eht H,C,N,O,S,P,As,Se,F,Cl,Br,I,Si С data slats/ 1 1.300,1.300,1.300,1.300,1.300,1.300,1.300,1.300,1.300,1.625, 2 1.625,1.625,1.625,1.625,0.000,1.950,1.950,1.950,1.950,1.950, 3 1.950,0.000,2.275,2.275,0.000,0.000,2.275,2.275,2.275,2.275, 4 2.275, 2.275, 0.000, 2.122, 2.122, 2.122, 2.122, 1.600, 2.230, 2.750, 5 2.425,2.356,2.588,2.679,0.000,1.300,1.200,0.000,0.000,0.000/ p slater coeff's for eht H,C,N,O,S,P,As,Se,F,Cl,Br,I,Si С data slatp/ 1 0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000,1.625, 2 1.625, 1.625, 1.625, 1.625, 0.000, 1.950, 1.950, 1.950, 1.950, 1.950, 3 1.950,0.000,2.275,2.275,0.000,0.000,2.275,2.275,2.275,2.275, 4 2.275, 2.275, 0.000, 1.827, 1.827, 1.827, 1.827, 1.600, 1.890, 2.290, 5 2.425,2.033,2.131,2.322,0.000,1.300,0.900,0.000,0.000,0.000/

Equilibrium structure and dynamics in organic crystals by Monte Carlo simulation. Critical assessment of force fields and comparison with static packing analysis

Angelo Gavezzotti

Supporting Information

#ABUMTT

CSD Refcode, space group, density, temperature of the Xray determination, year, crystallographic R-factor Atom-Atom CLP lattice energies from the static original crystal structure: Coulombic, polarization, dispersion repuslion cell-dipole Kroon-van Eick term, total

90.00

97.00

90.00

'P 21/n' cell 3.9495 10.6260 15.2700 #ACANIL01 'P b c a' cell 19.5090 9.3640 7.7780 crystal density 1.264 m(W) crvstal densitv AA-CLP Ec, Ep, Ed, Er, Ecd, Et #ADIPAC07 'P 21/c' #ARCLAM01 'P 21/n' #AYOJED 'P 21/n' cell 5.9008 10.0652 11.6577 #AYOJED 'P 21/n' #BENZAC07 'P 21/c' cell 5.3930 5.0030 21.6890 crystal density 1.402 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #BENZEN07 'Pbca' #BILNOZ01 'P 21/c' cell 10.0180 6.8230 13.1470 crystal density 1.262 T(K) #BIPHEN04 'P 21/a' cell 8.1200 5.6300 9.5100 crystal density AA-CLP Ec, Ep, Ed, Er, Ecd, Et #BNZQUI03 'P 21/c' #BULVAL03 'B 21/c' cell 6.4800 20.5840 10.3700 crystal density AA-CLP Ec, Ep, Ed, Er, Ecd, Et #BZAMID01 'P 21/c' 5.0460 22.0530 5.6070 cell 1.290 crystal density AA-CLP Ec,Ep,Ed,Er,Ecd,Et #CAXNUL05 'P 21/n' cell 7.5997 8.1079 12.9590 90.00 crystal density AA-CLP Ec, Ep, Ed, Er, Ecd, Et #CECGEX 'P 21' cell 4.7167 7.4607 11.2850 1.349 crystal density AA-CLP Ec, Ep, Ed, Er, Ecd, Et #CTCYDD 'P 21/c' cell 7.5560 18.5450 8.4960 #DAZNAP 'Pbca'

crystal density 1.535 T(K) 223.0 year 2001. R = 4.86 AA-CLP Ec, Ep, Ed, Er, Ecd, Et -2.7 -6.0 -77.9 21.5 -0.0 -65.1
 J. J040
 I. //80
 90.00
 90.00

 1.264
 T(K)
 113.0
 year
 1985. R =
 90.00 90.00 90.00 3.30 -38.3 -25.8 -95.2 48.8 -0.0 -110.5 cell7.18705.162610.015090.00110.8690.00crystal density1.398T(K)130.0 year2000. R =AA-CLP Ec, Ep, Ed, Er, Ecd, Et-47.4-58.1-121.295.8-0.0 6.83 -0.0 -131.0

 #ARCLAMUT F 21/11

 cell 8.2062 5.7480
 9.0527 90.00 111.37 90.00

 crystal density 1.187
 T(K) 113.0 year 2007. R =

 AA-CLP Ec, Ep, Ed, Er, Ecd, Et
 -39.8 -23.3 -60.8 48.7 -0.0

 90.00 4.15 -0.0 -75.2 cell5.900810.065211.657790.00102.9290.00crystal density1.143T(K)120.0 year2004. R =4.65AA-CLP Ec, Ep, Ed, Er, Ecd, Et-5.3-10.1-79.825.7-0.0-69.6 4.65 лово 90.00 Т(К) 29.1 98.51 90.00 T(K) 20.0 year 1996. R = 6.9 -29.1 -23.1 -100.3 67.8 -0.0 -84.7 6.90

 #BENZENU/ 'F b c a'

 cell
 7.3980
 9.4350
 6.7780
 90.00
 90.00
 90.

 crystal density
 1.097
 T(K)
 123.0 year
 1987. R =

 AA-CLP Ec, Ep, Ed, Er, Ecd, Et
 -7.3
 -6.2
 -55.5
 17.5
 -0.0

 90.00 4.60 -0.0 -51.5

 cell 10.0180
 6.8230
 13.1470
 90.00
 90.04
 90.00

 crystal density
 1.262
 T(K)
 210.0 year
 1989. R =
 3.40

 AA-CLP Ec, Ep, Ed, Er, Ecd, Et
 -3.3
 -18.5
 -81.1
 28.7
 -0.0
 -74.2

 3.40 90.00 90.00 95.10

 1.183
 T(K)
 295.0 year
 1977. R =
 6.30

 .Ecd,Et
 -10.7
 -9.5
 -91.8
 22.9
 -0.0
 -89.1

 cell5.74306.77106.867090.00100.1490.00crystal density1.366T(K)173.0 year2002. R =4.29AA-CLP Ec,Ep,Ed,Er,Ecd,Et-31.9-18.9-62.045.3-0.0-67.4 0.5840 10.3700 90.00 90.17 90.0 1.250 T(K) 110.0 year 1996. R = ,Ecd,Et -6.0 -11.8 -86.8 32.7 -0.0 90.00 2.40 -0.0 -71.9 22.0530 90.00 90.66 90.0 T(K) 295.0 year 1972. R = 90.00 6 80 -36.0 -21.0 -85.5 43.8 -0.0 -98.8 91.33 90.00 1.665 T(K) 295.0 year 2007. R = Ecd,Et -10.8 -11.0 -94.2 34.3 -0.0 3.84 -0.0 -81.7 11.2850 90.00 96.95 90.00 T(K) 200.0 year 2006. R = 90.00 3.10 -34.3 -22.4 -88.3 47.0 -0.0 -98.0 90.00 113.73 90.00 crystal density1.645T(K)295.0 year1976. R =4.AA-CLP Ec,Ep,Ed,Er,Ecd,Et-2.5-9.5-111.133.3-0.0-89.9 4.50

#DCBDOX10 'P n a m' cell 5.9830 7.1140 crystal density 1.603 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #DCLBEN01 'P 21/n ' cell 14.762 5.832 crystal density 1.523 crystal density AA-CLP Ec, Ep, Ed, Er, Ecd, Et #DCLBEN02 'P -1' cell 7.3200 5.9500 crystal density 1.545 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #DEZDUH 'Pna 21' cell 14.9630 5.6710 crystal density 1.770 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #DEZXEL 'P c a 21' cell 11.8810 9.8180 crystal density 1.669 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #DITBOX 'P 21' cell 7.7330 6.2450 crystal density 1.208 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #DNBENZ14 'P n a 21' cell 14.0690 13.2450 crystal density 1.603 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #DNITBZ11 'P 21/n' cell 11.1340 5.4590 crystal density 1.618 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #EXODAW 'P -1' cell 5.6040 6.1169 crystal density 1.530 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #EZURUM 'P 21/c' #FACFOE 'P 21/n' #FACGEV 'P 21/c' #FACJAU 'P 21/c' cell 4.4719 10.2850 crystal density 1.796 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #FAXTUU01 'P 21 21 21' cell 6.0396 10.1568 crystal density 1.800 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #FMANUL01 'P n a 21' cell 9.1110 13.2030 crystal density 1.409 1.409 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #FOVNIN 'P 21 c n' cell 7.7210 11.3790 crystal density 1.815 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #FOVQOX 'Pna 21' cell 9.5240 11.0060 crystal density 1.324 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #GLURAC03 'C 2/c' cell 12.9769 4.7484 crystal density 1.484 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #HAYYAH 'P 21/n' cell 7.9180 14.1090 crystal density 1.218

cell13.695010.55709.285090.0090.0090.00crystal density1.288T(K)295.0year1972.R =3.90AA-CLP Ec,Ep,Ed,Er,Ecd,Et-21.5-7.5-81.824.7-0.0-86.1

 7.1140
 24.6370
 90.00
 90.00
 90.00

 1.603
 T(K)
 295.0 year
 1973. R =
 6.40

 ,Ecd,Et
 0.3
 -20.4
 -134.0
 41.1
 -0.0
 -112.9

 4.039 90.00 112.-78 90.00 T(K) 295.0 year 1997. R = 4.95 -3.1 -6.9 -79.6 22.9 -0.0 -66.7 4.95 3.9800 93.17 113.58 93.4 T(K) 295.0 year 1957. R = -3.1 -6.9 -79.6 22.9 -0.0 93.50 6.00 -0.0 -66.7 9.5590 90.00 90.00 90.00 T(K) 173.0 year 1984. R = 4.50 -16.9 -18.8 -69.0 37.4 -1.3 -68.6 7.4400 90.00 90.00 90.00 T(K) 295.0 year 1984. R = 3.70 -17.3 -18.6 -107.9 46.3 -2.6 -99.9 10.8150 90.00 108.34 90.00 T(K) 295.0 year 1986. R = 3.80 -8.0 -11.9 -102.6 29.7 -0.1 -92.9 10.8150 3.80 3.7380 90.00 90.00 90.00 T(K) 200.0 year 2002. R = 5.40 -18.3 -23.7 -92.4 48.8 -1.2 -86.8 5.6810 90.00 92.26 90.00 T(K) 295.0 year 1980. R = 4.08 -22.3 -25.1 -91.4 49.7 -0.0 -89.2 7.8400 92.97 91.55 109.32 T(K) 294.0 year 2003. R = 5.00 -29.2 -28.3 -109.7 51.1 -0.0 -116.2
 #E20r0M
 F 21/C

 cell
 10.1739
 6.5823
 12.4662
 90.00
 94.07
 90.00

 crystal density
 1.385
 T(K)
 173.0 year
 2004. R =
 2.48

 AA-CLP Ec, Ep, Ed, Er, Ecd, Et
 -24.0
 -23.4
 -97.5
 50.1
 -0.0
 -94.8
 cell7.48065.960811.725090.00103.8290.00crystal density1.493T(K)123.0 year1998. R =3.44AA-CLP Ec,Ep,Ed,Er,Ecd,Et-5.6-9.6-61.424.9-0.0-51.6 cell 5.8090 6.5300 7.1900 90.00 101.89 90.00 crystal density 1.420 T(K) 215.0 year 1998. R = 4.43 AA-CLP Ec, Ep, Ed, Er, Ecd, Et -6.4 -9.2 -53.8 20.6 -0.0 -48.8 6.3420 90.00 107.97 90.00 T(K) 135.0 year 1998. R = 4.24 -11.3 -12.0 -66.5 36.8 -0.0 -53.1 6.3420 15.5495 90.00 90.00 90.00 T(K) 183.0 year 2007. R = 2.87 -29.2 -31.9 -118.2 62.6 -0.0 -116.8 6.9810 6.9810 90.00 90.00 90.00 T(K) 173.0 year 1976. R = 4.80 -10.5 -13.5 -87.4 31.9 -2.3 -81.8 18.5070 90.00 90.00 90.00 T(K) 295.0 year 1985. R = -3.2 -7.0 -132.4 39.1 -0.2 -3.00 -0.2 -103.7 5.9420 90.00 90.00 90.00 T(K) 298.0 year 2009. R = 3.52 -60.5 -29.3 -103.3 56.6 -3.3 -139.8 0.6955 90.00 98.30 90.00 T(K) 130.0 year 2000. R = 4.64 9.6955 -63.1 -57.2 -116.1 94.3 -0.0 -142.2 8.1930 90.00 111.46 90.00 T(K) 295.0 year 1994. R = 90.00

2

4.55

#HCLBNZ11 'P 21/n' AA-CLP Ec, Ep, Ed, Er, Ecd, Et #HCLHEP 'C 2/c' cell 12.5990 10.3200 crystal density 1.641 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #HEPTAN02 'P -1' cell 4.1160 4.6860 crystal density 0.904 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #HEXANE01 'P -1' cell 4.1309 4.6963 crystal density 0.900 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #HITMUS 'P 21/c' cell 7.0290 8.5860 crystal density 1.353 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #HOWBAW 'P -1' cell 5.4500 5.4490 crystal density 1.303 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #JOHBUD 'C c' cell 11.4210 6.0190 crystal density 1.551 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #MCINAM10 'A b a 2' cell 11.2890 17.1750 crystal density 1.159 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #NAPHTA10 'P 21/a' cell 8.2128 5.9727 crystal density 1.198 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #NBORAN02 'P 21 21 21' cell 5.9260 9.4890 crystal density 1.442 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #NITRBE01 'P 21/c' AA-CLP Ec, Ep, Ed, Er, Ecd, Et #OCTANE01 'P -1' cell 4.1947 4.7518 crystal density 0.906 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #PHBALD11 'P 21/c' cell 6.6992 13.5550 crystal density 1.357 1.357 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #PUGDEB 'C 2/c' cell 7.4238 11.5900 crystal density 1.569 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #PVVAWA01 'I 2/a' cell 6.1600 11.9090 crystal density 1.601 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #QATTIO 'P 21/n' cell 5.0140 13.7880 crystal density 1.215 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #QATTOU 'P 21 21 21' cell 5.3234 6.6991 crystal density 1.138 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #TCHLBZ03 'P 21 21 21' cell 3.8422 13.0973 crystal density 1.736 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #TEPHTH06 'P -1' cell 7.7017 6.3457 crystal density 1.628 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #TEPNIT11 'P -1'

AA-CLP Ec, Ep, Ed, Er, Ecd, Et -7.0 -12.9 -98.2 34.2 -0.0 -83.9 cell 8.0476 3.8363 14.8208 90.00 92.13 90.00 crystal density 2.069 T(K) 295.0 year 1974. R = 4.60 7.3 -4.0 -135.7 38.6 -0.0 -93.7 9.9940 90.00 107.02 90.00 -9.6 -10.5 -129.4 42.4 -0.0 -107.1 20.3480 78.11 81.79 74.25 T(K) 90.0 year 1999. R = 7.02 0.5 -22.8 -70.6 26.8 -0.0 -66.1 8.5390 83.40 87.26 75.17 T(K) 90.0 year 1999. R = 3 0.6 -20.6 -62.2 23.0 -0.0 -59.1 3.42 7730 90.00 114.34 90.00 T(K) 295.0 year 1998. R = 5.47 -34.3 -31.9 -84.5 45.5 -0.0 -105.1 7.7730 5.47 7.6780 93.27 94.10 108.93 T(K) 153.0 year 1999. R = -10.8 -17.1 -112.1 45.9 -0.0 6.32 -0.0 -94.0 10.1770 90.00 104.62 90.00 5.20 T(K) 295.0 year 1991. R = -29.6 -27.4 -84.9 62.0 -0.3 -80.1 280 90.00 90.00 90.00 T(K) 295.0 year 1978. R = 9.5280 5.00 -27.5 -20.2 -96.8 53.6 -8.9 -99.9 8.6745 90.00 123.39 90.00 T(K) 239.0 year 1982. R = 3.50 -7.6 -7.9 -85.3 23.2 -0.0 -77.6 13.4520 90.00 90.00 90.00 T(K) 173.0 year 2000. R = 4.10 -35.8 -29.7 -82.0 45.0 -0.0 -102.5 cell 3.8014 11.6153 12.9843 90.00 94.98 90.00 crystal density 1.432 T(K) 103.0 year 1992. R = 2.20 -12.5 -14.4 -76.7 32.4 -0.0 -71.1 10.9980 85.11 83.77 74.26 T(K) 90.0 year 1999. R = 4.6 0.9 -24.7 -74.8 24.4 -0.0 -74.2 4.64 7.1441 90.00 112.87 90.00 T(K) 296.0 year 2008. R = 3.81 -43.2 -23.4 -85.8 45.3 -0.0 -107.0 7.1441 7.0473 90.00 112.78 90.00 T(K) 233.0 year 2009. R = 6.7 -6.7 -10.1 -56.3 22.4 -0.0 -50.7 6.13 7.5040 90.00 7.5040 90.00 95.47 90.00 T(K) 130.0 year 1998. R = 4.19 -6.4 -13.5 -60.0 30.4 -0.0 -49.5 90.00 4640 90.00 107.27 90.00 T(K) 130.0 year 2000. R = 6 -58.6 -30.8 -89.8 55.6 -0.0 -123.6 7.4640 6.32 17.0400 90.00 90.00 90.00 T(K) 130.0 year 2000. R = 3.10 -60.7 -32.6 -96.2 64.5 -0.0 -125.1 13.7984 90.00 90.00 90.00 T(K) 120.0 year 2003. R = 3 1.0 -8.3 -100.7 31.0 -0.0 -77.0 3.01

3.6679 92.92 107.91 94.64 T(K) 82.0 year 1986. R = 6.90 -62.1 -44.5 -145.0 107.3 -0.0 -144.4

cell3.84306.57507.3130114.5093.5396.99crystal density1.285T(K)295.0 year1984. R =4.26AA-CLP Ec,Ep,Ed,Er,Ecd,Et-29.9-17.0-75.628.1-0.0-94.3 #VACCEH 'Pbca' cell 7.0700 7.1690 crystal density 1.060 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #XAYMEP 'P -1' cell 3.6860 5.2900 crystal density 1.490 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #XAYMIT 'P 21 21 21' cell 3.7611 8.2710 crystal density 1.490 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #XOZBUK 'P 21/n' cell 9.0374 5.2012 13.0270 crystal density 1.522 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #YUYPUD01 'P 21/c' cell 3.7848 11.9274 crystal density 1.292 AA-CLP Ec, Ep, Ed, Er, Ecd, Et #ZIVKOE 'P -1' #ZZZITY01 'P 21/n' cell 5.8060 5.0230 11.2150 90.00 crystal density 1.096 T(K) 18 crystal density AA-CLP Ec, Ep, Ed, Er, Ecd, Et #ZZZSPY01 'P b c a' cell 10.5160 7.5960 16.8680 90.00 crystal density 1.047 T(K) 200

9.9090 90.00 90.00 90.00 T(K) 153.0 year 1988. R = 3.40 -4.8 -10.3 -55.1 17.1 -0.0 -53.2

9.4700 102.43 92.78 100.93 T(K) 150.0 year 2000. R = 4.05 -10.1 -13.5 -117.2 43.6 -0.0 -97.2

- 26.1100 90.00 90.00 90.00 T(K) 150.0 year 2000. R = 4.85 -16.8 -18.0 -121.7 44.3 -0.0 -112.2
- 3.0270 90.00 97.58 90.00 T(K) 100.0 year 2009. R = 4.06 -27.0 -19.4 -92.5 50.7 -0.0 -88.2

14.5974 90.00 91.62 90.00 T(K) 153.0 year 2002. R = 5 -27.9 -16.9 -76.0 27.5 -0.0 -93.3 5.89

 cell
 6.5470
 7.0570
 9.6870
 107.48
 102.07
 102.23

 crystal density
 1.450
 T(K)
 155.0 year
 1996. R =
 4.

 AA-CLP Ec, Ep, Ed, Er, Ecd, Et
 -35.0
 -26.5
 -100.0
 52.0
 -0.0
 -109.6

 4.90

> 100.48 90.00 T(K) 180.0 year 1986. R = 4.50 -6.1 -13.6 -73.3 24.0 -0.0 -69.1

90.00 90.00

 crystal density
 1.047
 T(K)
 200.0 year
 2000. R =

 AA-CLP Ec, Ep, Ed, Er, Ecd, Et
 -4.5
 -13.1
 -65.1
 18.2
 -0.0
 -64.6

 5.29

Equilibrium structure and dynamics in organic crystals by Monte Carlo simulation. Critical assessment of force fields and comparison with static packing analysis

Angelo Gavezzotti

Supporting Information

"Topology" (force field) files, atom numbering, x,y,z atomic coordinates, raw atomic charges to be rescaled by a factor of 0.41 rigid molecules

Refer to A. Gavezzotti, New J. Chem. 2011, 35, 1360 for the description of the force field, and to the document CLPmanual.doc available at http://users.unimi.it/gavezzot or from the author upon request at angelo.gavezzotti@unimi.it

	1					
#ABUMI	T 'P 21/	'n' topol	ogy			CI
12		1 50605	1 41005		0 0015	102
1	-0.00297	1.58605	-1.41325	42	-0.2317	\bigcirc
2	0.00635	-1.5//6/	-1.42/12	42	-0.2284	
3	-0.00339	0.69215	0.07133	12	0.3068	
4	-0.01034	-0.69624	0.06331	12	0.3055	
5	-0.01074	-1.38881	1.26777	12	-0.3348	
6	-0.00080	-0.70129	2.45782	12	-0.3166	
7	0.00736	0.68523	2.46844	12	-0.3214	\bigcap
8	0.00703	1.38659	1.27136	12	-0.3378	
9	-0.01889	-2.46873	1.26889	2	0.2923	
10	0.00065	-1.24475	3.39116	2	0.2860	
11	0.01396	1.21868	3.40745	2	0.2868	
12	0.01487	2.46651	1.27429	2	0.2933	KAL
#BENZE	N07 'Pbc	c a' topol	ogy			
12						
1	0.00142	0.94794	1.02091	12	-0.2879	ł
2	-0.00142	-0.41000	1.33501	12	-0.2889	10
3	-0.00142	1.35749	-0.30985	12	-0.2886	
4	0.00142	-1.35749	0.30985	12	-0.2886	
5	0.00142	0.41000	-1.33501	12	-0.2889	
6	-0.00142	-0.94794	-1.02091	12	-0.2879	
7	0.00586	1.68389	1.81129	2	0.2883	
8	-0.00581	-0.72785	2.36712	2	0.2888	Н
9	-0.00586	2.41057	-0.54951	2	0.2883	10
10	0.00586	-2.41057	0.54951	2	0.2883	
11	0.00581	0.72785	-2.36712	2	0.2888	
12	-0.00586	-1.68389	-1.81129	2	0.2883	
#BTLNO	701 P 21		0017			
#DIDNO 26	201 1 21/	c copor	logy			
1	0 02176	0 00450	-2 66944	42	-0 4825	
2	-0 15278	-0.00037	-0 70951	13	0 4558	
2	0 01464	-1 44155	-0 35769	13	-0 5815	
1	1 2/30/	0 73774	-0 34487	13	-0 6225	
ч 5	_1 2/531	0.73774	-0 3/350	1 २	-0 5/02	H
J E	1.24001	_1 //500	1 16310	13	-0 2230	121
0 7	1 24460	1.11,00	1 10000	12	_0 2297	
/	1 224400	0.72070	1 10100	10 10	-0.2207	
ð	-1.23412	0.70020	1 67047	10	-0.2099	F
10	1 22012	-0./1083	1 60207	10	-0.5005	11
1 U	-1.22912	-0./3353	1.0029/	⊥3 1 2	-0.5821	
	-0.00198	1.43462	1.69/20	τς	-0.5/94	
12	0.93964	-1.83600	-0.75158	3	0.2829	

13	-0.79621	-2.03735	-0.75014	3	0.2828
14	1.27276	1.74494	-0.73353	3	0.2839
15	2.09150	0.20122	-0.74507	3	0.2839
16	-2.14904	0.26506	-0.72543	3	0.2852
17	-1.18990	1.72584	-0.72434	3	0.2855
18	0.02025	-2.46962	1.50703	3	0.2655
19	2.12022	1.24110	1.55048	3	0.2662
20	-2.11441	1.21598	1.54748	3	0.2646
21	2.14882	-1.21647	1.32652	3	0.2800
22	1.27112	-0.73333	2.75827	3	0.2810
23	-1.23559	-0.74676	2.76287	3	0.2815
24	-2.11536	-1.24505	1.33764	3	0.2801
25	-0.00986	2.45983	1.35760	3	0.2800
26	-0.00287	1.44080	2.77719	3	0.2814

#BNZQU	IO3 'P 21/	c' topol	ogy		
12					
1	-0.00559	-0.00010	2.64911	27	-1.1217
2	0.00407	0.00315	1.42705	10	0.9741
3	0.00723	1.25938	0.66500	12	-0.2253
4	0.00722	-1.26461	0.66525	12	-0.2219
5	-0.00722	1.26461	-0.66525	12	-0.2219
6	-0.00407	-0.00315	-1.42705	10	0.9741
7	0.00559	0.00010	-2.64911	27	-1.1217
8	-0.00723	-1.25938	-0.66500	12	-0.2253
9	0.02159	2.19938	1.19660	2	0.2971
10	0.02143	-2.20561	1.19512	2	0.2977
11	-0.02143	2.20561	-1.19512	2	0.2977
12	-0.02159	-2.19938	-1.19660	2	0.2971

#CAXN	UL05 'P 21	/n' topo	logy		
18					
1	-0.00803	2.71503	0.38185	41	-0.4988
2	-0.00849	1.34485	2.70903	41	-0.4935
3	0.00689	-1.34577	2.70796	41	-0.4954
4	-0.02883	-2.71010	0.38654	41	-0.4957
5	0.00490	1.36841	0.36701	12	0.5071
6	0.01008	0.69549	1.53821	12	0.5241
7	0.01380	-0.69495	1.53340	12	0.5202
8	0.00612	-1.37144	0.36425	12	0.5115
9	0.01395	-0.70689	-0.87606	14	0.0053
10	0.01578	-1.39066	-2.10988	12	-0.3085
11	0.00412	-0.69753	-3.27690	12	-0.3084
12	-0.01356	0.69430	-3.27570	12	-0.3071
13	-0.00246	1.39139	-2.11099	12	-0.3110
14	0.00843	0.70583	-0.87337	14	0.0054
15	0.02650	-2.47045	-2.12603	2	0.2872
16	0.00864	-1.23129	-4.21580	2	0.2850
17	-0.03646	1.22718	-4.21476	2	0.2848
18	-0.00194	2.47122	-2.12909	2	0.2877

#CECGE	X 'P 21'	topol	ogy		
20					
1	-0.10292	-2.67383	-1.00333	27	-1.1776
2	0.09077	2.67930	-0.97593	27	-1.1800
3	-0.01673	0.69335	0.30707	12	0.0343
4	-0.01241	1.37531	1.52352	12	-0.2477
5	0.02406	0.68620	2.70765	12	-0.2455
6	0.00999	-0.69027	2.71504	12	-0.2514
7	-0.01451	-1.38645	1.51680	12	-0.2471
8	-0.01174	-0.71108	0.30168	12	0.0368
9	0.04850	-1.46252	-0.97895	10	0.9045
10	0.33532	-0.67620	-2.21657	13	-0.5080
11	-0.30662	0.69710	-2.22400	13	-0.5032
12	-0.04734	1.46399	-0.97784	10	0.9020
13	-0.03799	2.45494	1.53258	2	0.2867
14	0.06410	1.22700	3.64163	2	0.2853
15	0.01798	-1.22650	3.65245	2	0.2864
16	-0.03600	-2.46615	1.52722	2	0.2868
17	-0.02099	-1.23131	-3.07173	3	0.3032
18	1.40457	-0.56085	-2.31540	3	0.3639
19	-1.37318	0.58496	-2.35133	3	0.3663
20	0.07296	1.25709	-3.06585	3	0.3044
#DAZNA	P 'Pbc	a' topol	odà		
16		-			

-0.00902	-1.30207	1.23362	12	0.1735
0.01014	1.29890	1.23086	12	0.1722
-0.00968	1.38042	-1.24990	12	-0.2705
-0.00401	0.69371	-2.41787	12	-0.2449
0.00490	-0.69180	-2.42892	12	-0.2492
0.00999	-1.37834	-1.26084	12	-0.2701
-0.00299	-0.69066	-0.03346	14	0.0865
-0.00077	0.68866	-0.04076	14	0.0909
-0.00576	-0.68619	2.37542	18	-0.5900
0.00626	0.68662	2.36872	18	-0.5839
-0.01713	-2.38175	1.25801	2	0.2740
0.02297	2.37851	1.25580	2	0.2732
-0.02104	2.46037	-1.25627	2	0.2852
-0.00650	1.23370	-3.35318	2	0.2832
0.00780	-1.22434	-3.36843	2	0.2847
0.02407	-2.45818	-1.27194	2	0.2851
	-0.00902 0.01014 -0.00968 -0.00401 0.00999 -0.00299 -0.00077 -0.00576 0.00626 -0.01713 0.02297 -0.02104 -0.00650 0.00780 0.02407	-0.00902 -1.30207 0.01014 1.29890 -0.00968 1.38042 -0.00401 0.69371 0.00490 -0.69180 0.00999 -1.37834 -0.00299 -0.69066 -0.00077 0.68866 -0.00576 -0.68619 0.00626 0.68662 -0.01713 -2.38175 0.02297 2.37851 -0.02104 2.46037 -0.00650 1.23370 0.00780 -1.22434 0.02407 -2.45818	-0.00902-1.302071.233620.010141.298901.23086-0.009681.38042-1.24990-0.004010.69371-2.417870.00490-0.69180-2.428920.00999-1.37834-1.26084-0.00299-0.69066-0.03346-0.00576-0.686192.375420.006260.686622.36872-0.01713-2.381751.258010.022972.378511.25580-0.021042.46037-1.25627-0.006501.23370-3.353180.00780-1.22434-3.368430.02407-2.45818-1.27194	-0.00902-1.302071.23362120.010141.298901.2308612-0.009681.38042-1.2499012-0.004010.69371-2.41787120.00490-0.69180-2.42892120.00999-1.37834-1.2608412-0.00299-0.69066-0.0334614-0.00576-0.686192.37542180.006260.686622.3687218-0.01713-2.381751.2580120.022972.378511.255802-0.021042.46037-1.256272-0.006501.23370-3.3531820.02407-2.45818-1.271942

#DCBDC) X10 'P n a	m' topol	ogy		
22					
1	-0.08557	1.15999	-5.02841	42	-0.2457
2	0.09082	0.25396	-1.15548	12	0.4844
3	0.04690	-1.14543	-1.16040	12	0.4352
4	0.07073	0.96850	-2.33805	12	-0.4098
5	-0.04141	-1.80345	-2.36515	12	-0.3259
6	-0.01566	0.24126	-3.54034	12	0.3222
7	-0.04305	-1.14603	-3.55758	12	-0.3658
8	0.18651	1.00324	-0.00000	23	-0.7944
9	0.03729	-1.87562	0.00000	23	-0.7807
10	0.09082	0.25396	1.15548	12	0.4844
11	0.04690	-1.14543	1.16040	12	0.4352
12	0.07073	0.96850	2.33805	12	-0.4098
13	-0.04141	-1.80345	2.36515	12	-0.3259
14	-0.01566	0.24126	3.54034	12	0.3222
15	-0.04305	-1.14603	3.55758	12	-0.3658
16	-0.08557	1.15999	5.02841	42	-0.2457
17	0.11959	2.04738	-2.34002	2	0.3060
18	-0.11206	-2.88112	-2.36515	2	0.2929
19	-0.06502	-1.68915	-4.49083	2	0.2941
20	0.11959	2.04738	2.34002	2	0.3060
21	-0.11206	-2.88112	2.36515	2	0.2929
22	-0.06502	-1.68915	4.49083	2	0.2941

#DCLBE	N01 'P 21/	a' topol	odà		
12					
1	0.00063	0.00019	-3.10432	42	-0.2487
2	-0.00509	0.00159	-1.36075	12	0.3204
3	0.00015	1.19581	-0.68187	12	-0.3276
4	0.00015	-1.18849	-0.68841	12	-0.3254
5	-0.00015	1.18849	0.68841	12	-0.3254
6	0.00509	-0.00159	1.36075	12	0.3204
7	-0.00063	-0.00019	3.10432	42	-0.2487
8	-0.00015	-1.19581	0.68187	12	-0.3276
9	0.00444	2.13075	-1.22247	2	0.2908
10	0.00446	-2.11977	-1.23533	2	0.2904
11	-0.00446	2.11977	1.23533	2	0.2904
12	-0.00444	-2.13075	1.22247	2	0.2908

DCLB	EN02 '	'P -1'	topol	Logy		
12						
1	-0.0	0112	0.00610	3.14556	42	-0.2880
2	-0.0)1956	-0.00497	1.35794	12	0.3447
3	0.0)1568	1.16233	0.69626	12	-0.3278
4	0.0)1586	-1.15169	0.73891	12	-0.3133
5	-0.0)1586	1.15169	-0.73891	12	-0.3133
6	-0.0)1568	-1.16233	-0.69626	12	-0.3278
7	0.0)1956	0.00497	-1.35794	12	0.3447
8	0.0	0112	-0.00610	-3.14556	42	-0.2880
9	0.0	6705	2.09643	1.23597	2	0.2921
10	0.0	6794	-2.07600	1.29507	2	0.2923
11	-0.0	6794	2.07600	-1.29507	2	0.2923
12	-0.0	06705	-2.09643	-1.23597	2	0.2921

#

#DEZDU	"H 'Pna	21' topol	ogy		
20					
1	1.04508	1.57754	-0.52586	41	-0.5145
2	1.07473	-1.54706	0.50613	41	-0.5149
3	-0.42975	-0.74203	2.82422	41	-0.5245
4	1.12098	0.68380	2.29362	41	-0.5314
5	1.11886	-0.68046	-2.28913	41	-0.5264
6	-0.43957	0.72950	-2.82821	41	-0.5267
7	0.11810	0.57292	-0.52878	13	0.5247
8	0.13326	-0.55577	0.53280	13	0.5250
9	-0.06188	0.13442	1.84728	13	1.0720
10	-1.11928	1.14373	1.48518	13	-0.6248
11	-1.31959	0.77226	0.01774	13	-0.2553
12	-1.29838	-0.79243	-0.01442	13	-0.2552
13	-1.10681	-1.16563	-1.47169	13	-0.6289
14	-0.05319	-0.13529	-1.84052	13	1.0710
15	-0.77702	2.16050	1.60906	3	0.2930
16	-2.02088	1.02181	2.06713	3	0.2916
17	-2.08490	1.41455	-0.39226	3	0.2708
18	-2.04456	-1.45760	0.39443	3	0.2706
19	-2.01285	-1.05446	-2.04896	3	0.2914
20	-0.75447	-2.17898	-1.59550	3	0.2923

#DEZXE	L 'Pca	21' topol	ogy		
18					
1	-0.32880	0.23550	-0.58141	17	-0.3662
2	0.01904	-0.98284	-1.23790	12	0.6067
3	-0.16737	-2.16050	-0.71447	12	-0.4751
4	-0.73780	-2.43971	0.60097	12	-0.3250
5	-0.65316	-1.66672	1.67663	12	-0.3395
6	-0.06296	-0.35784	1.74568	12	0.1821
7	0.10254	0.51052	0.74780	12	0.2419
8	0.48754	1.94771	0.75783	13	-0.0713
9	-0.13033	2.46230	-0.46291	23	-0.7965

10	-0.52659	1.44095	-1.24608	10	1.4783
11	-1.01765	1.60695	-2.32554	27	-1.1677
12	0.80368	-0.78373	-2.76071	42	-0.2112
13	0.38136	0.22197	3.33521	42	-0.2571
14	0.12790	-3.01197	-1.30968	2	0.3095
15	-1.28195	-3.36633	0.70891	2	0.2879
16	-1.06954	-2.06072	2.59195	2	0.2963
17	1.56049	2.06954	0.73928	3	0.3057
18	0.10953	2.45192	1.63489	3	0.3014

#DITBOX	'P 21'	topol	odà		
26		-			
1	-0.11481	-1.37671	2.40064	12	-0.3290
2	-0.48301	-0.69853	3.54995	12	-0.3170
3	-0.47772	0.68343	3.54583	12	-0.3138
4	-0.12643	1.38077	2.40931	12	-0.3277
5	-0.11764	1.37613	-2.41327	12	-0.3246
6	-0.47403	0.68564	-3.54814	12	-0.3145
7	-0.48794	-0.69674	-3.54547	12	-0.3171
8	-0.12447	-1.38873	-2.40018	12	-0.3345
9	0.69208	-1.41201	0.00398	13	-0.5433
10	0.67632	1.42751	-0.00441	13	-0.5495
11	0.25621	-0.68662	1.25507	12	0.0339
12	0.23850	0.70110	1.25626	12	0.0317
13	0.25386	-0.69843	-1.24598	12	0.0307
14	0.24786	0.70355	-1.26322	12	0.0295
15	-0.11625	-2.45668	2.39535	2	0.2863
16	-0.77047	-1.24206	4.43778	2	0.2876
17	-0.75120	1.22219	4.44099	2	0.2857
18	-0.13539	2.46073	2.41680	2	0.2871
19	-0.12361	2.45607	-2.42129	2	0.2865
20	-0.74377	1.22502	-4.44406	2	0.2860
21	-0.78128	-1.23661	-4.43364	2	0.2871
22	-0.13389	-2.46869	-2.40036	2	0.2877
23	0.27491	-2.40815	0.00826	3	0.2921
24	1.76844	-1.50096	0.00252	3	0.3343
25	1.75189	1.52446	-0.00106	3	0.3328
26	0.25173	2.42057	-0.00579	3	0.2918

#EZURUM	'P 21/	c' topol	ogy		
23					
1	-0.07339	-1.25321	-2.44131	42	-0.3139
2	0.81217	-1.57784	2.81341	27	-1.2231
3	0.22333	-1.05510	0.65515	21	-0.6477
4	0.19495	-0.89403	1.99524	10	1.0408
5	-0.74184	0.25554	2.31061	13	-0.5743
6	-0.90046	0.96985	0.96216	13	-0.2519
7	-0.75996	-0.21116	-0.02819	13	-0.0086
8	-0.35567	0.22430	-1.42417	13	0.0179
9	0.83829	1.15334	-1.46402	13	-0.5726
10	0.49894	2.39700	-0.64335	13	-0.5565
11	0.20473	2.02425	0.80057	13	-0.5695
12	-0.31974	0.91304	3.05626	3	0.3096
13	-1.69176	-0.10174	2.68002	3	0.3327
14	-1.82040	1.52078	0.83347	3	0.2740
15	-1.66199	-0.76996	-0.22907	3	0.2709
16	-1.13061	0.93552	-1.66920	3	0.2947
17	1.06206	1.42934	-2.48394	3	0.2826
18	1.70746	0.66120	-1.05308	3	0.2809
19	-0.36214	2.88830	-1.07189	3	0.2818
20	1.32811	3.08817	-0.67588	3	0.2810
21	1.11071	1.64707	1.25151	3	0.2811
22	-0.08775	2.91603	1.33491	3	0.2829
23	0.61852	-1.87258	0.23611	7	0.4872

#FACFO	E 'P 21/	n' topol	ogy		
12					
1 2 3 4	-0.00634 0.00978 -0.00481 0.00995	-1.33739 -0.69151 1.32436 0.68642	-1.60997 -0.42995 -1.62921 -0.43766	41 12 41 12	-0.4653 0.5345 -0.4674 0.5307
5	0.00517	1.39841	0.73952	12	-0.3367
6	-0.00789	0.70091	1.93988	12	-0.3138
/	-0.00334	-0.68389	1.94945	12	-0.3136
0	0.00478	-1.39234	0.73449	2	-0.3300
10	-0 02176	2.47030	2 87398	2	0.2909
11	-0.00612	-1.21515	2.88976	2	0.2863
12	0.00707	-2.47255	0.75498	2	0.2989
#FACGE	V 'P 21/	c' topol	ogy		
12	0 00110	0 00 61 4	0 0000		0 4546
1	-0.00119	-0.00614	-2.70609	41	-0.4/46
23	0.00252	-0.00117	-1.34453	12	-0 3296
Д	0.00102	-1 20216	-0.67872	12	-0.3316
5	-0 00103	1 20216	0.67872	12	-0 3316
6	-0.00252	0.00117	1.34453	12	0.5415
7	0.00119	0.00614	2.70609	41	-0.4746
8	-0.00102	-1.20196	0.69847	12	-0.3296
9	0.00146	2.12878	-1.25287	2	0.2976
10	0.00147	-2.13280	-1.22675	2	0.2968
11	-0.00147	2.13280	1.22675	2	0.2968
12	-0.00146	-2.12878	1.25287	2	0.2976
#FACJA 12	U 'P 21/	c' topol	odð		
1	-0.00509	-1.34816	2.36230	41	-0.4659
2	0.00236	1.34977	2.36205	41	-0.4680
3	0.00677	-0.69374	1.18576	12	0.5065
4	0.00155	0.68972	1.18314	12	0.5042
5	0.00713	-1.40896	-0.00040	12	-0.3886
6	-0.00700	1.40888	0.00044	12	-0.3886
7	-0.00664	0.69367	-1.18573	12	0.5065
8	0.00522	1.34808	-2.36226	41	-0.4659
10	-0.00142	-0.68980	-1.18310	12 41	0.5042
11	-0.00276	-1.34934	-2.30213	4⊥ 2	-0.4680 0 3119
12	-0.01368	2.48888	0.00250	2	0.3118

#HCLBNZ11 'P 21/n' topology 12 -0.01620 2.31239 -2.07728 -0.2254 42 1 2 0.01664 2.95182 0.96441 42 -0.2222 3 0.01632 -0.64297 -3.04196 -0.2237 42 4 -0.00186 1.03722 -0.92804 12 0.2236 0.2236 5 -0.00086 1.32302 0.43695 12 -0.28339 -1.36561 0.2241 0.00110 12 6 7 -0.00110 0.28339 1.36561 12 0.2242 0.00086 -1.32302 -0.43695 12 0.2236 8 9 -0.01632 0.64297 3.04196 42 -0.2237 10 0.00186 -1.03722 0.92804 12 0.2236

11	-0.01664	-2.95182	-0.96441	42	-0.2222
12	0.01620	-2.31239	2.07728	42	-0.2254

#HOWBA	W 'P -1'	topol	ogy		
28		-			
1	-0.09277	-1.38897	-0.00126	13	-0.0384
2	0.36977	-0.64722	1.17813	17	-0.4842
3	0.35183	-0.64322	-1.17579	17	-0.4798
4	-0.11060	-1.20479	-2.45829	13	-0.2967
5	-0.08204	-1.20924	2.46655	13	-0.2995
6	0.02636	-0.00754	-3.41982	13	-0.5931
7	-0.35215	0.64300	1.17599	17	-0.4800
8	0.09289	1.38893	0.00119	13	-0.0385
9	-0.36965	0.64718	-1.17820	17	-0.4842
10	0.08216	1.20920	-2.46662	13	-0.2995
11	0.11072	1.20475	2.45822	13	-0.2966
12	-0.02654	0.00792	3.41991	13	-0.5932
13	-1.16925	-1.47605	0.00559	3	0.2513
14	0.32266	-2.38585	-0.00730	3	0.2738
15	-1.13260	-1.54829	-2.39543	3	0.2681
16	0.50256	-2.03701	-2.77109	3	0.2755
17	0.56980	-2.00265	2.80123	3	0.2761
18	-1.08305	-1.60809	2.39370	3	0.2690
19	-0.81683	0.05666	-4.09158	3	0.2889
20	0.92352	-0.08206	-4.01649	3	0.2892
21	1.16937	1.47583	-0.00556	3	0.2513
22	-0.32241	2.38586	0.00715	3	0.2738
23	-0.56957	2.00278	-2.80120	3	0.2761
24	1.08325	1.60786	-2.39381	3	0.2690
25	-0.50207	2.03728	2.77087	3	0.2755
26	1.13283	1.54784	2.39514	3	0.2681
27	0.81639	-0.05614	4.09199	3	0.2889
28	-0.92391	0.08256	4.01625	3	0.2892

#NAPH1	A10 'P 21/	a' topol	ogy		
18					
1	-0.00281	0.70317	2.42029	12	-0.2921
2	0.00463	1.40150	1.24364	12	-0.3088
3	-0.00053	0.70988	-0.00165	14	0.0502
4	-0.00360	1.40072	-1.24119	12	-0.3076
5	-0.00091	-0.70365	2.42437	12	-0.2938
6	0.00053	-0.70988	0.00165	14	0.0502
7	0.00091	0.70365	-2.42437	12	-0.2938
8	0.00360	-1.40072	1.24119	12	-0.3076
9	-0.00463	-1.40150	-1.24364	12	-0.3088
10	0.00281	-0.70317	-2.42029	12	-0.2921
11	-0.01023	1.23893	3.35799	2	0.2870
12	0.01443	2.48136	1.25907	2	0.2888
13	-0.00953	2.48060	-1.25414	2	0.2887
14	-0.00303	-1.23817	3.36279	2	0.2876
15	0.00303	1.23817	-3.36279	2	0.2876
16	0.00953	-2.48060	1.25414	2	0.2887
17	-0.01443	-2.48136	-1.25907	2	0.2888
18	0.01023	-1.23893	-3.35799	2	0.2870

#NBORAN02 'P 21 21 2 topology 20 -0.81103 1 0.86461 -0.03780 13 -0.2314 2 0.92859 0.71995 -0.14323 -0.2304 13 3 0.22963 1.01989 -1.52248 -0.1818 13 -1.23512 0.66145 12 -0.3614 4 -1.34971 5 -1.32220 -0.66324 -1.23777 12 -0.3723 6 0.08199 -1.23108 -1.34059 13 -0.1775 7 0.72332 -0.21593 -2.31398 -0.5433 13 0.12468 1.3505 8 -1.07261 1.24356 10 9 0.15738 1.21129 1.04822 10 1.3502 10 -0.29954 0.12516 1.80303 -0.7237 23 11 -0.12755 -2.10784 1.79175 27 -1.1226 -0.11259 2.32411 27 -1.1134 12 1.38324 0.04309 1.79527 -1.35298 0.3254 13 3 1.90029 1.18846 -0.09106 3 0.3302 14 15 0.37236 2.01329 -1.92135 3 0.2719 2 16 -2.06068 1.35719 -1.32233 0.3007 2 17 -2.22986 -1.23180 -1.09872 0.3009 0.07155 -2.28672 -1.56840 3 0.2725 18 1.79914 -0.29162 0.2747 19 -2.37155 3 3 20 0.33059 -0.27182 -3.31843 0.2809 #PUGDEB 'C 2/c' topology 12 1 0.00000 -1.94879 0.00000 41 -0.4650 2 -0.00159 -0.64260 2.30261 41 -0.4675 3 0.4803 -0.60783 0.00000 0.00000 12 0.07598 0.5421 4 0.00263 1.16904 12 5 0.00186 1.43201 1.19863 12 -0.3686 -0.3040 6 -0.00000 2.11002 -0.00000 12 7 0.00159 -0.64260 -2.30261 41 -0.4675 8 0.07598 -0.00263 -1.16904 12 0.5421 9 -0.00186 1.43201 -1.19864 12 -0.3686 10 0.00270 1.96596 2.13742 2 0.2973 2 -0.00000 11 -0.00000 3.18998 0.2822 2 12 -0.00270 1.96596 -2.13743 0.2973 #PVVAWA01 'I 2/a' topology 12 0.00000 -2.70212 1 0.00008 41 -0.4685 2 0.00548 1.35282 -2.35071 -0.4720 41 0.00004 3 0.00000 -1.35164 12 0.5995 4 -0.01041 -0.70145 -1.22069 12 -0.4388 5 -0.00288 0.67285 -1.17397 12 0.5961 -0.00000 1.40291 -0.00004 -0.4416 6 12 0.5961 7 0.00288 0.67292 1.17392 12 8 -0.00548 1.35296 2.35062 41 -0.4720 9 -0.70137 12 0.01041 1.22074 -0.4388 10 -0.02364 -1.24155 -2.15586 2 0.3134

#TCHLBZ	03 'P 21	21 2 topol	ogy		
12					
1	-0.00439	-3.10180	0.21985	42	-0.2393
2	-0.00291	1.35829	-2.79443	42	-0.2381
3	-0.00706	1.73435	2.58005	42	-0.2408
4	0.00579	-1.36513	0.08602	12	0.3716
5	-0.00269	-0.77605	-1.16226	12	-0.4317

2.48294

-1.24142

11

12

-0.00000

0.02364

0.3132

0.3134

2

2

-0.00008

2.15593

6	0.00575	0.60462	-1.23029	12	0.3746
7	0.00766	1.40213	-0.09803	12	-0.4354
8	0.00944	0.76856	1.13244	12	0.3731
9	0.01491	-0.60883	1.25642	12	-0.4389
10	-0.01554	-1.37653	-2.05986	2	0.3013
11	0.00775	2.47953	-0.17264	2	0.3017
12	0.02588	-1.08214	2.22714	2	0.3017

#TEPNI	T11 'P -1'	topol	odà		
14					
1	-0.00623	-0.00501	1.37398	12	0.1323
2	-0.00349	-1.21331	0.68967	12	-0.2351
3	-0.00355	1.20880	0.69223	12	-0.2357
4	-0.00403	-0.00377	2.81508	11	0.7778
5	0.00567	0.00367	3.95954	19	-1.0177
6	0.00355	-1.20880	-0.69223	12	-0.2357
7	0.00349	1.21331	-0.68967	12	-0.2351
8	0.00623	0.00501	-1.37398	12	0.1323
9	0.00403	0.00377	-2.81508	11	0.7778
10	-0.00567	-0.00367	-3.95954	19	-1.0177
11	-0.00682	-2.14722	1.23199	2	0.2893
12	-0.00695	2.14001	1.23924	2	0.2890
13	0.00695	-2.14001	-1.23924	2	0.2890
14	0.00682	2.14722	-1.23199	2	0.2893

#YUYP	UD01 'P 21	/c' topo	logy			
14						
1	-0.00797	-1.39261	-1.19095	12	-0.2317	Ν
2	-0.01130	1.94547	2.28522	19	-1.0229	102
3	0.00041	0.69140	-2.38043	12	-0.2559	
4	0.00607	0.70519	0.01382	12	0.1512	H 114
5	0.00349	-1.40854	1.27138	11	0.7804	
6	0.00441	1.40886	1.27074	11	0.7816	106 104
7	0.00508	-0.70286	0.01175	12	0.1504	$() = ()_{110}$
8	0.00188	-1.94951	2.28375	19	-1.0216	N 107
9	-0.00416	-0.68863	-2.38296	12	-0.2550	
10	0.00511	1.39146	-1.18424	12	-0.2302	109_C
11	-0.02103	-2.47245	-1.19780	2	0.2895	105 $() = ()$ 103
12	0.00030	1.22948	-3.31691	2	0.2876	
13	-0.00475	-1.22312	-3.32135	2	0.2876	H_{O} 101 O
14	0.00800	2.47140	-1.18927	2	0.2889	iii H
						113

Equilibrium structure and dynamics in organic crystals by Monte Carlo simulation. Critical assessment of force fields and comparison with static packing analysis

Angelo Gavezzotti

Supporting Information

Topology" (force field) files, See description in Suppl Tables4.doc

Refer to A. Gavezzotti, New J. Chem. 2011, 35, 1360 for the description of the force field, and to the document CLPmanual.doc available at http://users.unimi.it/gavezzot or from the author upon request at angelo.gavezzotti@unimi.it.

#ACANIL01 'P b c a'R topology 12

1 -0.10849 -0.30876 0.28472 12 0.	3119 atomic coordinates, atom type, raw charge
2 0.03337 -1.33436 1.22518 12 -0.	3517 (to be rescaled by factor 0.41)
3 0.13947 -1.03324 2.57459 12 -0.	2826
4 0.09887 0.28877 3.00096 12 -0.	3300 H
5 -0.08583 1.29802 2.07407 12 -0.	2802 110 U
6 -0.19517 1.01416 0.71709 12 -0.	3548 $Q_{10} \qquad 0111 \qquad 0115$
7 0.06036 -2.36369 0.89939 2 0.	
8 0.25400 -1.82842 3.29633 2 0.	
9 0.21077 0.52613 4.04851 2 0.	2879 109 C 100 H
10 -0.14616 2.32295 2.40923 2 0.	2863 102 N 116
11 -0.34595 1.81139 0.00420 2 0.	
12 -0.16130 -0.69629 -1.07717 21 -0.	5677 HOLL H
5 ncard slave	н 119 118
13 -1 0 12 1 6 10 1.0587	107
14 -1 0 13 12 1 13 -0.8973	
15 -1 0 13 14 12 27 -1.2314	
16 17 18 14 13 12 3 0.32897 " s	lave atom" construction codes
19 -1 0 12 13 14 7 0.4864	see Suppl:TableS4.doc
0 ncard-v	
0 nstr-u	
1 nbend-u	
13 12 19 122.5 0.22 bending energy p	arameters; atoms, eq.angle, force constant
3 ntors-u	
13 12 1 6 0. 0. 0 -2.2407E-06 3.6303E-04	-1.1094E-02 -0.4742 20.136 torsion energy
14 13 12 19 0. 0. 0 0.00 0.00	5.1375E-03 0.00 -0.0844 specification
16 14 13 15 0. 0.8 3 0.00 0.00	0.00000 0.00 0.0000 see Supp_TableS4
#ADIPAC07 'P 21/c'RE topology	
5	
1 0.10791 0.61784 -1.83738 13 -0.	5561
2 0.01853 -0.37763 -0.67412 13 -0.	5600
3 -0.01853 0.37763 0.67412 13 -0.	5600
4 -0.87269 -0.97864 -0.77825 3 0.	2841
5 0.87171 -1.03939 -0.69622 3 0.	2846
12 ncard slave	
6 -1 0 3 2 1 13 -0.5561	н н П
13 -1 0 6 3 2 10 1.3355	100 100 115
14 -1 0 13 6 3 28 -0.9622	
15 -1 0 13 6 14 27 -1.1809	о НУ шУг УС н
16 -1 0 14 13 15 6 0.6825	
17 -1 0 1 2 3 10 1.3355	Q
19 -1 0 1/ 1 18 2/ -1.1809	
20 -1 0 18 17 19 6 0.6825	
7 8 0 1 2 17 3 0.33625	Х й Н
9 LU U 3 2 6 3 U.28435	119 104 111
	115 134
0 ncard-v	
0 nstr-u	
2 nbend-u	
20 18 17 104.0 0.1333	
10 14 13 104.0 0.1333	
/ ntors-u	2 0 00000 00 0 45040 04 0 000
20 18 1/ 19 0.0 0.0 0 -1.6863E-06 1.041/E-0	/ Z.UZ&UE-UZ -3.4524E-U4 U.UUU
19 1/ 1 2 0.0 0.0 0 5.6222E-08 -1.631/E-0	5 1.2839E-U3 2.3332E-U2 -U.2539
1/ 1 2 3 0.0 0.0 0 -1.5501E-06 1.1161E-03	-2.9199E-U1 3.2793E+U1 -1.3241E+U3
1 2 3 6 0.0 0.0 0 -1.5501E-06 1.1161E-03	-2.9199E-01 3.2793E+01 -1.3241E+03
2 3 6 13 U.U U.U U -1.55UIE-U6 1.1161E-U3	-Z.9199E-U1 3.Z/93E+U1 -1.3Z41E+U3

16 14 13 15 0.0 0.0 0 -1.6863E-06 1.0417E-07 2.0280E-02 -3.4524E-04 0.000 15 13 6 3 0.0 0.0 0 5.6222E-08 -1.6317E-05 1.2839E-03 2.3332E-02 -0.2539 #ARCLAM01 'P 21/n'RE topology 6 1 0.02328 0.65179 0.84069 12 -0.3113 0.00395 1.97948 -0.5419 2 -0.01998 12 3 1.73053 0.85307 0.3008 0.07423 2 0 -1.07482 -0.07111 2 4 1.98544 0.3084 108 Н 5 -0.00452 0.54898 2.91168 2 0.3040 104 6 0.00436 -0.05188 -0.46255 10 1.0695 4 ncard slave Ν 7 0 6 2 21 -0.8601-1 1 С н 107 7 101 8 -1 Ω 6 1 27 -1.2482110 9 -1 0 7 6 1 7 0.4890 С 10 -1 0 7 6 8 7 0.4898 Н С 0 106 ncard-v 105 102 0 nstr-u 2 nbend-u Н Н 9 7 6 122.5 0.22000 109 7 118.0 0.2000 103 10 6 3 ntors-u 8 6 1 2 0. 0. 0 7.6392E-07 -2.3582E-04 2.0827E-02 -0.30358 0.7917 10 8 0. 0. 0 0.00 0.00 9.5944E-03 0.00 0.053 7 6 5.1373E-03 0.00 9 7 6 1 0. 0. 0 0.00 0.00 0.084 'P 21/n' #AYOJED topology 14 1 0.01063 0.00292 1.77928 12 0.0779 117 -0.3288 2 -0.01202 1.18973 1.05365 12 3 -0.02926 1.20186 -0.32860 12 -0.2805 4 -0.02725 -0.00773 -1.03647 14 0.0750 ſ 5 -0.03190 -1.20314 -0.32051 12 -0.2793 108 С -1.19660 1.06251 -0.3324 Н 6 -0.00849 12 С 109 7 0.03975 0.00851 3.28343 13 -0.8847 112 104 -2.47614 8 -0.00287-0.00558 11 0.0277 ٢ 9 0.05124 0.00673 -3.66015 11 -0.5341 Н С 105 10 -0.01621 2.12940 1.58600 2 0.2873 111 2 106 11 -0.04428 2.14107 -0.86162 0.2880 С н C 2 -0.05403 -2.14386 -0.85056 0.2872 12 113 🔿 🗧 102 103 2 13 -0.00491 -2.134711.59766 0.2879 Н 17 0.10053 0.01797 -4.73891 1 0.3738 114 С 1 ncard slave н ΗО 101 14 15 16 7 3 0.3116 110 1 2 115 С 0 ncard-v 0 nstr-u 107 0 nbend-u Н 1 ntors-u 116 7 1 2 0.0 0.08 3 0.0 0.0 0.0 0.0 0.0 14 #BENZAC07 'P 21/c' topology 12 -0.0035 0.02399 -0.18205 1 -0.00283 12 Н Н 2 1.21624 -0.2456 -0.00353 0.53886 12 112 111 3 -0.00242 1.18769 1.92373 12 -0.2908 С 0 0.00181 -0.03321 2.59205 12 -0.2465 4 105 114 5 0.01035 -1.22628 1.87375 12 -0.2918 С -0.00864 -1.19641 -0.2453 6 0.48524 12 O_{115} С 106 0.05819 7 -0.00434 -1.65870 10 1.3340 104 8 -0.00498 2.16244 0.01805 2 0.2880 С -0.00488 2.11116 2.48383 2 0.2879 н⊙⊧ C 9 107 C 2 10 -0.00156 -0.05539 3.67179 0.2872 110 102 2 11 0.03162 -2.17197 2.39480 0.2882 101 2 12 -0.02787 -2.11932 -0.07534 0.2886 O C 3 ncard slave 113 103 14 -1 0 7 1 6 28 -0.9151 Ч Н -1.2026 7 13 -1 0 1 14 27 109 108 -1 7 15 0 14 13 6 0.6672 0 ncard-v 0 nstr-u nbend-u 1 15 14 7 104.00 0.133 2 ntors-u 7 1 8 0.0 0.0 0 0.000 0.000 4.9191E-03 0.000 -0.01 7 14 15 0.0 0.0 0 -1.5443E-06 0.000 1.7163E-02 0.000 0.005 13 13 #BIPHEN04 'P 21/a' topology 12 0.00801 0.00221 0.74600 1 12 0.0476 1.47301 2 0.00810 1.19182 12 -0.3083 3 -0.001821.19583 2.86346 12 -0.2898-0.00679 -0.00073 4 3.56383 12 -0.2929


```
18 11 5 4 60.0 26.55
                                 3
                                     0. 0. 0. 0.
                                                     0.
#FOVQOX
          'P n a 21' topology
   12
        0.45550
                 -0.23705
                              2.43180
                                              0.1116
    1
                                        13
    2
        0.28251
                 -0.14394
                              0.94702
                                        12
                                              0.0025
        0.10395
                 -1.28256
                              0.16872
                                             -0.2999
    3
                                        12
       -0.07224
                  -1.19431
                             -1.20493
                                             -0.3520
    4
                                        12
                             -1.81864
                                                                  Н
                                                                                н
       -0.06244
                   0.04122
    5
                                        12
                                              0.6994
                                                                               109
    6
       0.11221
                   1.19340
                             -1.05825
                                        12
                                             -0.3567
                                                                 110
                                                                          С
    7
        0.28386
                   1.08830
                              0.30765
                                        12
                                             -0.2979
                                                                                        н
                                                          н
                                                                         103
    8
       -0.21438
                  0.20457
                             -3.17099
                                        29
                                              -1.3730
                                                                   С
                                                                                       114
                                                         116
                             0.64206
    9
       0.10236
                  -2.25326
                                         2
                                              0.2856
                                                                                  С
                                                                  104
                             -1.79145
                                         2
   10
       -0.21655
                  -2.08962
                                              0.2960
                                                                                 101
                                                                           C
                                                                                               Н
   11
        0.11345
                   2.16331
                             -1.53331
                                         2
                                              0.2969
                                                            ۵
                                                                                            =0117
   12
        0.42248
                   1.98568
                              0.89234
                                         2
                                              0.2851
                                                                           102
                                                                  С
                                                           108
                                                                                          0
                                                                                С
    4
      ncard slave
                                                                 105
                                   -1.4520
 13
                      2
                           7
                               29
                                                                                        113
      -1
           0
                  1
                                                                               107
                                                                                     Н
                                                                         Г
 14
      15
           0
                  1
                      2
                         13
                                3
                                    0.2741
                                                                               О
                                                                                     115
                                                                        106
 16
      -1
           0
                  8
                      5
                           4
                                5
                                    0.80315
                                                                   н
                                                                                Н
           0
                           2
                                5
                                    0.80315
 17
      -1
                 13
                      1
                                                                   111
                                                                                112
   0
      ncard-v
   0
       nstr-u
   2
       nbend-u
   16
      8 5 109.0 0.16
   17 13
          1 107.0 0.14
    3
      ntors-u
13
    1 2 7 0.0 2.5 2 0.0 0.0 0.0 0.0 0.0
        5 4 0.0 0.0 0 -2.8027E-07 0.00 4.1124E-03 0.00 0.13364
16
     8
       1 2 0.0 0.0 0 3.3904E-09 -9.0072E-06 2.2680E-03 -1.9463E-01 10.704
17 13
#GLURAC03 'C 2/c'REN topology
    5
       -0.08793
                  0.64867
                                             -0.5524
    1
                              1.23739
                                        13
    2
        0.00000
                  -0.23453
                             0.00000
                                        13
                                             -0.5355
    3
       0.08793
                  0.64867
                             -1.23739
                                        13
                                             -0.5524
    4
       -0.87153
                  -0.86934
                            -0.06197
                                         3
                                              0.2843
    5
        0.87153
                 -0.86934
                              0.06197
                                         3
                                              0.2843
   10
      ncard slave
 10
                           3
                               10
                                   1.3300
           0
                      2
      -1
                  1
                                                                          Η
                                   -0.9456
 11
      -1
           0
                 10
                      1
                           2
                               28
                                                                              Н
                                                              Н
                                                                        109
                                                                  106
 12
      -1
           0
                 10
                      1
                         11
                               27
                                   -1.1834
                                                                             10B
                                                                                       0
                                                      0
                                                             107
                                                                         С
   6
       7
           0
                  1
                     10
                           2
                                3
                                    0.3338
                                                                                      115
                                                     111
 13
      -1
           0
                     10
                          12
                                    0.6671
                                6
                                                                                103
                 11
                                                                     101
                                    1.3300
 14
      -1
           0
                  3
                      2
                           1
                               10
                                                    HС
                                                                                       ЭΗ
 15
      -1
           0
                 14
                      3
                           2
                               28
                                   -0.9456
                                                   113
                                                           C
                                                                                         117
                                                                                  ٢
                                   -1.1834
 16
      -1
           0
                 14
                      3
                         15
                               27
                                                          110
                                                                                 114
      -1
           0
                 15
                     14
                         16
                                6
                                    0.6671
 17
                                                                     Н
                                                                          Н
      9
                                                             0
                                                                                 Π
           0
                         14
                                3
                                    0.3380
   8
                  3
                      2
                                                                    104 105
   Ω
      ncard-v
                                                            112
                                                                                116
   0
        nstr-u
    2
      nbend-u
 13 11 10
              104.0 0.1333
     15 14 104.0 0.1333
 17
    6 ntors u
13 11 10 12 0.0 0.0 0 -1.6863E-06 1.0417E-07 2.0280E-02 -3.4524E-04 0.000
12 10 1 2 0.0 0.0 0 5.6222E-08 -1.6317E-05 1.2839E-03 2.3332E-02 -0.2539
       2 3 0.0 0.0 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03
10
    1
        3 14 0.0 0.0 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03
 1
    2
17 15 14 16 0.0 0.0 0 -1.6863E-06 1.0417E-07 2.0280E-02 -3.4524E-04 0.000
           2 0.0 0.0 0 5.6222E-08 -1.6317E-05 1.2839E-03 2.3332E-02 -0.2539
16 14
       3
#HEPTAN02 'P -1'
                      topology
   3
   1
       -0.00068
                   0.36581
                              3.80442
                                       13
                                             -0.9000
    2
       -0.00901
                  -0.48730
                              2.54789
                                       13
                                             -0.5600
       0.00682
                   0.34306
                              1,27075
                                             -0.5600
    3
                                       13
   11
      ncard slave
   4
      -1
           0
                  3
                               13
                                   -0.5600
                      2
                           1
                                                                н
                      3
                           2
                                   -0.5600
                                                  Н
                                                         121
                                                                      Н
   5
      -1
           0
                  4
                               13
                                                                            Н
                                                                                  н
                                                                                           н
                                                               11B
   6
      -1
                           3
                               13
                                   -0.5600
                                                  123
                                                                     117
           0
                  5
                      4
                                                                            114
                                                                                  113
                                                                                          106
                                   -0.9000
   7
      -1
           0
                  6
                      5
                           4
                               13
                                                                                           C
                                                                                                110
                                                             E
   8
      9
          10
                  1
                      2
                           3
                                3
                                    0.3000
                                                                         С
                                                            106
                                                                                      С
 11
     12
           0
                  2
                      1
                           3
                                3
                                    0.2800
                                                                         104
                                                НĆ
                                                      C
                                                                                     102
 13
      14
           0
                  3
                      2
                           4
                                3
                                    0.2800
                                                      107
                                               122
                                                                  105
                                                                                            ſ
 15
     16
           0
                      3
                           5
                                3
                                    0.2800
                  4
                                                                              103
                                                                                                  'H
                                                                                           101
                  5
                           6
                                3
 17
      18
           0
                      4
                                    0.2800
                                                                                                 109
                                                               н
 19
      20
           0
                           7
                                3
                                    0.2800
                                                         н
                  6
                      5
                                                                      Н
                                                                            Н
                                                              120
                                                                                  н
                                                         119
      22
          23
                  7
                           5
                                3
                                    0.3000
                                                                                        Н
 21
                      6
                                                                     115
                                                                           115
                                                                                  111
                                                                                        112
    0
      ncard-v
    0
       nstr-u
```

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

0 nbend-u 6 ntors-u 8 60. 7.7 3 0. 0. 0. 0. 0. 1 2 3 4 0. 0. 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03 1 2 3 2 3 Ο. 0. 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03 4 5 3 0. 0. 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03 4 5 6 4 7 0. 0. 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03 5 6 7 7.7 3 21 6 5 60. 0. 0. 0. 0. 0. #HEXANE01 'P -1' topology 3 -0.00257 0.22175 -3.19145 13 -0.9000 1 2 0.00280 -0.53915-1.87575-0.560013 -0.66190 З 0.00542 0.37513 13 -0.5600 9 ncard slave 4 -1 0 3 2 13 -0.5600 1 Н 2 -0.5600 Н 5 -1 0 4 3 13 107 н H. 0 5 3 -0.9000 109 6 -1 4 13 Н 113 112 Н 7 8 9 1 2 3 3 0.3000 116 C Г 0.2800 117 10 11 0 2 1 3 3 101 Н 0 3 2 4 3 12 13 0.2800 103 119 0 5 14 15 4 3 3 0.2800 Н 16 17 0 5 4 6 3 0.2800 ٢ С 108 C 19 20 4 3 0.3000 18 6 5 (102 105 н С 0 ncard-v 104 111 106 0 nstr-u Η Н 0 nbend-u Н Н 115 110 Н 5 ntors-u 120 11411B 7 1 2 3 60. 7.7 3 0. 0. 0. 0. 0. 4 0. 0. 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03 1 2 3 5 0. 0. 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03 2 3 4 0. 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03 3 4 5 6 0. 60. 7.7 3 0. 0. 0. 0. 0. 18 6 5 4 #HITMUS 'P 21/c' topology 6 H 120 1 0.83384 0.17988 -1.71795 13 -0.3213 н 2 0.16338 -0.38659 -0.51138 12 -0.0347 Н 121 -0.57416 3 -0.04199 -1.86647 13 -0.8772 н 122 0 -0.17988 1.71795 4 -0.83384 13 -0.3212 114 С 5 -0.16339 0.38659 0.51138 12 -0.0349 С H ¹⁰⁶ Ν 6 0.04199 1.86647 0.57416 13 -0.8774 0 С 101 107 10 ncard slave 111 119 105 0 7 2.0 1,2104 0 1 3 -1 2 110 O 7 9 -1 0 1 2 30 -0.7905 112 С 0 7 10 -1 0 1 9 30 -0.8036 H113 C Ν 102 1.2099 109 8 -1 0 4 5 6 20 ſ 104 108 11 -1 0 8 4 5 30 -0.7908 103 н -0.803912 -1 0 8 11 30 4 н 13 14 0 1 2 7 3 0.3437 11B н Н 19 0 4 5 8 3 0.3437 18 117 17 0.3100 15 16 3 2 5 3 116 115 22 5 2 3 20 21 6 0.3100 0 ncard-v 0 nstr-u 0 nbend-u 6 ntors-u 9 7 0 -4.3269E-07 7.5651E-05 -3.3830E-03 2.7094E-02 0.600 2 0.0 0.0 1 11 5 0.0 0.0 0 -4.3269E-07 7.5651E-05 -3.3830E-03 2.7094E-02 0.600 8 4 5 0.0 3.7 3 0.0 0.0 0.0 0.0 0.0 15 3 2 20 6 5 2 0.0 3.7 3 0.0 0.0 0.0 0.0 0.0 5 0.0 3.7 3 0.0 7 1 2 0.0 0.0 0.0 0. 8 4 5 2 0.0 3.7 3 0.0 0.0 0.0 0.0 0. #JOHBUD 'C c' topology 13 -0.21122 0.51905 0.54456 13 -0.0224 1 Н 2 -0.54668 -0.54711 13 -0.0022 С Н 111 3 -0.02271 1.04639 -0.01825 13 0.2596 104 110 1 H 113 Н 4 -0.55184 2.31744 0.51109 13 -0.5826 0.56748 2.31369 -0.50510 -0.5853 112 5 13 6 0.08661 -0.68178 1.85241 20 1.1820 C 105 7 -0.03968 -0.64515 -1.87409 20 1.1905 0 С 1.51129 -0.60294 0.71316 0.3269 8 3 115 103 С 9 -1.55197 -0.56162 -0.68788 3 0.3152 Ν 102 -0.36644 1.53454 3 0.2985 10 2.60830 106 3 11 -1.54046 2.65816 0.24115 0.2970 Ν 12 0.39600 2.65003 -1.51700 3 0.2986 107 С ۵(Н -0.22362 13 1.57002 2.60017 3 0.2969 101 109 114 ncard slave Н 4 n 0 14 -1 0 6 1 8 30 -0.7809 108 117

17 -1 0 7 9 30 -0.8623 2 15 -1 0 6 1 14 30 -0.8848 -1 0 7 2 17 -0.7446 16 30 0 ncard-v 0 nstr-u 0 nbend-u 2 ntors-u 14 6 1 8 0.0 0.0 0 -4.3269E-07 7.5651E-05 -3.3830E-03 2.7094E-02 0.600 17 7 2 9 0.0 0.0 0 -4.3269E-07 7.5651E-05 -3.3830E-03 2.7094E-02 0.600 #MCINAM10 'A b a 2'R topology 12 н -0.076410.22787 -1.37484 12 0.0608 1 110 Н 2 0.15472 1.21486 -2.32633 12 -0.2943Н С 111 Н Н 120 3 0.25309 0.90104 -3.68953 12 -0.2905 105 115 122 4 0.09628 -0.39548 -4.11017 12 -0.2743 Ν q 11B -1.37140 5 -0.17010 -3.1878312 -0.2873109 С C -1.07798 -1.82464 6 -0.2301012 -0.2952C 114 ٢ ř 101 7 0.26048 2.24206 -2.009792 0.2861 106 104 ЮΗ C 119 8 0.45260 1.68105 -4.40939 2 0.2870 С 123 116 Н 9 -5.15775 2 0.18206 -0.64352 0.2864 <u>∏</u>1ĭ2 103 C 121 2 10 -0.33659 -2.38526 -3.52058 0.2856 (102 O Ó \cap 2 11 -0.39749 -1.87290 -1.11297 0.2883 0 Η H. -0.12204 0.58658 0.05311 12 -0.2063 12 117 108 113 9 ncard slave н 12 -0.3692 107 14 0 6 12 -1 1 13 0 0 12 1 14 2 0.2926 16 -1 0 14 12 1 10 1.0138 12 15 0 0 14 16 2 0.3028 18 -1 0 16 14 12 21 -0.5574 17 -1 0 16 14 18 27 -1.2600 19 -1 0 18 16 14 13 -0.6364 -1 14 7 20 0 18 16 0.4879 22 23 19 18 16 3 21 0.2932 0 ncard-v Ω nstr-u 1 nbend-u 20 18 16 122.50 0.2200 5 ntors-u 0 -2.3529E-06 3.9583E-04 -1.5811E-02 -9.8980E-02 10.186 14 12 1 6 0.0. 16 14 12 0. 0. 0 -4.1935E-06 3.0193E-03 -7.8639E-01 87.450 -3468.4 1 12 14 16 17 0.0. 0 7.6392E-07 -2.3582E-04 2.0827E-02 -0.30358 0.7916 5.1375E-03 0.00 20 18 16 14 0.0. 0 0.00 0.00 -0.084421 19 18 16 0. 2.5 3 0.00 0.00 0.00000 0.00 0.00 #NITRBE01 'P 21/c'RE topology 12 -0.00108 0.00218 -1.63730 20 1.2002 1 -0.00252 -0.17234 2 0.00296 12 0.2277 Н н З 0.01919 -1.21571 0.48630 12 -0.2362 112 111 4 0.01365 -1.20799 1.86881 12 -0.2818 С Ω 5 -0.00649 -0.00549 2.56262 12 -0.2274 106 С 113 6 -0.011541.20159 1.88010 12 -0.2813 С 7 -0.00843 1.21805 0.49632 12 -0.2362 107 8 0.03984 -2.14458 -0.06417 2 0.2955 105 Ν C 2 9 0.02506 -2.14163 2.41161 0.2863 н 101 -0.01829 -0.01032 2 0.2868 10 3.64255 102 110 2 0.2865 2.42986 11 -0.01790 2.13115 С 12 -0.01055 2.15106 -0.04775 2 0.2954 104 2 ncard slave D С 13 0 2 7 30 -0.8031 -1 1 114 С 103 н 30 -0.8122 13 -1 0 1 2 14 н 108 0 ncard-v 109 0 nstr-u 0 nbend-u 1 ntors-u 13 1 2 7 0.0 0.0 0 7.5175E-07 0.00 1.1649E-03 0.00 -0.1575 #OCTANE01 'P -1' topology topology 3 -0.00416 0.26722 -4.45025 -0.9000 13 1 -3.16019 0.00308 -0.52847 -0.5600 2 13 3 0.00566 0.34663 -1.92012 13 -0.5600 13 ncard slave 4 -1 0 3 2 1 13 -0.5600 H LOS 2 -0.5600 (23 3 13 5 -1 0 4 115. 115н H $\frac{H}{114}$ Ĉ. 3 6 -1 0 5 4 13 -0.5600 ЩB, 177 \supset^{H} ſ E. 7 0 4 -0.5600 111-1 6 5 13 ιŏι. 1ĎЭ. 105 107 8 -1 0 7 5 13 -0.9000 6 9 3 3 0.3000 10 11 1 2 нC III 2 3 ng). O 12 13 0 1 3 0.2800 мў О Dн. 102*8*/ 1080 Ή. н 124 H ()

120

ÌI.

125

Ĥ

171

112

116

Ĥ

14 15 0 3 2 4 3 0.2800 16 17 0 4 3 5 3 0.2800 18 19 5 6 3 0.2800 0 4 7 20 21 0 6 5 3 0.2800 22 23 0 7 6 8 3 0.2800 25 26 3 0.3000 24 8 7 6 0 ncard-v 0 nstr-u 0 nbend-u 7 ntors-u 9 60. 7.7 3 0. 0. 0. 0. 0. 1 2 - 3 4 0. 0. 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03 5 0. 0. 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03 2 3 1 2 3 4 3 6 0. 0. 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03 4 5 4 5 6 0. 0. 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03 7 8 0. 0. 0 -1.5501E-06 1.1161E-03 -2.9199E-01 3.2793E+01 -1.3241E+03 5 6 60. 7.7 3 0. 0. 0. 0. 0. 24 8 7 6 #PHBALD11 'P 21/c'RE topology 12 н н -0.01044 -0.15852 3.13648 29 -1.3472 1 109 110 -0.07962 0.7870 0.00067 1.78479 2 12 3 -0.00394 1.19505 1.21784 12 -0.3605 0.00384 1.32418 -0.15039 12 -0.2112 4 С н -0.98833 5 0.00185 0.20805 12 -0.0176 0 114 103 С -0.40059 6 -1.06746 0.00752 12 -0.2130C 101 108 C¹⁰⁴ 7 0.01955 -1.20803 0.96426 12 -0.35028 0.01516 0.40724 -2.42254 10 0.6178 С 9 2.07199 -0.013521.84814 2 0.2972 107 С 102 10 0.01163 2.31188 -0.58720 2 0.2846 105 ۵ Н 2 11 0.00238 -1.94594-1.02875 0.2864 113 115 C 12 0.04370 -2.19403 1.40434 2 0.2957 106 3 ncard slave Н 13 0 8 5 6 27 -1.1412 -1 Н 2 112 14 -1 0 8 5 13 0.2586 111 7 5 15 -1 0 1 2 0.8135 0 ncard-v 0 nstr-u nbend-u 1 15 1 2 109.00 0.16 2 ntors-u 6 5 8 13 0.0 0.0 0 -5.5370E-07 0.00 8.5360E-03 0.00 0.092 0.0 0.0 0 -2.8027E-07 0.00 4.1124E-03 0.00 0.13364 15 7 1 2 'P 21/n'RE topology #OATTIO 5 1 0.02860 0.26007 -3.04982 29 -1.4633 Н Н 2 -0.00462 -0.52788 -1.85325 13 0.1162 105 112 0.39409 13 -0.5660 3 -0.02511-0.65869Н 0 -1.80959 Δ 0.86360 -1.16867 3 0.2691 2 н 111 С 108 Г 5 -0.88334 -1.15574 -1.84953 3 0.2693 104 102 106 8 ncard slave н 6 -1 0 3 2 1 13 -0.5662 ЪΗ 115 7 -1 0 6 3 2 13 0.1153 С 116 С ЭH 8 -1 0 7 6 3 29 -1.4624 103F 107, 0 114 Н 9 10 0 3 2 6 3 0.2858 109 3 7 101 11 12 0 6 3 0.28585 н Н 0 7 8 3 13 14 6 0.2695 113 110 15 -1 0 1 2 3 5 0.8032 0 0.8024 16 -1 8 7 6 5 0 ncard-v 0 nstr-u 2 nbend-u 15 1 2 107.0 0.14 8 7 16 107.0 0.14 5 ntors-u 0.0 0.0 0 -1.5501E-06 1.1161E-03 -2.9199E-01 32.793 -1324.1 2 3 7 6 1 3 9 60.0 8.0 3 0.00 0.00 0.00 0.00 0.00 2 0.00 0.00 0.00 0.00 0.00 8 7 6 11 60.0 8.0 3 3 0.0 0.0 0 3.3904E-09 -9.0072E-06 2.2680E-03 -1.9463E-01 10.704 15 1 2 16 8 7 6 0.0 0.0 0 3.3904E-09 -9.0072E-06 2.2680E-03 -1.9463E-01 10.704 #QATTOU 'P 21 21 2 topology 5 1 -0.26010 -0.00398 3.54971 29 -1.4626 Н 0.1149 Н 2 0.33301 -0.47025 2.33334 13 Н 117 113 3 -0.192680.36692 1.18884 13 -0.5734105 0.08647 -1.50986 2.17564 3 4 0.2693 Н C С 1.40834 -0.38707 н 5 2.38988 3 0.2692 C 114 108 11D 106 Ņ \1**0**7 10 ncard slave н 102 6 -1 0 3 2 1 13 -0.5558 116 Н 0 8 С н 11B 109 Н 0 103 112

104

Н

111

Н

115

н

119

7 -1 0 6 3 2 13 -0.5749 3 8 -1 0 7 6 13 0.1096 9 -1 8 7 6 -1.4634 0 29 10 11 0 3 2 6 3 0.2859 7 12 13 0 6 3 3 0.28205 0 7 6 8 3 0.2902 14 15 0 8 9 7 3 0.27085 16 17 2 3 18 -1 0 1 5 0.8039 19 -1 0 9 8 7 5 0.8053 0 ncard-v 0 nstr-u 2 nbend-u 107.0 0.14 18 1 2 19 98 107.0 0.14 6 ntors-u 0.0 0.0 0 -1.5501E-06 1.1161E-03 -2.9199E-01 32.793 -1324.1 2 3 7 6 3 0.0 0.0 0 -1.5501E-06 1.1161E-03 -2.9199E-01 32.793 -1324.1 6 7 8 1 2 3 10 60.0 8.0 3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 9 8 7 14 60.0 8.0 3 18 3 0.0 0.0 0 3.3904E-09 -9.0072E-06 2.2680E-03 -1.9463E-01 10.704 2 1 7 0.0 0.0 0 3.3904E-09 -9.0072E-06 2.2680E-03 -1.9463E-01 10.704 19 9 8 #TEPHTH06 'P -1'RENU topology 12 -1.38326 0.0412 1 0.04735 0.01865 12 н H 111 2 0.07953 1.20677 -0.6885012 -0.2491109 3 -0.03755 -1.16749-0.69071 12 -0.2485 C 106 0 4 -0.07953 -1.20677 0.68850 12 -0.2491 0 114 -0.01865 5 -0.04735 1.38326 12 0.0412 115 C 6 0.03755 1.16749 0.69071 12 -0.2485 Н С 102 7 0.01487 0.04201 -2.86268 10 1.3473 C . 118 105 8 -0.01487 -0.04201 2.86268 10 1.3473 С С -1.21167 0.2874 9 0.13642 2.14987 2 С 107 10 -0.07238 -2.09517 -1.24261 2 0.2842 108 C 103 2 н 11 0.07238 2.09517 1.24261 0.2842 101 С 117 2 12 -0.13642 -2.14987 1.21167 0.2874 104 0 6 ncard slave 0 13 113 -1 0 7 3 28 -0.8966 1 С 116 0 7 13 27 14 1 -1.2317 -1 н Н 7 17 -1 0 13 14 6 0.6657 110 112 15 -1 0 8 5 6 28 -0.8966 16 -1 0 8 5 15 27 -1.2317 -1 0.6657 0 16 18 15 8 6 0 -1card-v 0 nstr-u 2 nbend-u 17 13 104.00 0.1333 7 104.00 18 15 8 0.1333 4 ntors-u 14 7 9 0.0 0.0 0 0.000 0.000 4.9191E-03 0.000 -0.01 1 0 -1.5443E-06 0.000 1.7163E-02 0.000 0.005 17 13 7 14 0.0 0.0 0 0.000 0.000 4.9191E-03 0.000 -0.01 16 8 4 0.0 0.0 5 18 15 8 16 0.0 0.0 0 -1.5443E-06 0.000 1.7163E-02 0.000 0.005 #XAYMEP renumbered 10 Н 0.00685 1.20842 -1.34398 -0.7576 H 118 18 1 109 2 0.00403 0.01069 -0.74184 12 0.3879 С C 115 Ν 3 0.00550 -1.18045 -1.49258 12 0.0961 Ν 106 0.00132 -1.17751 -2.83012 -0.7245 101 114 4 18 5 -0.00625 0.02315 -3.42030 12 0.0742 C 110 -2.67905 6 0.00041 1,20655 12 0.0810 105 н 7 0.01013 -2.12677 -0.97169 2 0.2821 ΗО С O117 С 8 -0.01791 0.07880 -4.49875 2 0.2807 108 С 2 103 112 С 9 0.00017 2.15128 -3.20289 0.2800 102 113 10 0.74185 -0.00407-0.0106112 0.3878 8 ncard slave Ν N 11 -1 0 10 2 1 18 -0.7576 104 111 10 2 0.0810 12 -1 0 11 12 Н Н 13 12 11 10 12 0.0743 -1 0 107 116 -0.7243 14 -1 0 13 12 11 18 15 -1 0 14 13 12 12 0.0960 0 0 12 11 13 2 0.2800 16 2 17 0 0 13 12 14 0.2806 2 0 14 10 0.2821 18 0 15 0 ncard-v 0 nstr-u 0 nbend-u 1 ntors-u 11 10 2 1 0.0 12.5 2 0. 0. 0. 0. Ο.

```
#XOZBUK
          'P 21/n'
                      topology
    9
                            -1.63698
        0.00578
                  0.99805
                                        23
                                              -0.7022
    1
                  -0.29953
                             -1.17567
                                               0.4934
    2
       -0.01959
                                        12
    3
       -0.02296
                  -1.16734
                             -2.22625
                                        12
                                              -0.2581
        0.00332
                  -0.37922
                             -3.40798
                                        12
                                              -0.3636
    4
    5
        0.02616
                   0.91222
                             -3.00125
                                        12
                                               0.2419
                             -2.17119
    6
       -0.04196
                  -2.24575
                                         2
                                               0.3022
                                                                        н
                                                                                     H
111
    7
        0.00474
                  -0.73815
                             -4.42658
                                         2
                                               0.3022
                                                                       106
                                                                                              D
114
    8
        0.05644
                   1.76227
                             -3.66678
                                         2
                                               0.3026
    9
       -0.01389
                  -0.53176
                              0.23505
                                        12
                                              -0.1481
                                                                     Г
                                                                             C
102
                                                                    103
    6
      ncard slave
                                                                                         С
                                                                                                 Ν
                                                            Н
 10
      -1
           0
                  9
                      2
                           1
                                12
                                    -0.1436
                                                                                        110
                                                           107 0:
                                                                                                113
 11
       0
            0
                  9
                     10
                           2
                                 2
                                     0.3093
                                                                        С
                                                                                  E
                                                                C`
104
 13
      -1
            0
                 10
                      9
                          11
                                20
                                     1.1153
                                                                       105
                                                                                  109
       0
                      9
                                2
                                     0.3074
 12
            0
                 10
                          13
                                                                                                   D
           0
                     10
                           9
                                30
                                    -0.8735
 14
      -1
                 13
                                                                              0
                                                                                                  115
 15
      -1
           0
                 13
                     10
                          14
                                30
                                    -0.8853
                                                                                        Н
                                                                             101
                                                                                       112
    0
      ncard-v
                                                                   Н
    0
       nstr-u
                                                                  108
    0
       nbend-u
    3
       ntors-u
14 13 10
           9 0.0 0.0 0 7.5175E-07 0.00 1.1649E-03 0.00 -0.1575
          2 0.0 0.0 0 0.00 0.00 4.2310E-02 -15.231 1370.6
13 10
       9
           3 180.0 5.0 2 0. 0. 0. 0. 0.
10
     9
        2
#ZIVKOE 'P -1' renum topology
   11
       -0.06950
                                              -0.2838
                                                                   H
108
    1
                  -1.36198
                              1.69024
                                        12
                                                                                   Н
                                                                                         н
    2
       -0.06772
                  -1.39687
                              3.07723
                                        12
                                              -0.2881
                                                                                  107
                                                                                       119
                                                                         C
102
        0.00585
                  -0.21768
    3
                              3.80030
                                        12
                                              -0.2667
                                                                                              С
                                                                                                 C
115
    4
        0.08668
                   0.99321
                              3.13539
                                        12
                                              -0.2890
                                                                                              116
                                                                                                           0
                   1.03448
                              1.74614
                                              -0.2827
    5
        0.08218
                                        12
                                                                                                        D118
                                                                   С
                                                                                    Г
    6
        0.00040
                  -0.14230
                              1.00815
                                               0.0572
                                        12
                                                                  103
                                                                                   106
                                                                             С
       -0.12535
    7
                  -2.28480
                              1.13188
                                         2
                                               0.2884
                                                                            101
                                                                                            С
                                                              ΗО
                                         2
    8
       -0.12374
                  -2.34391
                              3.59339
                                               0.2873
                                                                                          (112
                                                             1D9
    9
        0.00017
                  -0.24326
                               4.87997
                                         2
                                               0.2869
                                                                                  C
                                         2
                                               0.2869
                                                                                                     D
   10
        0.15368
                   1.91182
                              3.69941
                                                                                         С
                                                                                 105
                                                                                                    114
                              1.23675
                                         2
                                               0.2911
   11
        0.14245
                   1.98487
                                                                                         113
                                                                          C
      8
          ncardu
                                                                         104
                                                                   Н
             1
12
   -1
        0 6
                  2
                     12 0.1240
                                                                                   Η
                                                                  110
13 -1
        0 12
               6
                  5
                     10 1.3793
                                                                                  111
                                                                                           0
        0 13 12
                     23 -0.7575
14 -1
                  6
                                                                                           117
15 -1
        0 14 13 12
                     10 1.3492
16 -1
        0 15
             14 13
                     12 -0.3056
17 -1
        0\ 13\ 12\ 16
                     27 -1.1023
18
   -1
        0 15 16 12
                     27 -1.0791
    0
        0 16 12 15
                      2 0.3043
19
    \cap
       ncard-v
    0
        nstr-u
    0
       nbend-u
    1
       ntors-u
 5
    6 12 13 0. 0.0 0 0. -5.3062e-05 1.0011e-02 -0.34146 3.3601
#ZZZITY01 'P 21/n' r topology
   12
        0.01275
                 -0.00174
                              1.41525
                                               0.0467
    1
                                        12
                                                                             Н
                                                                                             Н
    2
        0.00732
                  -1.19483
                              0.69402
                                              -0.3323
                                        12
                                                                            112
                                                                                            110
    3
        0.00736
                   1.19016
                              0.69546
                                        12
                                              -0.3317
                                                                                      С
       -0.00775
                   0.00094
                              2.91824
                                              -0.8866
    4
                                        13
                                                                 Н
                                                                                     103
                                                                                                      н
    5
       -0.00736
                  -1.19016
                             -0.69546
                                        12
                                              -0.3317
                                                                             С
                                                              H <sup>117</sup>
                                                                                                     115
    6
       -0.00732
                   1.19483
                             -0.69402
                                        12
                                              -0.3323
                                                                            106
                                                              118
                                                                                                С
    7
       -0.01275
                   0.00174
                             -1.41525
                                        12
                                               0.0467
                                                                c
    8
        0.00775
                  -0.00094
                             -2.91824
                                        13
                                              -0.8866
                                                                                              104
    9
        0.01461
                  -2.13642
                              1.22294
                                         2
                                               0.2874
                                                                                    C
                                                               108
                                                                          С
                   2.12982
                                         2
                              1.22777
                                               0.2870
   10
        0.01479
                                                                                   102
                                                                         107
                                                                                           C
101
                                         2
   11
       -0.01479
                  -2.12982
                             -1.22777
                                               0.2870
                                                                                                       113
   12
       -0.01461
                   2.13642
                             -1.22294
                                          2
                                               0.2874
                                                                 н
                                                                                                   Н
    2
       ncard slave
                                                                               C
105
                                                                116
 13
                           2
                                 3
                                     0.30987
                                                                                                   114
     14 15
                  4
                      1
                                                                         Н
                                     0.30987
 16
      17
          18
                  8
                      7
                           6
                                 3
                                                                                         Н
                                                                         111
    0
       ncard-v
                                                                                         109
    0
        nstr-u
    0
       nbend-u
    2
      ntors-u
                30.0 0.08
                                6
                                     0. 0. 0. 0. 0.
 13 4 1 2
      8
            6
                30.0
                      0.08
                                6
                                     0. 0. 0. 0. 0.
  16
         7
#ZZZSPY01 'P b c a'r topology
  12
        0.00603 -0.29153
                                               0.0747
                              1.21302 12
    1
                                                    10
```

2	2 -	0.0	091	3 -1.	0532	21	2	.523	51	13		-0.	8912
3	3	0.0	079	1 -0.	966	43	0	.012	47	12		-0.	3709
4	1	0.0	100	7 -0.	304	07	-1	.208	82	12		Ο.	0733
5	5 –	0.0	077	0 -1.	064	94	-2	.514	73	13		-0.	8892
6	5	0.0	009	31.	084	17	-1	.203	80	12		-0.	3591
7	7 –	0.0	080	0 1.	781	11	-0	.011	13	12		-0.	2857
8	3	0.0	061	1 1.	096	49	1	.188	71	12		-0.	3591
g)	0.0	007	81.	623	42	-2	.139	62	2		Ο.	2862
10) –	0.0	259	82.	860	96	-0	.016	64	2		Ο.	2868
11	L	0.0	173	31.	647	06	2	.117	82	2		Ο.	2858
12	2	0.0	077	2 -2.	046	38	0	.020	67	2		Ο.	2855
2	2 n	car	d s	lave									
13	14	1	5	5	4	6		3	Ο.	310	57		
16	17	1	8	2	1	8		3	Ο.	310	33		
C) n	car	d-v										
C)	nst	r-u										
C) n	ben	d-u										
2	2 n	tor	s-u										
13	5	4	6	30.0	0.0	08		6	Ο.	Ο.	Ο.	Ο.	Ο.
16	2	1	8	30.0	0.0	80		б	Ο.	Ο.	Ο.	Ο.	0.

Equilibrium structure and dynamics in organic crystals by Monte Carlo simulation. Critical assessment of force fields and comparison with static packing analysis

Angelo Gavezzotti

Supporting Information

For each crystal, number of repeated cells along *a*, *b*, *c*, starting box parameters, number of molecules in box, number of atoms in box

#ABUMIT		10			4	3	39.4	95	42.504	45.81	480	5760
#BENZEN07		5			4	6	36.9	9	37.74	40.668	480	5760
#BILNOZ01		4			6	3	40.0	72	40.938	39.441	288	7488
#BNZQUI03		7			6	6	40.2	01	40.626	41.202	504	6048
#BULVAL03		6	2	4			38.8	8 41	1.168 4	1.48 38	4 7680	
#CAXNUL05		5			5	3	37.9	985	40.539	5 38.877	300	5400
#CECGEX		7			5	3	33 0	169	37 303	5 33 855	210	4200
#CTCYDD		5	2	4	Ŭ	0	37 7	g :	37 09	33 984	160 352	0
#DAZNAP		3	2	-	Δ	4	41 0	85	12 228	37 14	384	6144
#DCDDOV10		7			4	2	41.0	01	42.220	10 274	226	7202
#DCBDOXIO		<i>,</i>			0	2	41.0	01	42.004	49.274	330	7392
#DCLBENUZ		6			/	10	43.9	2	41.65	39.8	420	5040
#DEZDUH		2			6	4	29.9	26	34.026	38.236	192	3840
#DEZXEL		3			4	5	35.6	43	39.272	37.2	240	4320
#DITBOX		5			7	4	38.6	65	43.715	43.26	280	7280
#EXODAW		6			6	5	33.6	24	36.701	4 39.2	180	4320
#EZURUM		4			6	3	40.6	956	39.493	8 37.398	6 288	6624
#FACFOE		5			7	3	37.4	03	41.725	6 35.175	420	5040
#FACGEV		7			6	5	40.6	63	39.18	35.95	420	5040
#FACJAU		9			4	6	40.2	471	41.14	38.052	432	5184
#FAXTUU01		7			4	3	42.2	772	40.627	2 46.648	5 336	6720
#FMANUL01		4	3	6			36	.444	4 39.60	9 41.88	6 288	6048
#FOVNTN		6	4	2			46.3	2.6	45.516	37.014	192	4608
#HAYYAH		5	3	5			39 5	9 Z	42 327	40 965	300 72	0.0
#HCLBN711		6	0	0	12	з	48.2	856	46 035	6 44 462	1 132	5184
#UFDTANO2		10			0	2	40.2	6	12 174	10 696	360	0200
#IIEFIAN02		10			0	2	41.1	0	42.174	40.090	450	0200
#HEXANEU1		10			9	5	41.3	09	42.200	/ 42.695	450	9000
#HOWBAW		6			6	5	32.7	~ .	32.694	38.39	180	5040
#NAPHTALO		5			6	4	41.0	64	35.836	2 34.698	240	4320
#NBORAN02		6			4	3	35.5	56	37.956	40.356	288	5760
#OCTANE01		10			9	4	41.9	47	42.766	2 43.992	360	9360
#PUGDEB		5			4	6	37.	119	46.36	42.28	38 480	5760
#PUXRAB		10			4	2	41.5	9	43.248	41.392	320	8000
#PVVAWA01		7			3	5	43.1	2	35.727	37.52	420	5040
#TCHLBZ03		11			3	3	42.2	642	39.291	9 41.395	2 396	4752
#TEPNIT11		10			6	6	38.4	3	39.45	43.878	360	5040
#VACCEH		5	5	4			35.3	5 3	35.845	39.636	400 56	00
#XAYMEP		10			7	4	36.8	6	37.03	37.88	280	5040
#XAYMIT		10	4	2			37.6	11 3	33.084	52.22 3	20 64	00
#YUYPUD01		11			3	3	41.6	328	35.782	2 43.792	2 396	5544
#7.TVKOE		6			6	4	39.2	82	42.342	38.748	288	5472
#777TTY01		7			8	4	40 6	42	40 184	44 86	448	8064
#777PTT01		3			7	5	37 5	330	12 199	8 44 078	5 420	7560
#7776DV01		1			5	2	42 0	61	37 00	33 736	320	5760
#2223FIU1	I D	7	,	4	5	20 0100	27 4560	20	0000	220 600	0	5700
#ACANILUI	P D	2	-	+	1	39.0100	37.4300	20.	.0000	320 000 300 ECO	0	
#ADIPAC07	P D	5	_	7	4	41 0210	40 2260	40.	.0000 .	260 560	0	
#ARCLAMUI	· P	5			4	41.0310	40.2360	30.	.2108	560 560	0	
#AYOJED	• P	6	4	4	3	35.4048	40.2608	34.	.9/31 2	288 489	6	
#BENZAC07	'P	.7	5	3	2	37.7510	40.0240	43.	.3780	448 672	0	
#BIPHEN04	P	5		7	4	40.6000	39.4100	38.	.0400 2	280 616	0	
#BZAMID01	'P	7	5	3	2	39.2490	40.3680	44.	.1060 ·	448 716	8	
#DNBENZ14	'P	3	3	3	10	42.2070	39.7350	37.	.3800	360 576	0	
#DNITBZ11	'P	3		7	7	33.4020	38.2130	39.	.7670	294 470	4	
#FOVQOX	'P	4	4	4	6	38.0960	44.0240	35.	6520	384 652	8	
#GLURAC03	'C	3	8	3	4	38.9307	37.9872	38.	7820	384 652	8	
#HCLHEP	'C	3	4	4	4	37.7970	41.2800	39.	9760	192 441	6	
#HITMUS	'P	5	4	4	5	35.1450	34.3440	38.	.8650	200 440	0	
#JOHBUD	'C	3	-	7	4	34.2630	42.1330	40	7080	336 571	2	
#MCINAM10	' A	3	2	2	4	33 8670	34 3500	38	1120	192 441	6	
#NTTRBE01	'P	10	1	3	3	38 0140	34 8459	38	9529	360 504	0	
#PHBAT.011	• P	-0	1	3	5	40 1952	40 6650	35	7205	360 540	0	
	• D	7	-	2	5	35 0980	41 3640	37	3200	120 672	0	
	г ! D	7	-	5	2	37 2630	10 10/6	31	0000	336 630	1	
#UEDIMU0C	r P	/	, ,	6	2 10	30 5005	30 0740	24.	6700	300 200	- 0	
#ICFHIHU0	I P	C A	÷	0 7	⊥∪ ⊃	26.1400	26.0/42	20. 20	.0/90	JUU J4U JJC E04	0	
# XUZ BUK	· F	4		/	3	JO.1490	ად.4084	39.	. UDIU .	აათ უს4	U	

Description of essential MC procedures

Refer to A. Gavezzotti, New J. Chem. 2011, 35, 1360 to the document CLPmanual.doc available at http://users.unimi.it/gavezzot or from the author upon request at angelo.gavezzotti@unimi.it

Outline of the Monte Carlo modules

Block diagram of the Monte Carlo and trajectory analysis modules.

1 Introduction

The CLP package includes programs for the Monte Carlo simulation of the liquid and crystalline state of organic compounds. The package provides modules for the generation of computational boxes with liquid-like or crystalline structure, including a number of solute and solvent molecules. Periodicity can be enforced in one, two or three dimensions and pressure control is included. The main module performs a Monte Carlo simulation, and uses a structure and force field input file, 'topology' file (extension *top*), a run control file (extension *mci*), and a starting computational box file (extension *bxi*). The output consists of energies and trajectories. The package is designed to allow immediate access to a simulation of liquids and crystals with a minimum of intervention from the user.

2 Construction of molecular frameworks

Each molecular object in the computational box consists of a number of "core" atoms (≥ 3) and a number of "slave" atoms (≥ 0). The coordinates of the core atoms are given explicitly in Cartesian form, the position of slave atom *X* can be specified according to various geometrical procedures:

a) from three previously determined atoms A,B and C, on the chain *A-B-C-X*, by specifying the *C-X* distance, *R*, the *BCX* bond angle, α , and the *ABCX* torsion angle, τ .

Note: Improper dihedrals can be used to impose planarity, e.g. in a nitro group the first oxygen is obtained from a normal O-N-C-C torsional chain; the second oxygen is placed by an O-N-C...O chain setting $\tau = 180^{\circ}$.

b) from four known atoms in a pyramidal configuration, X-A(BCD), by specifying the XA bond distance, R, with three equal XAY angles;

c) from three known atoms, *ABC*, by specifying the *BX* distance, *R*, with equal *ABX* and *XBC* angles;

d) for CX₂ groups, as in c), but specifying the C-X distance, *R*, and the XCX bond angle, α ;

e) for CX₃ groups (typically, X=H for a methyl group), as in a), specifying the C-X distance, the XCB bond angle, and one torsion angle τ , with the three X-atoms at τ , τ +120°, τ +240°.

These procedures are almost identical to those described in Section 2.2.2 and Figure 1. The geometry of the core-atoms fragment is unchanged during the simulation, while the R, α and τ values described above maybe either constant or variable parameters.

The procedure allows for two molecular species in the computational box, one formally called solute and one formally called solvent. Both can be variable-geometry species. For each molecule, solute or solvent, Cartesian coordinates are calculated for slave atoms using current values for all parameters, in a local reference frame whose origin is determined by the original specification of core atom positions; the molecular object in its current conformation is then inserted into the computational box by applying a rigid-body translation vector and a rigid-body rotation by three Euler angles. The chirality of each molecule can also be specified as previously described (§3.7 and 4.6.1). The approach provides the full range of choices between just one completely rigid molecular species and two completely flexible molecular objects.

The origin of the molecular reference system, chosen by the user, is henceforth called the "molecular center", although it may be neither a center of mass nor a center of coordinates.

Description of the topology input file

1) title line

- 2) NCOREU number of core atoms, solute
- ncoreu lines each with core atom number, x, y, z, atom species, raw charge 3) NCARDU number of slave atom lines, solute
- ncardu lines each with i1, i2, i3, i4, i5, i6 integer codes, atom species, raw charge (see Scheme for the meaning of the six codes)
- 4) NCOREV number of core atoms, solvent ncorev lines as in 3)
- 5) NCARDV number of slave atom lines, solvent ncardv lines, each as in 5)
- 6) NSTRU number of bond stretching functions (solute only) nstru lines each with two atom numbers, k and R° for $E=1/2k (R R^{\circ})^{2}$
- 7) NBENDU number of bending functions (solute only) nbendu lines each with three atom numbers, k and θ° for E=1/2k ($\theta - \theta^{\circ}$)²
- 8) NTORSU number of torsion functions, solute ntorsu lies each with:

four atom numbers

 τ° , k, n for E = K{1 - cos[n(τ - τ°)]}, eq(6.4.3) zero if polynomial is used

- a, b, c, d, e polynomial coefficients (eq. 6.4.2) zero if cosine function is used
- 9) NTORSV number of torsion functions, solvent
 - ntorsv lines as in 12)
- 10) NLISTU number of intramolecular contacts, solute nlistu pairs of atom numbers
- 11) NLISTV number of nlisty pairs of atom
- 12) FQ, FP, FD, FR force
- 13) NPARS number of non-
- npars lines each with two 14) NFNBI number of
- NLISTU or NLISTV ne.0):

nfnbi lines each with two Scheme. Atom positioning

Trigonal

intramolecular contacts, solvent numbers

field parameters

library intermolecular atom-atom potentials atomic species, and P(ij), D(ij), T(ij), eq. 3.5.1 intramolecular nonbonded potentials (only if

atom species, and A, B, C in eq. 3.4.4 options in the Monte Carlo slave-atom file.

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

4

Methylene

Methine

Z-matrix

RX₃ group: three Z-matrix type atoms, n_1 , n_2 , n_3 , with torsion angles τ , τ +120, τ +140, all angles equal to α .

3 Construction of computational boxes

A computational box is defined as an ensemble on N(u) solute molecules and N(v) solvent molecules, enclosed in a parallelepiped box with dimensions boxx, boxy, boxz and angles α , β and γ . Each molecule in the box is specified by three position coordinates for the molecular center, three rigd-body rotation angles, and the value of the intramolecular geometrical parameters. The **Mcboxl** module reads a file with Cartesian orthogonal coordinates of a molecular model (§.oeh format, 2.2) and prepares a cubic box containing a number of molecules, for the simulation of an isotropic liquid. The **Mcboxc** module reads a *oeh* file with crystallographic information and prepares an oblique box with multiples of the crystal unit cell in three dimensions. Any pair of boxes coming from Mcboxl or Mcboxc modules can be merged using module **Mcboxs**. This module produces a solution box by deleting solvent molecules in close contact with solute molecules.

Coordinates for the molecules in the crystal box are generated by the following procedure: a) prepare a molecular model in Cartesian orthogonal coordinates in the inertial reference frame; for non-rigid molecules, starting from a number of fixed atoms and adding a set of conformationally flexible molecular sections (the semi-rigid procedure²⁰); experimental geometries are used throughout; b) apply if necessary a symmetry-chirality operation (change of sign in one, two or three coordinates) depending on the symmetry operations of the space group); c) rotate the rigid molecule by three Euler angles calculated from the experimental crystal structure; d) translate the molecule to its location in the crystal box, using the experimental translation vector. The final computational box is then in Cartesian orthogonal coordinates.

4 Force fields

The total configurational energy is a sum of intramolecular and intermolecular terms. In general:

 $E(tot) = \Sigma F(stretch, bend) + \Sigma \phi(\tau) + \Sigma u(R, intram) + \Sigma u(R, interm)$ (4.1)

where each summation runs over the appropriate degrees of freedom.

4.1 Intramolecular field. Bond stretching and bond angle bending potentials are provided in the usual quadratic form but are seldom applied in the simulation of condensed phases of organic molecules, where high-frequency vibrations can usually be ignored and bond lengths and bond angles are kepr fixed. The torsional intramolecular part $\phi(\tau)$ can either be a fitted polynomial in τ or a trigonometric function in τ (0 < $\tau < 180^{\circ}$):

$$\phi(\tau) = a + b \tau + c \tau^2 + d \tau^3 + e \tau^4$$
(4.2)

$$\begin{split} \phi(\tau) &= K \left\{ 1 - \cos n[\tau - \tau^{\circ}] \right\} \quad n = 1, 2, 3 \\ \phi(\tau) &= 0 \text{ for } \tau = \tau^{\circ} \\ \phi(\tau) &= 2K \text{ for } \cos n[\tau - \tau^{\circ}] = 180^{\circ} \end{split} \tag{4.3}$$

4.2. Intermolecular field. The intermolecular atom-atom non-bonded potential:

$$u(R,interm) = E(CLP) \tag{4.5}$$

where R is any intermolecular non-bonded atom-atom distance. The potentials are automatically calculated at running time from the library atomic parameters and the actual atomic point charges.

Following a well established convention, intermolecular energies are subdivided in Coulombic and non-Coulombic terms:

$$E(\text{tot,inter}) = \sum_{i,\alpha} \sum_{i,\beta} [E(\text{CLP})_{ii}] = E(\text{LP}) + E(\text{Coul})$$
(4.6)

where α and β denote different molecules, and the London-Pauli and Coulombic terms include polarization+repulsion+dispersion, and Coulombic summations, respectively. The cutoff applies to centers of coordinates rather than to single atom-atom distances. In this way the summations always extend over entire molecules (neutral charge units), thus reducing if not eliminating completely the truncation effects, even if no convergence correction is applied.

5 Simulation details

5.1 Degrees of freedom (dof's). The degrees of freedom in a MC simulation are in principle the six rigidbody molecular parameters for each molecule in the box, plus the slave atom parameters. A tag specifies whether each parameter is to be altered or kept fixed during the run; the number of actual dof's is adjusted accordingly. The maximum steps for each kind of the MC move, molecular translation, rotation, or change in internal dof's, are also specified. Box periodicity can be imposed in one, two or three dimensions; each molecule in the original box has translated counterparts for a ± 1 addition of periodicity vector(s), for a maximum total of 26 repeated boxes in the three-dimensional case. Intramolecular energies are computed only for the molecules within the original box. Intermolecular energies are computed over all molecular pairs between molecules within the box or translation-repeated molecules, when the distance between centers of coordinates is below a given threshold. As soon as the center of a molecule moves outside the box boundary, the molecule is deleted and re-enters the box at the opposite end. Note that full molecules are always moved, thus avoiding problems with connectivity breaking that occur when single atoms are moved to comply with box periodicity.

5.2 MC moves. A MC move or action can be of the following types:

a) variation of molecular dof's. A random number $0 < r_1 < 1$ is generated and the number *n* of the parameter P to be varied is determined as $n = int(r_1 \cdot N_{tot}) + 1$ where N_{tot} is the total number of variable parameters and "int" denotes the integer part of the number. Positive or negative steps are taken by using P' = P°+(r_2 - 0.5)*step.

b) **Suppression of center-of mass drift**. The overall motion of the center of mass of the whole box can be stopped, at selected intervals during the simulation, by resetting all molecular position vectors to the origin in the current center of mass.

c) Box dimensions change. The box dimensions can be changed at selected intervals, with or without pressure control. Isotropic variation with cubic boxes (liquids), or anisotropic variation with oblique boxes (crystals) are possible. In detail, the box variation algorithm is as follows. The computational box is identified by three box edges, *a*, *b*, *c*, and three box angles, α , β , γ . Whenever one of these box dimension is changed, the positions of all molecules is undergoes a rigid-body change by the following procedure: i) calculate fractional coordinates for the centers in the old box metrics; ii) calculate new orthogonal coordinates of the centers in the new box metrics; iii) calculate the components of the displacement of each molecular center, dx, dy, dz, and apply the same displacement vector to all atoms in the computational box.

6

d) **Pressure control.** There is no temperature rescaling in MC, as temperature is a preset invariable parameter. When box periodicity is present and box dimension are allowed to vary, pressure control is possible.

Standard isothermal-isobaric ensemble (IIE) P control. The usual MC P-control based on the appropriate configurational integral for the IIE is used (as given in Allen, M.P. and Tildesley, D.J. (1989) Computer simulation of liquids, Oxford University Press, 1989, pp. 41 and 124). Pressure is set at a constant value P. Cell dimensions are varied (either isotropically or anisotropically) at preset intervals and the new total box energy U' and the new volume V' are calculated. The quantity δH is calculated:

$$\delta H = U' - U^{\circ} + P(V' - V^{\circ}) - N kT \ln(V'/V^{\circ})$$
(5.9)

and the usual Metropolis algorithm is implemented on δH instead of ΔU . The second term is interpretable as expansion work, while the third term has no immediate interpretation. N is the number of "particles" in the system

The number of particles N is ill-defined in a simulation involving large flexible molecules (the number of molecules?)

8 Trajectory analysis

8.1 Radial density functions. Consider a pair of atomic species (atom-atom RDF), or pairs of molecular centers (center of mass RDF). N_i is the number of distances in a spherical distance bin of volume V_i, N is the total number of distance points and V is the total volume of the distance sphere, the radial density functions g(R) is:

$$g(\mathbf{R}_{i}) = (\mathbf{N}_{i}/\mathbf{V}_{i}) / (\mathbf{N}/\mathbf{V})$$
 (8.1)

N/V is the total number density of distances, corresponding to uniform and random distribution. g(R) is thus normalized and $g(R_i) > 1$ indicates a significantly high frequency of distances at R_i .

8.2 Translational (diffusion) and rotational correlation. The diffusion coefficient *D* and rotational correlation function τ (rot) are estimated as follows. The standard time-dependent formulations are:

$$\tau (t) = \left[\Sigma_k \mathbf{u}_k(t) \cdot \mathbf{u}_k(0) \right] / N_{\text{mol}}$$
(8.2)

$$D = (1/6) < |\mathbf{r}(t + \Delta t) - \mathbf{r}(t)|^2 > /\Delta t$$
(8.3)

where $\mathbf{u}(t)$ is an orientation vector within the molecule, and $\mathbf{r}(t)$ is the position of a specified atom or of the center of coordinates at time *t*. The number of MC moves takes here the place of time, and an approximate scaling, with an estimate of the time equivalent of a MC move, results in 1Mmove approximately equal to 2 ps. The τ functions are dimensionless numbers between 1 (complete correlation) and 0 (no correlation), and are averaged over all molecules in the box. They can be compared with experimentally determined correlation times, i.e. the time for the liquid to completely lose rotational memory (form $\tau = 1$ to $\tau = 0$). The *D* functions are averaged over the molecules within a radius of usually 30 Å from the overall center of the box.

8.3 The Mcfram module

The *Mcfram* module reads a .*dat* file and performs the following tasks:

1) check of the solute and solvent connectivity for bond distances, and of short intermolecular contacts

2) torsion angle monitoring

3) calculation of the center of mass radial distribution function for solute-solute, solvent-solvent and solute-solvent

4) calculation of the radial distribution function for any pair of atomic species, solute-solute, solvent-solvent and solute-solvent

8.3 The Mccorr module

The Mccorr module reads a trajectory .dat file (.mcc type) and performs the following tasks:

- calculate rotational correlation functions and self-diffusion coefficients;

- calculate distribution of rotation angles.

Equilibrium structure and dynamics in organic crystals by Monte Carlo simulation. Critical assessment of force fields and comparison with static packing analysis

Angelo Gavezzotti

Supporting Information

100 K runs, cell parameters, complete runs For each crystal: a, b, c, α,β,γ start: experimental crystal structure, end: end of the 5Mstep MC run

	start	end	%delt	aver	rmsd	start	end	delt	aver	rmsd
#ABUMIT	3.949	3.588	-9.2	3.676	0.114	90.00	90.12	0.12	90.00	0.140
#ABUMTT	10 626	10 504	-1 2	10 450	0 065	97 00	101 10	4 10	100 73	1 272
#ARIMIT	15 270	15 110	-1 0	15 104	0 060	90 00	89 99	-0 01	90 16	0 336
#DENZEN07	7 309	7 130	1.0	7 324	0.000	90.00	80.02	_0 09	00.10	0.166
#DENZEN07	7.390	0 100	0.0	0.027	0.000	90.00	09.92	-0.08	90.02	0.100
#BENZENU7	9.435	9.199	-2.5	9.237	0.061	90.00	89.92	-0.08	89.97	0.100
#BENZENU/	6.//8	6.389	-5.7	6.524	0.10/	90.00	89.68	-0.32	89.83	0.193
#BILNOZ01	10.018	9.782	-2.4	9.806	0.050	90.00	89.92	-0.08	90.00	0.178
#BILNOZ01	6.823	6.819	-0.1	6.817	0.007	90.04	90.82	0.78	90.51	0.218
#BILNOZ01	13.147	13.210	0.5	13.191	0.026	90.00	89.85	-0.15	90.02	0.127
#BNZQUI03	5.743	5.486	-4.5	5.544	0.074	90.00	92.79	2.79	90.51	0.702
#BNZQUI03	6.771	6.986	3.2	6.898	0.062	100.14	96.72	-3.42	97.99	0.912
#BNZQUI03	6.867	6.548	-4.7	6.678	0.078	90.00	87.11	-2.89	89.42	0.783
#BULVAL03	6.480	6.242	-3.7	6.266	0.055	90.00	90.11	0.11	89.98	0.088
#BULVAL03	20.584	20.907	1.6	20.856	0.101	90.17	92.93	2.76	92.71	0.642
#BULVAL03	10.370	10.385	0.1	10.367	0.014	90.00	89.96	-0.04	90.00	0.167
#CECGEX	4 717	4 608	-2 3	4 628	0 042	90 00	90 05	0 05	89 99	0 140
#CECCEX	7 461	7 1 4 3	_1 3	7 259	0.012	06 05	90.05	-6.00	00.56	1 476
#CECGEA	11 205	11 000	-4.5	11 620	0.123	90.95	00.05	-0.99	90.00	1.4/0 0 101
#CECGEA	11.205	11.000	4.0	11.020	0.223	90.00	90.05	0.03	09.94	0.101
#CTCIDD	1.556	7.484	-1.0	7.400	0.026	90.00	89.96	-0.04	89.99	0.13/
#CTCYDD	18.545	17.366	-6.4	17.648	0.332	113./3	115.62	1.89	115.26	0.352
#CTCYDD	8.496	8.673	2.1	8.584	0.076	90.00	89.74	-0.26	90.00	0.169
#DAZNAP	13.695	13.803	0.8	13.638	0.115	90.00	89.88	-0.12	90.03	0.127
#DAZNAP	10.557	10.171	-3.7	10.228	0.123	90.00	92.53	2.53	91.04	0.762
#DAZNAP	9.285	8.574	-7.7	8.778	0.192	90.00	89.87	-0.13	90.10	0.171
#DCBDOX10	5.983	5.931	-0.9	5.879	0.049	90.00	93.73	3.73	91.83	1.282
#DCBDOX10	7.114	6.470	-9.0	6.659	0.197	90.00	90.74	0.74	90.58	0.222
#DCBDOX10	24.637	24.774	0.6	24.721	0.088	90.00	90.00	-0.00	90.02	0.201
#DCLBEN01	14.762	14.633	-0.9	14.741	0.077	90.00	89.91	-0.09	89.99	0.201
#DCLBEN01	5.832	5.701	-2.3	5.677	0.056	112.78	109.60	-3.18	112.84	2.579
#DCLBEN01	4 039	3 508	-13 2	3 701	0 176	90 00	90 14	0 14	90 19	0 138
#DCLBEN02	7.320	7.398	1.1	7.392	0.038	93.17	84.76	-8.41	85.69	2,190
#DCLBEN02	5.950	5.522	-7.2	5.679	0.164	113.58	111.71	-1.87	115.41	3.633
#DCLBEN02	3 980	3 603	-9 5	3 709	0 112	93 50	97 70	4 20	96 15	1 346
#DEZDUH	14.963	14.761	-1.4	14.840	0.069	90.00	90.03	0.03	89.97	0.115
#DEZDUH	5 671	5 781	1 9	5 773	0 027	90.00	89 73	-0.27	80 08	0 130
#DEZDUH	9 559	9 898	3 5	9 8/6	0.027	90.00	90.29	0.20	89.90	0.151
#DEZDON #DEZVET	11 991	11 014	0.3	11 002	0.002	90.00	90.25	-0.07	00.03	0.117
#DEZAEL	0 010	0 527	2.0	11.902	0.025	90.00	09.95	-0.07	00.03	0.117
#DEZAEL	9.010	9.527	-3.0	9.333	0.000	90.00	09.90	-0.04	90.01	0.002
#DEZAEL	7.440	6.024	-3.7	7.201	0.070	90.00	09.04	-0.10	09.90	0.124
#DITBOX	1.133	6.934	-10.3	7.121	0.249	90.00	89.85	-0.15	104 04	1 270
#DITBOX	6.245	6.338	1.5	6.306	0.044	108.34	104.25	-4.09	104.94	1.3/9
#DITBOX	10.815	10.553	-2.4	10.562	0.081	90.00	90.11	0.11	90.14	0.146
#EZURUM	10.174	10.217	0.4	10.216	0.030	90.00	90.06	0.06	90.01	0.069
#EZURUM	6.582	6.473	-1.7	6.483	0.029	94.07	95.89	1.82	95.80	0.291
#EZURUM	12.466	12.520	0.4	12.511	0.015	90.00	90.00	-0.00	89.98	0.092
#FACGEV	5.809	5.810	0.0	5.759	0.033	90.00	90.17	0.17	89.89	0.371
#FACGEV	6.530	6.499	-0.5	6.475	0.040	101.89	96.00	-5.89	97.13	1.879
#FACGEV	7.190	6.567	-8.7	6.737	0.183	90.00	89.80	-0.20	90.04	0.170
#FACJAU	4.472	4.533	1.4	4.522	0.015	90.00	89.76	-0.24	89.94	0.237
#FACJAU	10.285	10.514	2.2	10.459	0.062	107.97	104.00	-3.97	103.95	0.822
#FACJAU	6.342	6.162	-2.8	6.197	0.067	90.00	90.10	0.10	90.02	0.187
#FMANUL01	9.111	9.152	0.4	9.039	0.091	90.00	89.99	-0.01	90.00	0.125
#FMANUL01	13.203	13.798	4.5	13.649	0.181	90.00	89.69	-0.31	89.96	0.189
#FMANUL01	6.981	6.225	-10.8	6.443	0.234	90.00	89.84	-0.16	89.98	0.143
#FOVNTN	7 721	7 658	-0.8	7 665	0 012	90 00	89 85	-0.15	90 01	0 126
#FOVNIN	11 379	11 239	-1 2	11 227	0 038	90 00	90 14	0 14	90 05	0 239
#FOVNIN	18 507	17 732	-4 2	17 831	0 164	90 00	90 09	0 09	89 89	0 234
#HAYYAH	7 918	7 665	-3.2	7 717	0 071	90 00	89 98	-0 02	89 99	0 160
#HAYYAH	14 109	13 752	-2 5	13 790	0 079	111 46	109 71	-1 75	110 38	0 862
#HZYVZH	2 1 0 2 8 1 0 2	8 017	_1 9	8 064	0 025	90 00	89 70	-0 21	90 11	0.002
#HCLBN711	8 010	7 931	-1 5	7 933	0 035	90.00	90 00	-0.00	20.11	0.202
#HCLBN711	3 836	3 5/0	-7 5	3 614	0.033	92 13	93 50	1 46	03.92	0.101
#HCLBNZ11	14 821	14 554	-1 R	14 549	0 076	90 00	80 83	-0 17	89 98	0 092

# HOMD AM	E 4 E 0	E 104	4 7	E 000	0 0 0 1	02 07	04 17	0 00	0.2 0.1	0 205
# IOWBAW	5.450	J.194	-4.7	J.230	0.001	93.21	94.17	0.90	93.91	0.305
#HOWBAW	5.449	5.607	2.9	5.588	0.041	94.10	95.46	1.36	95.41	0.350
#HOWBAW	7.678	7.674	-0.1	7.651	0.012	108.93	108.98	0.05	108.99	0.099
#NAPHTA10	8.213	7.426	-9.6	7.672	0.260	90.00	90.04	0.04	90.05	0.138
#NAPHTA10	5.973	5.933	-0.7	5.901	0.032	123.39	125.67	2.28	126.40	1.132
#NAPHTA10	8 675	8 687	0 1	8 713	0 040	90 00	89 97	-0.03	90 00	0 104
#NRORANO2	5 926	6 1 4 3	3 7	6 099	0.010	90.00	90.93	-0.17	90.00	0.145
#NDORAN02	5.920	0.143	5.7	0.099	0.000	90.00	09.03	-0.17	09.99	0.145
#NBORANU2	9.489	9.593	1.1	9.599	0.02/	90.00	89.94	-0.06	90.00	0.106
#NBORAN02	13.452	13.172	-2.1	13.254	0.111	90.00	90.05	0.05	90.00	0.094
#PUGDEB	7.424	7.256	-2.3	7.339	0.081	90.00	89.96	-0.04	90.29	0.342
#PUGDEB	11.590	12.082	4.2	11.986	0.156	112.78	108.82	-3.96	113.11	2.914
#PUGDEB	7.047	6.324	-10.3	6.562	0.216	90.00	89.91	-0.09	89.95	0.137
#TCHIB703	3 8/2	3 665	-4 6	3 680	0 057	90 00	89 95	-0.05	89 92	0 145
#TCHIDD203	12 0072	12 071	1.0	12 152	0.007	00.00	00.15	0.05	00.05	0.143
#ICHLB203	13.097	13.271	1.5	13.152	0.123	90.00	90.13	0.15	90.05	0.193
#TCHLBZ03	13./98	12.908	-6.5	13.163	0.253	90.00	90.21	0.21	89.92	0.201
#TEPNIT11	3.843	3.565	-7.2	3.619	0.085	114.50	115.41	0.91	115.21	0.521
#TEPNIT11	6.575	6.438	-2.1	6.414	0.055	93.53	83.30	-10.23	85.37	2.881
#TEPNIT11	7.313	7.004	-4.2	7.104	0.105	96.99	102.64	5.65	102.69	1.665
#VACCEH	7.070	7.078	0.1	7.037	0.050	90.00	89.87	-0.13	89.96	0.176
#VACCEH	7 169	6 862	-43	6 885	0 086	90 00	89 82	-0 18	89 99	0 111
#WACCEU	0.000	0.002	2.6	0.000	0.000	00.00	00.01	0.10	00.01	0.111
#VACCER	9.909	9.337	-3.0	9.020	0.002	90.00	90.01	0.01	90.01	0.090
#XAYMI'I'	3./61	3.430	-8.8	3.498	0.093	90.00	89.95	-0.05	90.00	0.092
#XAYMIT	8.271	8.532	3.2	8.442	0.107	90.00	90.14	0.14	89.97	0.165
#XAYMIT	26.110	25.391	-2.8	25.472	0.203	90.00	90.14	0.14	90.07	0.247
#YUYPUD01	3.785	3.741	-1.2	3.718	0.028	90.00	89.93	-0.07	90.01	0.089
#YUYPUD01	11,927	10.682	-10.4	11.082	0.388	91.62	93.28	1.66	94.78	1.560
#VIIV PIID() 1	14 597	14 380	-1 5	14 368	0 096	90 00	90 04	0 04	90 01	0 176
#ACANITIO1	10 500	10 000	2.0	10.050	0.000	00.00	00.12	0.01	00.01	0.156
#ACANILUI	19.009	19.009	-2.2	10.000	0.104	00.00	20.12	0.12	20.03	0.100
#ACANILUI	9.364	9.381	0.2	9.439	0.044	90.00	90.01	0.01	89.97	0.131
#ACANIL01	7.778	7.747	-0.4	7.736	0.014	90.00	90.04	0.04	90.04	0.119
#ADIPAC07	7.187	7.361	2.4	7.276	0.047	90.00	89.66	-0.34	89.91	0.133
#ADIPAC07	5.163	5.009	-3.0	5.077	0.046	110.86	113.57	2.71	112.99	0.558
#ADTPAC07	10 015	10 241	23	10 175	0 064	90 00	89 98	-0 02	89 94	0 121
#ABCIAM01	9 206	0 151	-0.7	9 059	0 079	90.00	90.03	0.03	00.22	0 216
#ARCLAMO1	5.200	5.1J1 E 0E1	10.7	5.000	0.070	111 27	100.05	0.03	100.22	0.210
#ARCLAMU1	5.748	5.051	-12.1	5.310	0.237	111.3/	108.75	-2.62	108.02	0.882
#ARCLAM01	9.053	8.900	-1.7	8.859	0.064	90.00	89.85	-0.15	89.89	0.210
#AYOJED	5.901	5.557	-5.8	5.646	0.084	90.00	89.96	-0.04	90.04	0.113
#AYOJED	10.065	10.296	2.3	10.107	0.134	102.92	101.01	-1.91	102.54	1.024
#AYOJED	11.658	10.987	-5.8	11.174	0.190	90.00	89.97	-0.03	89.99	0.124
#BENZAC07	5.393	5.285	-2.0	5.312	0.035	90.00	90.08	0.08	89.98	0.074
#BENZAC07	5 003	4 902	-2 0	4 914	0 029	98 51	104 88	6 37	104 25	1 340
#DENZAC07	21 (20	1.002	1 7	21 042	0.020	00.01	104.00	0.07	104.25	1.040
#BENZACU/	21.009	22.0JZ	1./	21.943	0.110	90.00	09.93	-0.07	09.99	0.090
#BIPHENU4	8.120	7.531	-7.3	/.088	0.1/9	90.00	90.26	0.20	90.16	0.223
#BIPHENU4	5.630	5.308	-5./	5.352	0.105	95.10	86.94	-8.16	88.65	2.4/2
#BIPHEN04	9.510	9.307	-2.1	9.338	0.059	90.00	90.03	0.03	90.13	0.187
#BZAMID01	5.607	5.118	-8.7	5.270	0.153	90.00	90.14	0.14	89.92	0.198
#BZAMID01	5.046	5.150	2.1	5.095	0.056	90.66	81.40	-9.26	83.40	2.569
#BZAMID01	22.053	21.339	-3.2	21.373	0.264	90.00	89.91	-0.09	90.07	0.149
#DNBENZ14	14.069	14.817	5.3	14.566	0.201	90.00	104.07	14.07	96.22	5.166
#DNBENZ14	13 245	13 332	0 7	13 454	0 078	90 00	89 93	-0 07	89 93	0 213
#DNDENZ14	3 739	3 557	_1 9	3 576	0.073	90.00	90.05	0.05	90 10	0.111
#DNJED211	11 124	10 225	0	10 524	0.075	00.00	00.03	0.03	20.10	0.145
#DNIIBZII	11.134	10.225	-0.2	10.524	0.309	90.00	90.03	0.03	09.92	0.145
#DNITBZII	5.459	6.031	10.5	5./83	0.188	92.26	102.23	9.9/	100.23	2.162
#DNITBZ11	5.681	5.597	-1.5	5.658	0.037	90.00	90.06	0.06	90.01	0.106
#EXODAW	5.604	5.422	-3.2	5.456	0.047	92.97	94.11	1.14	94.00	0.455
#EXODAW	6.117	6.098	-0.3	6.095	0.010	91.55	92.05	0.50	91.90	0.170
#EXODAW	7.840	7.704	-1.7	7.708	0.027	109.32	107.11	-2.21	107.35	0.612
#FAXTUU01	6 040	6 213	29	6 182	0 043	90 00	90 08	0 08	89 99	0 059
#FAYTIII01	10 157	9 861	-2 9	9 905	0 074	90 00	90 14	0 14	90 02	0 120
#FAX10001	15 540	15 5001	0.2	16 575	0.010	00.00	00.14	0.14	00.02	0.101
#FAXTOUUI	15.549	15.590	0.3	13.373	0.019	90.00	90.01	0.01	89.98	0.101
#FOVQOX	9.524	9.179	-3.6	9.272	0.085	90.00	89.68	-0.32	90.02	0.164
#FOVQOX	11.006	10.990	-0.1	10.936	0.045	90.00	90.10	0.10	90.03	0.122
#FOVQOX	5.942	5.803	-2.3	5.797	0.033	90.00	89.95	-0.05	90.02	0.106
#GLURAC03	12.977	13.254	2.1	13.154	0.065	90.00	90.00	-0.00	90.02	0.105
#GLURAC03	4.748	4.579	-3.6	4.639	0.056	98.30	96.93	-1.37	97.27	0.340
#GLURAC03	9.696	9.813	1 2	9.821	0.032	90.00	89.92	-0.08	90.06	0.123
#HEDUVNU0	4 116	4 170	1 5	4 160	0 015	70 11	78 36	0.00	70.00	0 330
#ILFIANUZ	4.110	H.⊥/Ö	1.0		0.010	/0.11	10.30	1 00	/0.1J	0.332
#HEPTANU2	4.686	4.3/4	-6./	4.424	0.0/8	ol./9	ت ن ،//	T.98	03.50	0.306
#HEPTAN02	20.348	20.213	-0.7	20.218	0.036	74.25	77.38	3.13	76.69	1.173
#HEXANE01	4.131	4.171	1.0	4.167	0.013	83.40	82.32	-1.08	82.32	0.266
#HEXANE01	4.696	4.397	-6.4	4.450	0.083	87.26	89.02	1.76	88.79	0.365
#HEXANE01	8.539	8.563	0.3	8.554	0.020	75.17	77.72	2.55	76.92	1.116
#HITMUS	7.029	6.866	-2.3	6.865	0.036	90.00	89.97	-0.03	89.94	0.139
#HTTMIIS	8 586	8 446	-1 6	8 485	0 038	114 34	109 83	-4 51	110 78	1 347
#UTTMIIC	2.300	7 200	_1 0	7 170	0 1 2 0	an nn		_0 01	0./0	0 100
# TO UDUS	11 407	1.392	-4.9	1.4/0	0.120	90.00	03.33	-0.01	50.00	0.102
#JOHBUD	11.421	TT'808	3.4	11./33	0.098	90.00	90.80	0.80	90.24	0.388
#JOHBUD	6.019	5.986	-0.5	6.002	U.U21	104.62	109.10	4.48	107.82	1.744
#JOHBUD	10.177	10.730	5.4	10.656	0.158	90.00	89.58	-0.42	89.90	0.227
#MCINAM10	11.289	10.722	-5.0	10.833	0.162	90.00	89.75	-0.25	89.44	0.312
#MCINAM10	17.175	16.132	-6.1	16.321	0.316	90.00	90.02	0.02	89.75	0.404
#MCINAM10	9.528	9.758	2.4	9.714	0.083	90.00	90.06	0.06	90.00	0.128
#NTTRRE01	3 801	3 582	-5.8	3 653	0 062	90 00	89 86	-0 14	90 05	0 148
#NTTRRF01	11 615	11 063	-4 9	11 318	0 1 80	91 92	90 88	-4 10	88 80	1 642
#NTUDUO1	12 004	13 010	7.0	13 /50	0 200	00 00	20.00	-0 00	00.09	1 225
#INIIKBEUI	1 1 0 -	10.910	1.2	1 1 7 0	0.209	90.00	07.92	-0.08	9U.II	0.225
#OCTANE01	4.195	4.161	-0.8	4.1/0	0.007	85.11	84.17	-0.94	84.08	U.227
#OCTANE01	4.752	4.378	-7.9	4.434	0.102	83.77	85.37	1.60	85.08	U.392
#OCTANE01	10.998	10.980	-0.2	10.978	0.020	74.26	77.61	3.35	76.90	1.498
#PHBALD11	6.699	6.680	-0.3	6.679	0.008	90.00	90.12	0.12	89.98	0.142
#PHBALD11	13.555	13.697	1.0	13.600	0.063	112.87	119.04	6.17	119.39	1.608
#PHBAT.D11	7 1 4 4	6 7 3 3	-5 8	6 873	0 112	90 00	90 10	0 10	89 95	0 162

#QATTIO	5.014	4.945	-1.4	4.946	0.013	90.00	89.85	-0.15	90.09	0.154
#QATTIO	13.788	13.633	-1.1	13.660	0.028	107.27	107.46	0.19	107.40	0.160
#QATTIO	7.464	7.554	1.2	7.540	0.024	90.00	90.02	0.02	89.97	0.102
#QATTOU	5.323	5.323	-0.0	5.328	0.007	90.00	89.85	-0.15	89.90	0.150
#QATTOU	6.699	6.817	1.8	6.778	0.039	90.00	90.01	0.01	90.12	0.102
#QATTOU	17.040	16.696	-2.0	16.802	0.079	90.00	89.94	-0.06	90.05	0.128
#TEPHTH06	7.702	7.782	1.0	7.788	0.038	92.92	100.16	7.24	99.52	1.745
#TEPHTH06	6.346	6.514	2.7	6.425	0.063	107.91	107.01	-0.90	107.03	0.286
#TEPHTH06	3.668	3.445	-6.1	3.501	0.068	94.64	95.57	0.93	94.99	0.607
#XAYMEP	3.686	3.516	-4.6	3.536	0.047	102.43	99.03	-3.40	100.04	1.333
#XAYMEP	5.290	5.234	-1.1	5.227	0.024	92.78	101.17	8.39	99.86	2.170
#XAYMEP	9.470	9.098	-3.9	9.190	0.114	100.93	96.21	-4.72	96.11	1.206
#XOZBUK	9.037	9.356	3.5	9.316	0.069	90.00	90.08	0.08	89.99	0.078
#XOZBUK	5.201	5.281	1.5	5.255	0.021	97.58	91.71	-5.87	93.88	1.877
#XOZBUK	13.027	12.451	-4.4	12.642	0.165	90.00	90.01	0.01	89.94	0.127
#ZIVKOE '	6.547	6.845	4.6	6.747	0.093	107.48	110.15	2.67	107.55	1.474
#ZIVKOE '	7.057	6.149	-12.9	6.400	0.284	102.07	104.09	2.02	104.34	0.769
#ZIVKOE '	9.687	10.073	4.0	9.826	0.142	102.23	97.99	-4.24	98.58	0.984
#ZZZITY01	5.806	5.391	-7.2	5.545	0.132	90.00	90.04	0.04	90.03	0.102
#ZZZITY01	5.023	5.276	5.0	5.135	0.102	100.48	94.12	-6.36	96.00	1.947
#ZZZITY01	11.215	10.525	-6.2	10.688	0.201	90.00	90.04	0.04	90.11	0.099
#ZZZSPY01	10.516	9.900	-5.9	10.095	0.195	90.00	90.25	0.25	89.95	0.199
#ZZZSPY01	7.596	7.286	-4.1	7.315	0.100	90.00	90.16	0.16	90.04	0.113
#ZZZSPY01	16.868	16.809	-0.4	16.688	0.117	90.00	90.36	0.36	90.30	0.194

100 K runs, cell parameters, convergence tests last 2 Msteps For each crystal: a, b, c, α,β,γ start: 3 Mstep frame, end: end of the 5Mstep MC run

	start	t end	%delt	aver	rmsd	start	end	delt	aver	rmsd
#ABUMIT	3.590	3.588	-0.1	3.588	0.003	89.81	90.12	0.31	90.03	0.118
#ABUMTT	10.475	10.504	0.3	10.480	0.013	101.05	101.10	0.05	100.96	0.218
#ABUMTT	15 114	15 110	-0.0	15 121	0 017	89 97	89 99	0 02	89 99	0 074
#BENZEN07	7 304	7 439	1 8	7 372	0 042	80 83	89 92	0 08	80.00	0 100
#DENZEN07	0.212	0 100	0 1	0.215	0.012	00.00	00.02	0.00	00.00	0.1001
#DENZENU7	9.212	9.199	-0.1	9.213	0.012	09.92	09.92	0.01	09.90	0.091
#BENZENU/	0.481	0.389	-1.4	0.431	0.031	09.00	89.68	-0.20	89.90	0.187
#BILNOZUI	9.795	9.782	-0.1	9.782	0.013	90.22	89.92	-0.30	89.99	0.186
#BILNOZ01	6.820	6.819	-0.0	6.819	0.006	90.48	90.82	0.34	90.59	0.127
#BILNOZ01	13.205	13.210	0.0	13.210	0.011	90.00	89.85	-0.14	90.00	0.135
#BNZQUI03	5.496	5.486	-0.2	5.494	0.010	90.34	92.79	2.45	90.99	0.835
#BNZQUI03	6.910	6.986	1.1	6.958	0.029	97.56	96.72	-0.84	97.24	0.324
#BNZQUI03	6.671	6.548	-1.8	6.607	0.044	89.49	87.11	-2.37	88.78	0.829
#BULVAL03	6.257	6.242	-0.2	6.242	0.005	89.96	90.11	0.15	90.04	0.063
#BULVAL03	20.938	20.907	-0.1	20.908	0.019	93.03	92.93	-0.10	92.92	0.082
#BULVAL03	10.351	10.385	0.3	10.364	0.013	90.34	89.96	-0.38	89.91	0.150
#CECGEX	4.598	4.608	0.2	4.604	0.005	90.06	90.05	-0.02	89.99	0.126
#CECGEX	7 1 7 9	7 143	-0.5	7 147	0 012	90 04	89 96	-0.08	89 97	0 111
#CECGEX	11 792	11 800	0 1	11 816	0 018	90.01	90 05	0 04	90.03	0 099
#CTCYDD	7 179	7 484	0.1	7 479	0.018	80.01	89.96	0.01	89.00	0.095
#CTCYDD	17 159	17 366	_0.1	17 303	0.000	115 61	115 62	0.01	115 54	0.000
#CICIDD	0 6/1	0 672	-0.5	0 657	0.034	113.01	20.74	0.02	113.34	0.094
#CICIDD	0.041	12 002	1 0	0.037	0.011	90.00	09.74	-0.32	90.05	0.129
#DAZNAP	13.670	13.803	1.0	13./4/	0.036	90.08	89.88	-0.20	90.02	0.080
#DAZNAP	10.152	10.171	0.2	10.135	0.015	91.26	92.53	1.27	91.81	0.432
#DAZNAP	8.673	8.574	-1.1	8.639	0.032	90.12	89.87	-0.25	90.05	0.116
#DCBDOX10	5.877	5.931	0.9	5.916	0.015	92.53	93.73	1.20	93.18	0.330
#DCBDOX10	6.537	6.470	-1.0	6.496	0.018	90.58	90.74	0.15	90.70	0.125
#DCBDOX10	24.795	24.774	-0.1	24.782	0.014	90.02	90.00	-0.02	90.03	0.190
#DCLBEN01	14.771	14.633	-0.9	14.685	0.051	90.15	89.91	-0.24	90.01	0.139
#DCLBEN01	5.645	5.701	1.0	5.680	0.015	111.53	109.60	-1.94	110.21	0.624
#DCLBEN01	3.591	3.508	-2.3	3.536	0.021	90.10	90.14	0.03	90.12	0.123
#DCLBEN02	7.413	7.398	-0.2	7.403	0.008	84.99	84.76	-0.23	84.70	0.149
#DCLBEN02	5.559	5.522	-0.7	5.515	0.016	113.01	111.71	-1.30	111.95	0.312
#DCLBEN02	3.625	3.603	-0.6	3.614	0.007	96.87	97.70	0.83	97.56	0.218
#DEZDUH	14 813	14 761	-0.3	14 781	0 017	89 99	90 03	0 04	90 00	0 089
#DEZDUH	5 777	5 781	0 1	5 783	0 005	90.03	89 73	-0.31	89.00	0 128
#DE2D011	0 979	0 909	0.1	0,906	0.000	00.00	00.70	0.31	Q0 01	0.145
#DEZDON	11 010	11 014	0.2	11 012	0.011	00.02	90.29	0.27	00.01	0.143
#DEZAEL	11.919	0 507	-0.0	0 510	0.005	09.90	09.93	-0.05	90.00	0.037
#DEZAEL	9.JZJ 7 170	9.527	0.0	9.310	0.007	90.00	09.90	-0.03	90.02	0.009
#DEZXEL	1.1/2	7.101	-0.2	7.100	0.008	89.98	89.84	-0.14	89.97	0.082
#DITBOX	6.945	6.934	-0.2	6.931	0.012	89.98	89.85	-0.13	89.94	0.121
#DITBOX	6.327	6.338	0.2	6.341	0.006	104.00	104.25	0.25	104.12	0.110
#DITBOX	10.521	10.553	0.3	10.548	0.018	90.09	90.11	0.01	90.07	0.098
#EZURUM	10.243	10.217	-0.3	10.226	0.012	90.13	90.06	-0.08	90.04	0.074
#EZURUM	6.479	6.473	-0.1	6.473	0.006	95.91	95.89	-0.02	95.87	0.115
#EZURUM	12.519	12.520	0.0	12.514	0.011	90.08	90.00	-0.08	90.03	0.084
#FACGEV	5.725	5.810	1.5	5.777	0.032	89.97	90.17	0.20	90.20	0.247
#FACGEV	6.494	6.499	0.1	6.506	0.007	95.67	96.00	0.33	96.03	0.195
#FACGEV	6.647	6.567	-1.2	6.591	0.031	89.82	89.80	-0.01	89.96	0.129
#FACJAU	4.531	4.533	0.1	4.535	0.005	89.62	89.76	0.14	89.93	0.171
#FACJAU	10.498	10.514	0.2	10.498	0.011	103.87	104.00	0.13	103.84	0.091
#FACJAU	6.168	6.162	-0.1	6.152	0.013	90.30	90.10	-0.20	90.06	0.128
#FMANIIT.01	9 1 1 1	9 152	0 F	9 120	0 018	89 99	89 99	0 00	90 02	0 109
#FMANULO1	13 765	13 700	0.0	13 796	0 015	90 02	89 69	-0.33	20.02 20 05	0 1/0
	10.100	10.190	_0.2	10.100	0.010	20.0Z	00.00	-0.33	00.00	0.130
# FPIANULUL	0.202	0.220	-0.9	0.200	0.010	09.91	07.04	-0.07	07.90	0.100
#POVNIN	1.658	1.000	-0.0	/.004	0.005	90.03	89.85	-0.19	90.UI	0.123
#FOVNIN	11.246	11.239	-0.1	11.228	0.018	89.81	90.14	0.32	89.98	U.164
#FOVNIN	17.746	17.732	-0.1	1/.757	0.022	89.97	90.09	0.11	90.07	0.158
#HAYYAH	7.675	7.665	-0.1	7.673	0.007	90.19	89.98	-0.21	89.97	0.110

# 11 7 37 37 7 11	10 707	10 750	0 1 10 750	0 012	100 70	100 71	0.00	100 02	0 1 0 2
#HAIIAH #HAYYAH	8 059	8 047	-0 2 8 056	0.013	90 13	89 79	-0.06	90 07	0.193
#HCLBNZ11	7.933	7.931	-0.0 7.932	0.005	89.82	90.00	0.17	89.90	0.144
#HCLBNZ11	3.550	3.549	-0.0 3.547	0.004	93.48	93.59	0.10	93.52	0.081
#HCLBNZ11	14.530	14.554	0.2 14.541	0.012	89.92	89.83	-0.09	89.99	0.087
#HOWBAW	5.209	5.194	-0.3 5.212	0.010	93.96	94.17	0.21	94.02	0.104
#HOWBAW	5.599	5.607	0.2 5.605	0.008	95.58	95.46	-0.12	95.54	0.108
#HOWBAW	7.669	7.674	0.1 7.651	0.011	108.89	108.98	0.09	108.97	0.088
#NAPHTA10	7.504	7.426	-1.0 7.457	0.020	89.99	90.04	0.06	90.02	0.082
#NAPHTALU	5.903	5.933	0.5 5.923	0.009	125.96	125.67	-0.30	125.72	0.16/
#NAPHTALU #NBOBAN02	6 138	6 1 4 3	-0.3 8.684	0.014	89.98 90 N9	89.97	-0.01	90.00	0.087
#NBORAN02	9 604	9 593	-0 1 9 596	0.004	89.88	89 94	0.25	89 99	0.130
#NBORAN02	13.182	13.172	-0.1 13.176	0.010	90.06	90.05	-0.01	90.01	0.064
#PUGDEB	7.302	7.256	-0.6 7.259	0.014	90.29	89.96	-0.33	90.11	0.269
#PUGDEB	12.084	12.082	-0.0 12.090	0.009	112.57	108.82	-3.76	110.20	1.240
#PUGDEB	6.439	6.324	-1.8 6.367	0.038	89.86	89.91	0.06	89.92	0.086
#TCHLBZ03	3.643	3.665	0.6 3.651	0.010	89.81	89.95	0.14	89.97	0.086
#TCHLBZ03	13.217	13.271	0.4 13.267	0.018	90.02	90.15	0.13	89.97	0.113
#TCHLBZUS #TEDNITT11	3 572	3 565	-0.2 3 565	0.044	89.97 114 92	90.21 115 41	0.24	89.92 115 12	0.187
#TEPNIT11	6 377	6 438	0.2 5.505	0.003	83 53	83 30	-0.22	83 36	0.149
#TEPNIT11	7.026	7.004	-0.3 7.017	0.008	103.45	102.64	-0.82	103.13	0.272
#VACCEH	7.094	7.078	-0.2 7.077	0.009	90.06	89.87	-0.19	90.06	0.132
#VACCEH	6.826	6.862	0.5 6.834	0.015	89.92	89.82	-0.10	89.98	0.133
#VACCEH	9.594	9.557	-0.4 9.582	0.014	89.97	90.01	0.05	90.00	0.101
#XAYMIT	3.444	3.430	-0.4 3.440	0.005	90.11	89.95	-0.15	89.99	0.080
#XAYMIT	8.509	8.532	0.3 8.511	0.010	90.03	90.14	0.12	90.01	0.111
#XAYMIT #VIVDUD01	23.415	23.391	-U.I 25.400	0.021	89.89	90.14 ga ab	0.25	90.24 ga aa	0.201
# 10120D01 # YIIY PIID01	10 919	10 682	-2.2 10 732	0.014	09.0/ 94 81	03.22 93.28	0.00 -1 53	03.33 93.49	0.505
#YUYPUD01	14.257	14.380	0.9 14.355	0.045	90.06	90.04	-0.01	89.99	0.094
#ACANIL01	19.028	19.089	0.3 19.069	0.022	89.80	90.12	0.32	90.02	0.119
#ACANIL01	9.409	9.381	-0.3 9.404	0.020	90.06	90.01	-0.05	89.92	0.117
#ACANIL01	7.742	7.747	0.1 7.736	0.009	90.01	90.04	0.03	90.04	0.103
#ADIPAC07	7.314	7.361	0.6 7.319	0.019	89.95	89.66	-0.30	89.84	0.107
#ADIPAC07	5.063	5.009	-1.1 5.035	0.016	113.46	113.57	0.11	113.40	0.095
#ADIPACU/	10.230	0 151	0.1 10.226	0.010	90.05	89.98	-0.07	89.89	0.104
#ARCLAM01 #ARCLAM01	5 175	5 051	-2 4 5 087	0.047	107 64	108 75	1 11	108 35	0.009
#ARCLAM01	8.817	8.900	0.9 8.873	0.026	90.06	89.85	-0.21	89.93	0.140
#AYOJED	5.606	5.557	-0.9 5.579	0.015	89.92	89.96	0.04	90.04	0.091
#AYOJED	10.164	10.296	1.3 10.244	0.034	102.30	101.01	-1.29	101.56	0.310
#AYOJED	11.102	10.987	-1.0 11.017	0.027	89.99	89.97	-0.02	90.01	0.088
#BENZAC07	5.287	5.285	-0.0 5.285	0.006	89.98	90.08	0.10	89.99	0.068
#BENZAC07	4.898	4.902	0.1 4.905	0.007	104.68	104.88	0.20	104.75	0.119
#BENZACU/	21.985	22.052	0.3 22.028	0.022	90.04	89.93	-0.11	89.98	0.084
#BIPHEN04 #BIPHEN04	7.J/1 5.271	5 308	-0.5 7.558	0.013	90.04 87 54	86 94	-0.60	87 14	0.137
#BIPHEN04 #BIPHEN04	9 311	9 307	-0 0 9 307	0.012	89 96	90.03	0.06	90 03	0.190
#BZAMID01	5.175	5.118	-1.1 5.142	0.019	89.83	90.14	0.31	89.99	0.123
#BZAMID01	5.135	5.150	0.3 5.144	0.004	81.61	81.40	-0.21	81.54	0.073
#BZAMID01	21.132	21.339	1.0 21.263	0.075	90.02	89.91	-0.11	89.96	0.092
#DNBENZ14	14.664	14.817	1.0 14.747	0.043	98.12	104.07	5.95	101.74	1.764
#DNBENZ14	13.522	13.332	-1.4 13.432	0.062	89.81	89.93	0.11	90.05	0.162
#DNBENZ14	3.501	3.557	1.6 3.532	0.019	90.11	90.05	-0.05	90.05	0.146
#DNITBZII #DNITBZII	5 869	6 031	-1.0 10.248	0.032	100 81	90.03	1 42	101 63	0.140
#DNITBZ11	5.661	5.597	-1.1 5.620	0.023	90.04	90.06	0.02	89.99	0.086
#EXODAW	5.443	5.422	-0.4 5.429	0.007	94.18	94.11	-0.07	94.13	0.076
#EXODAW	6.094	6.098	0.1 6.096	0.007	92.06	92.05	-0.01	91.99	0.109
#EXODAW	7.705	7.704	-0.0 7.704	0.006	107.10	107.11	0.01	107.08	0.100
#FAXTUU01	6.210	6.213	0.0 6.206	0.005	89.98	90.08	0.10	89.99	0.055
#FAXTUU01	9.879	9.861	-0.2 9.868	0.008	90.12	90.14	0.02	90.00	0.097
#FOVOOY	10.5/8 9.221	1J.390 9 170	U.1 13.3/6 -0 5 0 100	0.013	09.84 89 91	20.UI	-0.26	09.99 89 97	0.084
#FOVOOX	10 941	10 990	0 4 10 974	0.012	89 96	90 10	0.15	89 99	0 094
#FOVOOX	5.782	5.803	0.4 5.789	0.006	90.02	89.95	-0.07	90.01	0.068
#GLURAC03	13.189	13.254	0.5 13.214	0.024	89.86	90.00	0.14	90.04	0.095
#GLURAC03	4.601	4.579	-0.5 4.587	0.009	97.15	96.93	-0.21	96.98	0.100
#GLURAC03	9.837	9.813	-0.2 9.839	0.011	90.13	89.92	-0.21	90.09	0.118
#HEPTAN02	4.180	4.178	-0.0 4.178	0.005	/8.22	/8.36	0.14	/8.29	0.135
#HEPTANUZ #UEDEANO2	4.389	4.3/4	-0.4 4.384	0.006	83.70	83.//	0.07	83.15	0.133
#HEXANE01	4 176	4 171	-0.1 4 172	0 005	81 94	82 32	0.34 N 39	82 25	0.139
#HEXANE01	4.402	4.397	-0.1 4.402	0.006	89.08	89.02	-0.06	88.99	0.099
#HEXANE01	8.557	8.563	0.1 8.561	0.006	77.57	77.72	0.15	77.67	0.114
#HITMUS	6.857	6.866	0.1 6.855	0.008	89.92	89.97	0.05	89.96	0.116
#HITMUS	8.465	8.446	-0.2 8.461	0.009	109.95	109.83	-0.12	109.97	0.102
#HITMUS	7.407	7.392	-0.2 7.397	0.007	89.82	89.99	0.17	89.98	0.115
#JOHBUD	11.814	11.808	-0.1 11.799	0.012	90.12	90.80	0.69	90.53	0.368
#JOHBUD #JOHBUD	J.981 10 746	0.986 10 730	-0 2 10 7/6	0.003	409.00 90 25	109.10 89 59	0.10	80 83 TAA.N2	0.10/
#MCTNAM10	10.722	10.722	0.0 10.719	0.009	89.37	89.75	0.37	89.60	0.167
#MCINAM10	16.125	16.132	0.0 16.120	0.016	89.81	90.02	0.21	89.93	0.166
#MCINAM10	9.774	9.758	-0.2 9.773	0.007	89.91	90.06	0.15	90.04	0.092
#NITRBE01	3.620	3.582	-1.0 3.604	0.013	90.18	89.86	-0.32	90.11	0.142
#NITRBE01	11.218	11.063	-1.4 11.140	0.067	87.95	90.88	2.93	89.20	0.956
#NITRBE01	13.606	13.918	2.3 13.744	U.108	90.24	89.92	-0.32	90.19	0.268
#OCTANE01	4.1/6	4.161	-0.4 4.168	U.UU6	83.93	84.17	υ.24	84.01	U.116

#OCTANE01	4.381	4.378	-0.1	4.378	0.003	85.28	85.37	0.09	85.28	0.122
#OCTANE01	11.000	10.980	-0.2	10.992	0.009	77.91	77.61	-0.30	77.80	0.130
#PHBALD11	6.687	6.680	-0.1	6.679	0.006	90.11	90.12	0.01	90.03	0.135
#PHBALD11	13.603	13.697	0.7	13.665	0.030	119.92	119.04	-0.88	119.51	0.237
#PHBALD11	6.816	6.733	-1.2	6.772	0.022	90.06	90.10	0.04	89.99	0.082
#QATTIO	4.937	4.945	0.2	4.941	0.003	90.05	89.85	-0.19	90.02	0.162
#QATTIO	13.652	13.633	-0.1	13.652	0.012	107.36	107.46	0.09	107.50	0.126
#QATTIO	7.546	7.554	0.1	7.554	0.007	89.97	90.02	0.05	89.97	0.062
#QATTOU	5.323	5.323	0.0	5.324	0.007	89.90	89.85	-0.04	89.77	0.118
#QATTOU	6.801	6.817	0.2	6.815	0.011	90.08	90.01	-0.07	90.11	0.123
#QATTOU	16.788	16.696	-0.5	16.731	0.034	89.87	89.94	0.06	90.06	0.093
#TEPHTH06	7.828	7.782	-0.6	7.796	0.024	99.89	100.16	0.27	100.03	0.279
#TEPHTH06	6.447	6.514	1.0	6.489	0.023	107.31	107.01	-0.30	107.22	0.133
#TEPHTH06	3.452	3.445	-0.2	3.453	0.006	95.49	95.57	0.07	95.49	0.082
#XAYMEP	3.521	3.516	-0.1	3.516	0.006	99.14	99.03	-0.11	99.26	0.125
#XAYMEP	5.203	5.234	0.6	5.228	0.011	100.94	101.17	0.22	101.14	0.133
#XAYMEP	9.128	9.098	-0.3	9.117	0.012	95.63	96.21	0.58	95.88	0.263
#XOZBUK	9.365	9.356	-0.1	9.360	0.005	89.93	90.08	0.15	89.98	0.079
#XOZBUK	5.258	5.281	0.4	5.271	0.007	92.58	91.71	-0.87	92.13	0.291
#XOZBUK	12.572	12.451	-1.0	12.510	0.043	90.02	90.01	-0.00	89.99	0.125
#ZIVKOE '	6.813	6.845	0.5	6.835	0.009	107.96	110.15	2.18	109.07	0.700
#ZIVKOE '	6.223	6.149	-1.2	6.160	0.028	104.50	104.09	-0.42	104.22	0.167
#ZIVKOE '	9.847	10.073	2.3	9.972	0.081	97.98	97.99	0.01	98.15	0.178
#ZZZITY01	5.457	5.391	-1.2	5.425	0.025	89.97	90.04	0.06	90.04	0.079
#ZZZITY01	5.194	5.276	1.6	5.239	0.030	94.71	94.12	-0.59	94.40	0.258
#ZZZITY01	10.545	10.525	-0.2	10.533	0.012	90.19	90.04	-0.15	90.12	0.080
#ZZZSPY01	9.966	9.900	-0.7	9.916	0.019	90.14	90.25	0.11	90.01	0.170
#ZZZSPY01	7.247	7.286	0.5	7.274	0.010	90.21	90.16	-0.06	90.09	0.103
#ZZZSPY01	16.682	16.809	0.8	16.779	0.037	90.50	90.36	-0.14	90.33	0.140

100 K runs, density, complete runs start: experimental crystal structure, end: end of the 5Mstep MC run

	start	end	%delt	aver	rmsd
#ABUMIT	1.535	1.748	13.83	1.715	0.0603
#BENZEN07	1.097	1.187	8.21	1.176	0.0237
#BILNOZ01	1.262	1.287	1.98	1.286	0.0049
#BNZOUI03	1.366	1.444	5.70	1.421	0.0200
#BULVAL03	1.250	1.278	2.20	1.278	0.0068
#CECGEX	1 349	1 370	1 50	1 364	0 0084
#CTCYDD	1 645	1 765	7 24	1 754	0 0259
#DAZNAP	1 288	1 /38	11 63	1 414	0.0200
#DCBDOX10	1 603	1 772	10 55	1 740	0.041/
#DCIDEN()1	1 523	1 771	16 31	1 716	0.0454
#DCIBEN01	1 545	1 903	16 70	1 756	0.0000
#DCIBENUZ	1 770	1 700	-3 05	1 702	0.0054
#DEZDON #DEZVEI	1 660	1 700	-3.95	1 760	0.0101
#DEZAEL	1 2009	1 222	10.70	1.200	0.0295
#DITBOX	1.208	1.332	1 10	1.308	0.0350
#EZURUM	1.385	1.401	1.12	1.399	0.0029
#FACGEV	1.420	1.537	8.24	1.322	0.0321
#FACJAU	1.796	1.749	-2.64	1.753	0.0092
#FMANULUI	1.409	1.506	6.84	1.490	0.0240
#FOVNIN	1.815	1.934	6.55	1.923	0.0246
#HAYYAH	1.218	1.300	6.68	1.290	0.0160
#HCLBNZII	2.069	2.314	11.85	2.275	0.0708
#HOWBAW	1.303	1.336	2.51	1.333	0.00/3
#NAPHTALO	1.198	1.369	14.25	1.342	0.0413
#NBORANU2	1.442	1.405	-2.56	1.406	0.0072
#PUGDEB	1.569	1.672	6.53	1.65/	0.0303
#TCHLBZU3	1.736	1.920	10.61	1.893	0.0508
#TEPNITII	1.285	1.503	16.95	1.466	0.0643
#VACCEH	1.060	1.14/	8.19	1.141	0.0202
#XAYMIT	1.490	1.628	9.29	1.610	0.0344
#YUYPUDUI	1.292	1.484	14.82	1.445	0.0566
#ACANILUI	1.264	1.294	2.42	1.290	0.0064
#ADIPAC0/	1.398	1.402	0.32	1.403	0.0023
#ARCLAMU1	1.187	1.361	14.59	1.313	0.0616
#AYOJED	1.143	1.250	9.36	1.241	0.0256
#BENZAC0/	1.402	1.469	4.81	1.462	0.01/1
#BIPHEN04	1.183	1.3/9	16.57	1.33/	0.0623
#BZAMIDUI	1.290	1.44/	12.17	1.415	0.04/1
#DNBENZI4	1.603	1.638	2.20	1.610	0.0211
#DNITBZII	1.018	1.655	2.30	1.650	0.0129
#EXODAW	1.530	1.597	4.3/	1.589	0.0149
#FAXTUUUI	1.800	1.798	-0.13	1.801	0.0031
#FOVQOX	1.324	1.409	6.40	1.403	0.0192
#GLURACU3	1.484	1.484	-0.01	1.4/6	0.0072
#HEPTANUZ	0.904	0.945	4.50	0.940	0.0079
#HEXANEU1	0.900	0.941	4.59	0.935	0.0092
#HITMUS	1.353	1.435	6.01	1.421	0.0214
#JOHBUD	1.551	1.466	-5.54	1.4/1	0.0196
#MCINAM10	1.159	1.269	9.45	1.248	0.0311
#NITRBE01	1.432	1.483	3.56	1.4/2	0.0177
#OCTANE01	0.906	0.9/8	/.95	0.96/	0.0152
#PHBALD11	1.35/	1.506	TO .98	1.493	0.0364
#QATT1'10	1.215	1.232	1.43	1.231	0.0029
#QATTOU	1.138	1.142	0.30	1.140	0.0016
#TEPHTH06	1.628	1.700	4.41	1.690	0.0233
#XAYMEP	1.490	1.6.36	9.80	1.612	0.0425

	#XOZBIIK	1 4	522	1	503	_	- 1	30	1		497		0	0050
	#ZIVKOE '	1.4	150	1.	545		6.	58	1	ι	524		0.	0364
	#ZZZITY01	1.0	96	1.	181		7.	73	1	L.:	167		Ο.	0244
	#ZZZSPY01	1.0	047	1.	163	1	11.	13	1	ι.	145		0.	0336
1	00 K runs, o	lens	sity,	со	nvei	rger	nce	e te	est	1	ast	2	Mst	ер
s	tart: 3 Mste	ep i	frame,	е	nd:	enc	d c	of t	he	51	Mste	∋p	MC	run
						0								
	# A DIIMT T	sta	art 750	1 e	nd 7/9	*0	191 -0	.t 16	ā 1	av:	er 7/0		r o	msd
	#RENZEN07	1 1	190	1	187		-0. -0	27	-	1	188		0.	0020
	#BILNOZ01	1.2	285	1.	287		0.	11	1	L . :	287		0.	0018
	#BNZQUI03	1.4	130	1.	444		0.	99	1	ι.	434		0.	0054
	#BULVAL03	1.2	277	1.	278		0.	04	1	L.:	280		0.	0019
	#CECGEX	1.3	367	1.	370		0.	22	1	L	368		0.	0020
	#CTCYDD #DAZNAB	1.	/63 137	1. 1	/65		0.	11	1	L.	/65		0.	0023
	#DCBDOX10	1.7	±37 767	1.	772		0.	32	1		768		0.	0021
	#DCLBEN01	1.	753	1.	771		1.	04	1	ι.	764		0.	0051
	#DCLBEN02	1.7	790	1.	803		0.	73	1	ι.	801		Ο.	0035
	#DEZDUH	1.6	598	1.	700		0.	10	1	L.	697		0.	0024
	#DEZXEL	1.	779	1.	782		0.	15]	ι.	783		0.	0022
	#DITBOX	1.3	335	1. 1	33Z 401		-0. 0	34	1	L 1	331 400		0.	0018
	#FACGEV	1.5	541	1.	537	-	-0.	27	1		538		0.	0033
	#FACJAU	1.7	750	1.	749	-	-0.	06	1	L.	753		0.	0030
	#FMANUL01	1.5	504	1.	506		0.	13	1	ι.	504		0.	0017
	#FOVNIN	1.9	931	1.	934		0.	15	1	L.	931		0.	0027
	#HAYYAH	1.2	298	1.	300		0.	13]	L.:	297		0.	0019
	#HCLBNZII #HOWBAW	1 1	334	2. 1	336	-	0.	15	4	≤ I	310 336		0.	0022
	#NAPHTA10	1.3	363	1.	369		0.	45	1	ι.	367		0.	0022
	#NBORAN02	1.4	103	1.	405		0.	10	1	ι.	404		Ο.	0017
	#PUGDEB	1.6	572	1.	672	-	-0.	03	1	L.	674		0.	0037
	#TCHLBZ03	1.9	922	1.	920	-	-0.	12	1	L.	920		0.	0024
Ŧ	TEPNITII #VACCEH	1.3	146	1. 1	147		-0. 0	.34 NG	1	L 1	506 179		0.	0019
	#XAYMIT	1.6	525	1.	628		0.	21	1		627		0.	0018
	#YUYPUD01	1.4	181	1.	484		0.	18	1	ι.	483		0.	0018
	#ACANIL01	1.2	296	1.	294	-	-0.	09	1	ι.:	294		0.	0018
	#ADIPAC07	1.3	397	1.	402		0.	41	1	L . ·	403		0.	0025
	#ARCLAM01	1.3	356	1.	361		0.	32	1	L	363		0.	0024
	#BENZAC07	1 4	173	1	469		-0.	26	-	1.	251 469		0.	0018
	#BIPHEN04	1.3	380	1.	379	-	-0.	07	1	ι.	378		0.	0011
	#BZAMID01	1.4	148	1.	447	-	-0.	13	1	ι.	446		0.	0013
	#DNBENZ14	1.6	525	1.	638		0.	83	1	ι.	631		0.	0048
	#DNITBZ11 #EXODAW	1.0	557	1.	655	-	-0.	.08	1	L.	659 505		0.	0030
	#FAXTUU01	1.7	797	1.	798		0.	0.5	1		800		0.	0020
	#FOVQOX	1.4	113	1.	409	-	-0.	31	1	ι.	411		0.	0028
	#GLURAC03	1.4	182	1.	484		0.	17	1	ι.	482		0.	0016
	#HEPTAN02	0.9	944	0.	945		0.	12	().	943		0.	0016
	#HEXANE01	0.9	941 121	0.	941		0.	01	().	940		0.	0013
	#JOHBUD	1 4	±31 163	1	435		0.	19	-	1.	464		0.	0023
	#MCINAM10	1.2	267	1.	269		0.	11	1	L . :	268		0.	0016
	#NITRBE01	1.4	181	1.	483		0.	10	1	ι.	483		Ο.	0032
	#OCTANE01	0.9	971	0.	978		0.	67	().	975		0.	0016
	#PHBALD11	1.5	010	1.	506	-	-0.	23	1	L.,	508		0.	0020
	#QATTIO	1 1	∠33 38	⊥. 1	232 142	-	-U. 0	32	1	L.) 	∠32 140		0.	0011
	#TEPHTH06	1.7	705	1.	700	-	-0.	29	1		700		0.	0021
	#XAYMEP	1.0	535	1.	636		0	07	1	ι.	634		0.	0027
	#XOZBUK	1.4	194	1.	503		0.	56	1	ι.	498		0.	0030
	#ZIVKOE '	1.5	547	1.	545	-	-0.	15	1	L.	550		0.	0026
	#ZZZITYO1	1.1	L84 171	1.	162	-	-0.	22	1	L.	181		0.	0021
	# 4 4 4 3 2 1 V 1	±.,	L / ⊥	⊥.	τυJ	-	- U .	03	1	۰.	τυ⊃		υ.	UUZI

100 K runs, energies, complete runs for each crystal: intramolecular, LP, Coulombic, total lattice energy start: experimental crystal structure, end: end of the 5Mstep MC run start end %delt aver rmsd #ABUMIT 0.00 0.00 0.00 0.000 intram #ABUMIT -61.46 -68.90 -7.44 -67.78 2.1015 LP #ABUMIT -2.72 -3.32 -0.60 -3.31 0.1454 Coulombic

#ABUMIT	-61.46	-68.90	-7.44	-67.78	2.1015	LP
#ABUMIT	-2.72	-3.32	-0.60	-3.31	0.1454	Coulon
#ABUMIT	-64.18	-72.21	-8.03	-71.09	2.2167	Total
#BENZEN07	0.00	0.00	0.00	0.00	0.0000	
#BENZEN07	-43.51	-43.56	-0.06	-43.35	0.4552	
#BENZEN07	-7.29	-8.45	-1.16	-8.32	0.2643	
#BENZEN07	-50.80	-52.01	-1.21	-51.67	0.6827	
#BILNOZ01	0.00	0.00	0.00	0.00	0.0000	
#BILNOZ01	-68.73	-67.94	0.78	-67.84	0.2048	
#BILNOZ01	-3.20	-3.19	0.01	-3.19	0.0111	
#BILNOZ01	-71.92	-71.13	0.79	-71.03	0.2008	
#BNZQUI03	0.00	0.00	0.00	0.00	0.0000	

#BNZOUT03	-33 83	-49 01	-15 18	-47 30	2 0480
#DNROUT03	21.00	20.01	10.10	20.25	0 5700
#BNZQ0103	-31.00	-20.22	3.40	-29.23	0.3720
#BNZQUI03	-65.51	-77.23	-11.72	-76.55	1.6903
#BULVAL03	0.00	0.00	0.00	0.00	0.0000
#BULVAL03	-64.53	-63.46	1.07	-63.55	0.2213
#BULVAL03	-6.03	-8.06	-2.03	-7.87	0.5122
#DUIT VAT 0 2	70 56	71 50	0.06	71 42	0 5765
#BOLVAL05	-70.50	-/1.52	-0.90	-/1.43	0.5705
#CECGEX	0.00	0.00	0.00	0.00	0.0000
#CECGEX	-61.42	-65.74	-4.32	-65.20	0.8095
#CECGEX	-34.14	-34.18	-0.03	-34.08	0.4128
#CECCEV	-95 56	_00_01	-1 35	-00.20	1 0973
#CECGEA	-95.50	-99.91	-4.33	-99.20	1.00/3
#CTCYDD	0.00	0.00	0.00	0.00	0.0000
#CTCYDD	-85.75	-89.65	-3.90	-89.07	1.0941
#CTCYDD	-2.52	-2.14	0.38	-2.26	0.1567
#CTCYDD	_99 26	_01 70	-3 53	-01 33	0 9692
#CICIDD	-00.20	-91.79	-3.55	-91.55	0.9002
#DAZNAP	0.00	0.00	0.00	0.00	0.0000
#DAZNAP	-63.65	-71.55	-7.90	-70.70	1.5868
#DAZNAP	-21.58	-22.25	-0.67	-21.99	0.6465
#DA7NAP	-85 23	-93 80	-8 58	-92 69	2 1440
#DADNAL	00.20	0.00	0.00	52.05	2.1440
#DCBDOXI0	0.00	0.00	0.00	0.00	0.0000
#DCBDOX10	-110.93	-119.15	-8.21	-117.77	2.3928
#DCBDOX10	0.12	-2.01	-2.13	-1.31	0.6986
#DCBDOX10	-110 82	-121 16	-10 34	-119 07	3 0386
#DOLDONIO1	110.02	101.10			0.0000
#DCLBENUI	0.00	0.00	0.00	0.00	0.0000
#DCLBEN01	-62.14	-71.30	-9.16	-68.87	2.9080
#DCLBEN01	-2.69	-2.79	-0.10	-2.90	0.0973
#DCLBEN01	-64.83	-74.09	-9.26	-71.77	2.8853
#DCI PENO 2	0 00	0 00	0 00	0 00	0 0000
#DCLBENU2	0.00	0.00	0.00	0.00	0.0000
#DCLBEN02	-62.61	-/3.62	-11.00	-/1.39	3.1/85
#DCLBEN02	-3.09	-3.59	-0.49	-3.62	0.1654
#DCLBEN02	-65.71	-77.20	-11.50	-75.00	3.2847
#DF7DIH	0 00	0 00	0 00	0 00	0 0000
#DE2D011	40.00	40.00	0.00	40.00	0.0000
#DEZDUH	-49.59	-49.33	0.26	-49.1/	0.2807
#DEZDUH	-16.96	-16.68	0.28	-16.73	0.0787
#DEZDUH	-66.55	-66.01	0.54	-65.91	0.2467
#DEZXEL	0 00	0 00	0 00	0 00	0 0000
#DEZVEL	77 00	07 04	10.05	07.40	1 4400
#DE4AEL	-77.90	-07.94	-10.03	-07.49	1.4400
#DEZXEL	-17.44	-17.42	0.02	-17.19	0.5307
#DEZXEL	-95.34	-105.36	-10.03	-104.68	1.6670
#DITBOX	0.00	0.00	0.00	0.00	0.0000
#DTTBOY	-83 25	-90 97	-7 71	-89 35	2 5682
#DIIBOA	-03.25	- 90.97	-7.71	-09.55	2.3002
#DITBOX	-8.00	-8.60	-0.60	-8.60	0.1144
#DITBOX	-91.25	-99.57	-8.32	-97.95	2.6225
#EZURUM	0.00	0.00	0.00	0.00	0.0000
#F7IIRIIM	-68 39	-71 78	-3 40	-71 72	0 4806
#ERUDUM	22.20	21.00	0.10	21 00	0.1000
#EZURUM	-23.20	-21.09	2.10	-21.09	0.3078
#EZURUM	-91.59	-92.88	-1.29	-92.81	0.1930
#FACGEV	0.00	0.00	0.00	0.00	0.0000
#FACGEV	-41 44	-46 15	-4 71	-45 69	0 8851
#ENCCEN	6 41	6 1 2	0.20	5 00	0 2522
#FACGEV	-0.41	-0.12	0.29	-3.09	0.3323
#FACGEV	-47.85	-52.26	-4.41	-51.58	1.1113
#FACJAU	0.00	0.00	0.00	0.00	0.0000
#FACJAU	-40.53	-42.52	-1.99	-42.52	0.4043
#FAC.TAU	-11 22	-11 19	0 03	-11 15	0 1387
#PACOAO	-11.22	-11.19	0.03	-11.15	0.1307
#FACJAU	-51.75	-53.72	-1.96	-53.67	0.3531
#FMANUL01	0.00	0.00	0.00	0.00	0.0000
#FMANUL01	-67.36	-73.24	-5.88	-72.15	1.3585
#FMANUT 01	-10 52	-10 43	0 09	-10 37	0 1942
# FIMMOLOI	10.52	10.45	5.00	10.57	1 5105
#FMANULUI	-//.88	-83.66	-5.79	-82.52	1.5135
#FOVNIN	0.00	0.00	0.00	0.00	0.0000
#FOVNIN	-98.56	-102.14	-3.58	-101.85	0.8887
#FOVNIN	-3 20	-3 84	-0 64	-3 74	0 1465
#FOUNTN	-101 76	-105 07	_/ 21	-105 50	1 0000
#POVININ	-101.70	-103.97	-4.21	-105.59	1.0255
#HAYYAH	0.00	0.00	0.00	0.00	0.0000
#HAYYAH	-75.39	-76.20	-0.81	-76.10	0.3388
#HAYYAH	-7.00	-8.58	-1.58	-8.40	0.3031
#НАҮҮАН	-82 39	-84 78	-2 39	-84 49	0 5944
#HCLPN711	0.00	0 00	0.00	0 00	0 0000
#HCLBNZII	0.00	0.00	0.00	0.00	0.0000
#HCLBNZ11	-100.01	-110.12	-10.11	-108.27	3.0313
#HCLBNZ11	7.31	9.16	1.85	8.48	0.9188
#HCLBNZ11	-92.70	-100.96	-8.26	-99.79	2,2155
#HOWRAW	0 00	0 00	0 00	0 00	0 0000
#UOWDAW	01 01	01 44	0.00	01 00	0.0000
# nowbaw	-01.31	-01.44	-0.13	-01.08	0.3100
#HOŴBAW	-10.78	-11.22	-0.44	-11.23	0.1459
#HOWBAW	-92.08	-92.66	-0.57	-92.31	0.4036
#NAPHTA10	0.00	0.00	0.00	0.00	0,0000
#NDDUT710	-69 07	_77 56	_0 50	_76 01	2 2020
#INAPHTALU	-00.9/	-//.50	-0.59	-/0.01	2.2930
#NAPHTA10	-7.63	-8.61	-0.98	-8.68	0.3170
#NAPHTA10	-76.60	-86.17	-9.57	-84.70	2.5274
#NBORAN02	0.00	0.00	0.00	0,00	0.0000
#NBORANO?	-63 64	-62 43	1 20	-62 79	0 2057
#NDOD 7 MOC	22.04	24.43	1.20	22.70	0.2007
#NBORANU2	-33./6	-34.24	-0.48	-33.//	0.3066
#NBORAN02	-97.39	-96.68	0.72	-96.55	0.2301
#PUGDEB	0.00	0.00	0.00	0.00	0.0000
#PUGDEB	-42.93	-48.59	-5.66	-47.66	1.4669
#PIICDEP	-6 70	_7 70	_1 10	_7 57	0 2440
#DUCDED	-0.70	-1.19	-1.10	-/.J/	1 2002
#ruGDEB	40 00		-6 75		1 1 0 0 0
	-49.63	-20.38	-0.75	-35.23	1.0800
#TCHLBZ03	-49.63 0.00	-56.38	0.00	-55.23	0.0000
#TCHLBZ03 #TCHLBZ03	-49.63 0.00 -76.88	-56.38 0.00 -82.05	0.00	-55.23 0.00 -81.48	0.0000 1.4727

#TCHLBZ03	-75.89	-81.51	-5.62	-80.72	1.5928
#TEPNIT11	0.00	0.00	0.00	0.00	0.0000
#TEDNITT11	-62 73	-74 90	-12 16	-73 37	3 0799
#ILENIIII	-02.75	-74.90	-12.10	-73.37	5.0790
#TEPNITII	-30.42	-31.99	-1.5/	-31.29	0.9090
#TEPNIT11	-93.15	-106.89	-13.74	-104.66	3.8703
#VACCEH	0.00	0.00	0.00	0.00	0.0000
#VACCEH	-47.31	-47.94	-0.63	-47.91	0.3973
#VACCEH	-4.84	-6.83	-1.98	-6.69	0.3312
#VACCEH	-52 15	-54 77	-2 62	-54 60	0 6779
#VACCDII	0.00	0.00	2.02	0.00	0.0775
#XAIMLT	0.00	0.00	0.00	0.00	0.0000
#XAYMIT	-93.28	-105.28	-12.01	-104.00	2.2680
#XAYMIT	-16.76	-15.59	1.17	-15.85	0.3461
#XAYMIT	-110.03	-120.87	-10.83	-119.85	2.1586
#YUYPUD01	0 00	0 00	0 00	0 00	0 0000
#VIIVDIID01	-63.69	-71 65	-7 97	-70.49	1 0207
#101F0D01	-03.00	-71.05	-1.97	-70.40	1.9207
#YUYPUDUI	-26.76	-31.03	-4.2/	-30.14	0.9694
#YUYPUD01	-90.45	-102.69	-12.24	-100.62	2.8141
#ACANIL01	14.71	3.05	-11.66	3.76	1.8311
#ACANTL01	-69.73	-72.54	-2.81	-72.48	0.4123
#ACANTLO1	-37 88	-36 19	1 70	-36 39	0 3678
#ACANITIO1	02 01	105 69	10 77	105 11	1 0120
#ACANILUI	-92.91	-105.00	-12.77	-103.11	1.9129
#ADIPAC07	1.12	3.13	2.01	3.01	0.2851
#ADIPAC07	-78.80	-89.45	-10.66	-88.83	1.4246
#ADIPAC07	-47.32	-46.65	0.67	-46.86	0.2247
#ADTPAC07	-124 99	-132 97	-7 97	-132 68	1 0902
#APCIAM01	0 72	2 07	1 34	1 00	0 2276
#ADOT AMO 1	22 55	51 70	10 10	10 00	2 0702
#AKCLAMU1	-33.55	-51./2	-18.18	-49.63	2.9/03
#ARCLAM01	-39.43	-33.87	5.56	-33.84	0.8834
#ARCLAM01	-72.26	-83.53	-11.27	-81.58	2.4788
#AYOJED	0.14	0.12	-0.02	0.13	0.0041
#AYOJED	-63 01	-67 16	-4 15	-66 67	0.8778
#AVO TED	5 40	5 90	0.40	E 05	0.2506
#AIOJED	-5.40	-3.09	-0.49	-3.03	0.2390
#AYOJED	-68.26	-72.93	-4.6/	-72.38	1.1198
#BENZAC07	4.31	1.29	-3.02	1.36	0.4347
#BENZAC07	-53.82	-66.29	-12.47	-65.88	1.7764
#BENZAC07	-28.90	-23.64	5.25	-23.75	0.7304
#BENZAC07	-78 40	-88 64	-10 24	-88 26	1 5106
#DENZACO/	/0.40	5 00	10.24	5 . 20	1.0100
#BIPHENU4	5.99	5.88	-0.11	5.08	0.3330
#BIPHEN04	-77.14	-89.43	-12.29	-86.73	4.1693
#BIPHEN04	-10.75	-12.77	-2.02	-12.32	0.7496
#BIPHEN04	-81.91	-96.32	-14.41	-93.38	4.6241
#BZAMTD01	4 58	2 16	-2 42	2 28	0 3553
#BG7MTD01	-63 19	-73 00	_0 00	-71 69	2 2250
#BZAMIDUI	-03.19	-73.09	-9.90	-/1.00	2.2259
#BZAMIDUI	-33.45	-33.40	0.06	-32.92	0.4985
#BZAMID01	-92.07	-104.32	-12.25	-102.33	2.8248
#DNBENZ14	0.38	0.38	-0.00	0.50	0.1196
#DNBENZ14	-64.94	-72.26	-7.33	-70.20	2.1805
#DNBENZ14	-17 60	-13 64	3 96	-14 37	1 1166
#DNDENG14	17.00	10.01	2.20	04.07	1 0100
#DNBENZI4	-02.13	-03.32	-3.37	-04.07	1.2100
#DNITBZ11	0.22	0.15	-0.07	0.17	0.0509
#DNITBZ11	-64.35	-72.77	-8.41	-71.82	1.5987
#DNITBZ11	-22.25	-20.44	1.80	-20.28	0.4136
#DNITBZ11	-86.38	-93.06	-6.68	-91.93	1.6098
#EXODAW	19 45	0 84	-18 61	1 35	2 6548
#EXODAW	-93.96	-97 24	_3 29	-96 77	0 5741
#EAODAW	-03.90	-07.24	-3.20	-00.77	0.3741
#EXODAW	-29.58	-29.05	0.53	-29.12	0.1804
#EXODAW	-94.09	-115.45	-21.36	-114.54	3.0380
#FAXTUU01	0.00	0.34	0.34	0.34	0.0620
#FAXTUU01	-84.09	-86.38	-2.29	-86.44	0.3568
#FAXTUU01	-28 55	-28.03	0 52	-27 95	0 2026
#FAYTIII01	-112 63	-114 06	-1 13	-114 05	0 3577
#PAXIOUUI	-112.05	-114.00	-1.43	-114.05	0.3377
#FOVQOX	5.59	0.10	0.56	6.20	0.1261
#FOVQOX	-73.90	-73.47	0.43	-73.18	0.2322
#FOVQOX	-60.18	-62.84	-2.66	-62.85	0.5809
#FOVQOX	-128.48	-130.15	-1.67	-129.83	0.5323
#GLURAC03	14.77	6.36	-8.41	6.64	1.2518
#GLUBAC03	-74 90	-82 33	-7 42	-81 78	1 0036
#CT IID> 000	-62 60	_55 00	7 60	_55 00	1 0710
#GLURACUS	-02.00	-33.00	7.00	-55.20	1.0713
#GLURAC03	-122.82	-130.97	-8.16	-130.35	1.1728
#HEPTAN02	0.10	1.54	1.43	1.59	0.2347
#HEPTAN02	-64.53	-64.89	-0.36	-64.54	0.5016
#HEPTAN02	0.70	0.41	-0.29	0.38	0.0598
#HEPTAN02	-63.73	-62.95	0.78	-62.57	0.4511
#HEXANFO1	0 0 0	1 46	1 39	1 10	0 2246
#112222201	F7 04	±.40	1.00	±.40	0.2240
#HEXANEU1	- 3/.94	-3/.88	0.06	-3/.58	0.4660
#HEXANE01	0.70	0.21	-0.49	0.21	0.0783
#HEXANE01	-57.16	-56.21	0.95	-55.97	0.4268
#HITMUS	0.51	1.52	1.01	1.39	0.1925
#HITMUS	-67.72	-75.78	-8.06	-74.95	1.4225
#HTTMIIS	-34 32	-31 88	2 11	-32 0.9	0 3/05
#III TEMILO	101 52	106 14	4.44	105 00	0.3493
# TITMUS	-101.33	-100.14	-4.01	-103.03	0.9599
#JOHBUD	1.26	1.13	-0.13	1.17	0.0461
#JOHBUD	-47.76	-54.67	-6.91	-53.79	1.4854
#JOHBUD	-29.79	-24.46	5.33	-25.15	1.0589
#JOHBUD	-76.29	-78.01	-1.71	-77.77	0.4997
#MCTNAM10	18 03	5 05	-12 98	5 4 3	1 8903
#MCTNAM10	-62 00	-81 50	-18 61	_70 10	2 6766
THC INAMI O	02.09	01.00	10.01	19.10	0.0700
#MCINAM10	-26.08	-22.19	3.89	-22.97	0.9330
#MCINAM10	-70.93	-98.64	-27.70	-96.72	4.4404
#NTTRBE01	0.00	0.10	0.09	0 08	0.0200

#NITRBE01	-57.21	-60.62	-3.40	-59.55	1.0221
#NITRBE01	-11.86	-12.50	-0.64	-12.73	0.2534
#NITRBE01	-69.07	-73.02	-3.95	-72.20	1.0336
#OCTANE01	0.13	1.81	1.68	1.79	0.2598
#OCTANE01	-72.58	-75.15	-2.57	-74.47	1.0164
#OCTANE01	0.97	0.58	-0.39	0.49	0.1058
#OCTANE01	-71.48	-72.76	-1.28	-72.18	0.8712
#PHBALD11	2.08	1.22	-0.86	1.23	0.1337
#PHBALD11	-61.81	-71.10	-9.29	-70.26	1.6065
#PHBALD11	-43.60	-42.67	0.93	-43.05	0.3439
#PHBALD11	-103.32	-112.55	-9.23	-112.08	1.8023
#QATTIO	4.45	3.37	-1.07	3.41	0.1660
#QATTIO	-62.60	-57.68	4.92	-58.01	0.7476
#QATTIO	-58.55	-64.61	-6.06	-64.28	1.0048
#QATTIO	-116.71	-118.92	-2.21	-118.87	0.3735
#QATTOU	8.95	9.08	0.13	9.17	0.1001
#QATTOU	-61.96	-59.12	2.85	-59.11	0.4456
#QATTOU	-60.51	-62.31	-1.80	-62.18	0.2988
#QATTOU	-113.52	-112.35	1.18	-112.12	0.2572
#TEPHTH06	11.27	2.25	-9.03	2.52	1.2759
#TEPHTH06	-78.89	-97.92	-19.03	-96.66	2.9737
#TEPHTH06	-62.02	-52.41	9.61	-52.61	1.3439
#TEPHTH06	-129.64	-148.08	-18.44	-146.75	2.9842
#XAYMEP	0.00	0.09	0.09	0.10	0.0287
#XAYMEP	-84.82	-95.20	-10.38	-93.87	2.4081
#XAYMEP	-10.35	-11.53	-1.17	-11.55	0.3702
#XAYMEP	-95.17	-106.63	-11.46	-105.32	2.7260
#XOZBUK	-0.13	0.66	0.79	0.60	0.1228
#XOZBUK	-59.73	-63.88	-4.15	-63.26	0.7409
#XOZBUK	-27.54	-27.92	-0.38	-28.03	0.1868
#XOZBUK	-87.39	-91.14	-3.75	-90.69	0.6511
#ZIVKOE '	1.73	1.56	-0.17	1.47	0.1704
#ZIVKOE '	-71.73	-86.25	-14.52	-84.34	2.9269
#ZIVKOE '	-35.83	-35.13	0.70	-34.55	0.8214
#ZIVKOE '	-105.83	-119.82	-13.99	-117.42	3.3759
#ZZZITY01	0.00	0.09	0.09	0.10	0.0230
#ZZZITY01	-56.72	-62.64	-5.92	-61.97	1.5007
#ZZZITY01	-3.84	-7.28	-3.43	-6.63	0.8858
#ZZZITY01	-60.56	-69.82	-9.27	-68.51	2.3611
#ZZZSPY01	0.00	0.16	0.16	0.15	0.0281
#ZZZSPY01	-58.03	-61.95	-3.93	-61.29	1.3197
#ZZZSPY01	-3.61	-6.12	-2.52	-5.66	0.5433
#ZZZSPY01	-61.63	-67.92	-6.28	-66.79	1.8245

100 K runs, energies, convergence test last 2 Mstep for each crystal: intramolecular, LP, Coulombic, total lattice energy start: 3 Mstep frame, end: end of the 5Mstep MC run

	start	end	%delt	aver	rmsd
#ABUMIT	0.00	0.00	0.00	0.00	0.0000
#ABUMIT	-68.92	-68.90	0.02	-68.95	0.0660
#ABUMIT	-3.32	-3.32	0.00	-3.31	0.0166
#ABUMIT	-72.24	-72.21	0.03	-72.26	0.0593
#BENZEN07	0.00	0.00	0.00	0.00	0.0000
#BENZEN07	-43.50	-43.56	-0.06	-43.57	0.0364
#BENZEN07	-8.50	-8.45	0.05	-8.42	0.0296
#BENZEN07	-52.00	-52.01	-0.01	-51.99	0.0318
#BILNOZ01	0.00	0.00	0.00	0.00	0.0000
#BILNOZ01	-67.80	-67.94	-0.14	-67.85	0.0668
#BILNOZ01	-3.19	-3.19	0.00	-3.19	0.0076
#BILNOZ01	-70.99	-71.13	-0.14	-71.03	0.0684
#BNZQUI03	0.00	0.00	0.00	0.00	0.0000
#BNZQUI03	-47.57	-49.01	-1.45	-48.20	0.4548
#BNZQUI03	-29.40	-28.22	1.18	-28.84	0.3954
#BNZQUI03	-76.96	-77.23	-0.27	-77.04	0.0879
#BULVAL03	0.00	0.00	0.00	0.00	0.0000
#BULVAL03	-63.46	-63.46	-0.01	-63.51	0.0737
#BULVAL03	-8.14	-8.06	0.08	-8.11	0.0388
#BULVAL03	-71.60	-71.52	0.08	-71.62	0.0677
#CECGEX	0.00	0.00	0.00	0.00	0.0000
#CECGEX	-65.49	-65.74	-0.25	-65.58	0.0759
#CECGEX	-34.36	-34.18	0.19	-34.24	0.0876
#CECGEX	-99.85	-99.91	-0.06	-99.82	0.1002
#CTCYDD	0.00	0.00	0.00	0.00	0.0000
#CTCYDD	-89.50	-89.65	-0.15	-89.65	0.1103
#CTCYDD	-2.11	-2.14	-0.03	-2.13	0.0298
#CTCYDD	-91.61	-91.79	-0.18	-91.78	0.1065
#DAZNAP	0.00	0.00	0.00	0.00	0.0000
#DAZNAP	-71.43	-71.55	-0.12	-71.49	0.0857
#DAZNAP	-22.44	-22.25	0.19	-22.34	0.0611
#DAZNAP	-93.88	-93.80	0.08	-93.83	0.0761
#DCBDOX10	0.00	0.00	0.00	0.00	0.0000
#DCBDOX10	-119.01	-119.15	-0.14	-119.12	0.0984
#DCBDOX10	-1.76	-2.01	-0.25	-1.89	0.0688
#DCBDOX10	-120.77	-121.16	-0.39	-121.01	0.0946
#DCLBEN01	0.00	0.00	0.00	0.00	0.0000
#DCLBEN01	-70.82	-71.30	-0.48	-71.13	0.1357
#DCLBEN01	-2.87	-2.79	0.08	-2.82	0.0262
#DCLBEN01	-73.69	-74.09	-0.40	-73.95	0.1184
#DCLBEN02	0.00	0.00	0.00	0.00	0.0000

#DCLBEN02	-73.30	-73.62	-0.31	-73.59	0.0907
#DCLBEN02	-3.60	-3.59	0.02	-3.60	0.0179
#DCLBEN02	-76.91	-77.20	-0.30	-77.18	0.0963
#DEZDUH	0.00	0.00	0.00	0.00	0.0000
#DEZDUH	-49.06	-49.33	-0.27	-49.29	0.1048
#DEZDUH	-16.75	-16.68	0.07	-16.69	0.0400
#DEZDUH	-65.80	-66.01	-0.21	-65.98	0.1104
#DEZXEL	0.00	0.00	0.00	0.00	0.0000
#DEZXEL	-87.88	-87.94	-0.06	-87.87	0.0871
#DEZXEL	-17.36	-17.42	-0.06	-17.41	0.0534
#DEZXEL	-105 24	-105 36	-0 12	-105 28	0 0919
#DITBOX	0 00	0 00	0 00	0.00	0 0000
#DITBOX	-91 06	-90.97	0.00	-90.93	0.0000
#DITBOX	-8 72	-8.60	0.03	-8.66	0.0303
#DITBOX	-99 78	-99 57	0.13	-99 59	0.0437
#E7HDIM	0.00	0.00	0.21	0.00	0.0000
#EZURUM	71 01	71 70	0.00	71 00	0.0000
#EZURUM	-/1.91	-/1./8	0.12	-/1.80	0.0902
#EZURUM	-20.91	-21.09	-0.18	-21.05	0.0795
#EZURUM	-92.81	-92.88	-0.06	-92.85	0.0655
#FACGEV	0.00	0.00	0.00	0.00	0.0000
#FACGEV	-46.12	-46.15	-0.03	-46.09	0.0549
#FACGEV	-6.10	-6.12	-0.02	-6.12	0.0429
#FACGEV	-52.21	-52.26	-0.05	-52.21	0.0714
#FACJAU	0.00	0.00	0.00	0.00	0.0000
#FACJAU	-42.56	-42.52	0.03	-42.57	0.0924
#FACJAU	-11.15	-11.19	-0.04	-11.21	0.0536
#FACJAU	-53.71	-53.72	-0.00	-53.78	0.0909
#FMANUL01	0.00	0.00	0.00	0.00	0.0000
#FMANUL01	-73.00	-73.24	-0.23	-73.02	0.1068
#FMANUL01	-10.44	-10.43	0.02	-10.45	0.0280
#FMANUL01	-83.44	-83.66	-0.22	-83.47	0.1135
#FOVNIN	0.00	0.00	0.00	0.00	0.0000
#FOVNIN	-102.08	-102.14	-0.06	-102.12	0.1163
#FOVNIN	-3.85	-3.84	0.01	-3.82	0.0313
#FOVNIN	-105.93	-105.97	-0.04	-105.94	0.1089
#HAYYAH	0.00	0.00	0.00	0.00	0.0000
#HAYYAH	-76.20	-76.20	-0.00	-76.18	0.0831
#HAYYAH	-8 59	-8 58	0 01	-8 56	0 0498
#HAYYAH	-84 79	-84 78	0 00	-84 73	0 0830
#HCLBNZ11	0 00	0 00	0.00	0 00	0 0000
#HCLBNZ11	-110 21	-110 12	0.00	-110 14	0.0853
#UCI DN711	0 16	9 16	0.05	0 10	0.0000
#HCLBNZII	101 05	100 06	0.01	9.19	0.0333
#HCLBNZII	-101.03	-100.90	0.09	-100.95	0.0021
#HOWBAW	0.00	0.00	0.00	0.00	0.0000
#HOWBAW	-81.10	-81.44	-0.28	-81.19	0.1341
#HOWBAW	-11.31	-11.22	0.09	-11.27	0.0637
#HOWBAW	-92.47	-92.66	-0.18	-92.46	0.0990
#NAPHTAIO	0.00	0.00	0.00	0.00	0.0000
#NAPHTA10	-77.32	-77.56	-0.24	-77.46	0.0926
#NAPHTA10	-8.71	-8.61	0.10	-8.66	0.0379
#NAPHTA10	-86.03	-86.17	-0.14	-86.11	0.0893
#NBORAN02	0.00	0.00	0.00	0.00	0.0000
#NBORAN02	-62.53	-62.43	0.09	-62.68	0.1475
#NBORAN02	-34.05	-34.24	-0.19	-33.98	0.1206
#NBORAN02	-96.58	-96.68	-0.10	-96.67	0.1067
#PUGDEB	0.00	0.00	0.00	0.00	0.0000
#PUGDEB	-48.40	-48.59	-0.18	-48.50	0.0908
#PUGDEB	-7.63	-7.79	-0.17	-7.75	0.0437
#PUGDEB	-56.03	-56.38	-0.35	-56.25	0.1210
#TCHLBZ03	0.00	0.00	0.00	0.00	0.0000
#TCHLBZ03	-82.30	-82.05	0.25	-82.12	0.0928
#TCHLBZ03	0.66	0.55	-0.11	0.58	0.0468
#TCHLBZ03	-81.64	-81.51	0.14	-81.54	0.0598
#TEPNIT11	0.00	0.00	0.00	0.00	0.0000
#TEPNIT11	-74.78	-74.90	-0.11	-74.90	0.0901
#TEPNIT11	-31.96	-31.99	-0.03	-31.94	0.0740
#TEPNIT11	-106.74	-106.89	-0.14	-106.84	0.0870
#VACCEH	0.00	0.00	0.00	0.00	0.0000
#VACCEH	-48.04	-47.94	0.10	-48.04	0.0777
#VACCEH	-6.82	-6.83	-0.00	-6.82	0.0391
#VACCEH	-54.87	-54.77	0.09	-54.85	0.0716
#XAYMTT	0.00	0.00	0.00	0.00	0.0000
#XAYMTT	-105 07	-105 28	-0.21	-105 16	0 0964
#XAYMTT	-15 54	-15 59	-0.04	-15 66	0 0965
#YAYMTT	-120 61	-120.87	-0.26	-120.81	0.0908
# YIIV DIID 0 1	120.01	120.07	0.20	120.01	0.0000
#VIIVPIID01	-71 20	-71 65	_0.00	-71 50	0 1370
# TO I LODOT	-11.29	- 21 00	-0.3/	-30 03 -17.33	0.1500
# IUIFUDUL #VIIVD01	-30.00	-31.03	-0.43	-30.93	0.1333
#IUIPUDUL	-TAT'92	-TUZ.07	-0.80	-102.52	0.2364
#ACANILU1	3.19	3.05	-0.14	3.12	0.08/8
#ACANILU1	- 12.47	- 12.54	-0.07	-/2.65	0.0894
#ACANIL01	-36.34	-36.19	0.15	-36.16	0.0926
#ACANILU1	-105.62	-105.68	-0.06	-105.69	0.1334
#ADIPAC07	3.06	3.13	0.07	3.03	0.1128
#ADIPAC07	-88.86	-89.45	-0.59	-89.22	0.1798
#ADIPAC07	-46.83	-46.65	0.17	-46.68	0.1246
#ADIPAC07	-132.63	-132.97	-0.34	-132.87	0.1451
#ARCLAM01	2.08	2.07	-0.02	2.02	0.0378
#ARCLAM01	-50.89	-51.72	-0.84	-51.43	0.1954
#ARCLAM01	-34 21	-33 87	0 34	-34 09	0.0980

#ARCLAM01	-83.02	-83.53	-0.51 -83	.49	0.1552
#AYOJTED	0 12	0 12	-0 00 0	12	0 0023
#AVO TED	66 02	67 16	0.25 67		0 1120
#AIOJED	-00.92	-07.10	-0.23 -07	.09	0.1139
#AYOJED	-5.88	-5.89	-0.00 -5	.94	0.0446
#AYOJED	-72.68	-72.93	-0.25 -72	.90	0.1160
#BENZAC07	1.28	1.29	0.01 1	.29	0.0448
#BENZAC07	-66.25	-66.29	-0.04 -66	.34	0.0993
#BENZAC07	-23 79	-23 64	0 15 -23	60	0 1069
#DENZACO7	00 76	00 61	0.10 00	.00	0.1005
#BENZACU/	-88.76	-88.64	0.12 -88	.00	0.0957
#BIPHEN04	5.89	5.88	-0.01 5	.87	0.0124
#BIPHEN04	-89.42	-89.43	-0.01 -89	.25	0.1303
#BIPHEN04	-12.85	-12.77	0.08 -12	.83	0.0555
#BIPHEN04	-96 39	-96 32	0 07 -96	21	0 0996
#B7AMTD01	2 23	2 16	-0.07 2	20	0 0451
#DZAMID01	72.23	72.10	0.07 2	.20	0.0451
#BZAMIDUI	-/3.03	-73.09	-0.06 -73	.05	0.0660
#BZAMID01	-33.29	-33.40	-0.11 -33	.28	0.0977
#BZAMID01	-104.09	-104.32	-0.23 -104	.13	0.1017
#DNBENZ14	0.43	0.38	-0.05 0	.40	0.0335
#DNBENZ14	-71 68	-72 26	-0 58 -72	17	0 2000
#DNDEN714	-13 54	-13 64	_0 10 _13	51	0 1273
#DNDENZ14	-13.34	-13.04	-0.10 -13	. J 1	0.1275
#DNBENZI4	-84./9	-85.52	-0./4 -85	.29	0.2611
#DNITBZ11	0.15	0.15	-0.00 0	.15	0.0104
#DNITBZ11	-72.61	-72.77	-0.16 -72	.66	0.1153
#DNITBZ11	-20.32	-20.44	-0.12 -20	.50	0.0882
#DNTTBZ11	-92 78	-93 06	-0 28 -93	0.0	0 1201
#FYODAW	0 95	0.84	-0 11 0	8/	0 0489
#EXODAW	0.95	0.04	-0.11 0	.04	0.0409
#EXODAW	-8/.12	-87.24	-0.12 -87	.02	0.1250
#EXODAW	-29.02	-29.05	-0.03 -29	.06	0.1060
#EXODAW	-115.20	-115.45	-0.26 -115	.24	0.1213
#FAXTUU01	0.33	0.34	0.01 0	.34	0.0219
#FAXTUU01	-86 44	-86 38	0 07 -86	51	0 0995
#EXVTITIO1	-28 03	-28.03	0.00 -29	00	0.0597
#FAA10001	-20.05	-20.05	0.00 -20	.00	0.0307
#FAXTUUUI	-114.15	-114.06	0.09 -114	• 1 /	0.0799
#FOVQOX	6.25	6.16	-0.09 6	.23	0.0545
#FOVQOX	-72.97	-73.47	-0.50 -73	.24	0.1767
#FOVQOX	-63.29	-62.84	0.45 -63	.03	0.1827
#FOVOOX	-130.01	-130.15	-0.14 -130	.04	0.1087
#CT UDACO3	6 50	6 36	-0 14 6		0 0747
#GLUNAC03	0.00	0.00	-0.14 0	. 4 4	0.0747
#GLURACU3	-82.02	-82.33	-0.31 -82	.14	0.1438
#GLURAC03	-55.07	-55.00	0.0/ -55	.0/	0.1192
#GLURAC03	-130.59	-130.97	-0.39 -130	.77	0.1316
#HEPTAN02	1.70	1.54	-0.17 1	.61	0.0716
#HEPTAN02	-64.68	-64.89	-0.20 -64	.77	0.1179
#HEDTANO2	0 38	0 41	0.03 0	38	0 0152
#HEDDANO2	0.50	C2 05	0.00 0		0.0132
#HEPIANUZ	-02.00	-02.95	-0.34 -02	• / /	0.1455
#HEXANE01	1.46	1.46	-0.01 1	.43	0.0533
#HEXANE01	-57.75	-57.88	-0.12 -57	.84	0.0886
#HEXANE01	0.21	0.21	-0.01 0	.20	0.0218
#HEXANE01	-56.08	-56.21	-0.13 -56	.21	0.1170
#HITMUS	1 54	1 52	-0.02 1	51	0 0324
#HITMUS	-75 69	-75 78	-0.10 -75	73	0 1172
#1111100	22.02	21 00	0.10 75	. / 5	0.1012
#HITMUS	-32.02	-31.88	0.13 -31	.94	0.1013
#HITMUS	-106.17	-106.14	0.02 -106	.15	0.1219
#JOHBUD	1.13	1.13	-0.00 1	.13	0.0091
#JOHBUD	-54.64	-54.67	-0.03 -54	.59	0.0792
#JOHBUD	-24.42	-24.46	-0.04 -24	.54	0.0749
#JOHBUD	-77 93	-78 01	-0 07 -77	99	0 0727
#MCINAM10	5 24	5 05	_0 19 5	04	0 1409
#MCINAMIO	01 50	01 50	-0.19 5	.04	0.1400
#MCINAMIU	-81.56	-81.50	0.06 -81	.48	0.1634
#MCINAM10	-22.52	-22.19	0.33 -22	.33	0.1482
#MCINAM10	-98.84	-98.64	0.20 -98	.77	0.1757
#NITRBE01	0.07	0.10	0.02 0	.08	0.0127
#NITRBE01	-60.17	-60.62	-0.45 -60	.37	0.1775
#NITRBE01	-12.68	-12.50	0.18 -12	.54	0.0765
#NTTRBE01	-72 78	-73 02	-0 24 -72	83	0 1154
#00071001	1 00	1 01	-0 01 1	86	0 0557
#OCIANE01	1.02	1.01	-0.01 1	.00	0.0337
#OCTANE01	-/4.95	-/5.15	-0.20 -74	.99	0.1083
#OCTANE01	0.54	0.58	0.04 0	.53	0.0312
#OCTANE01	-72.59	-72.76	-0.17 -72	.60	0.1201
#PHBALD11	1.20	1.22	0.02 1	.23	0.0470
#PHBALD11	-70.82	-71.10	-0.28 -71	.00	0.1040
#PHRAT.011	-43 18	-42 67	0 51 -42	95	0.1571
#PHRAT D11	-112 70	-112 55	0 24 -110	71	0 0036
#FUDALDII	-112.19	-112.00	0.24 -112	• / ±	0.0930
#QATT110	3.48	3.37	-0.11 3	.3/	0.058/
#QATTIO	-57.73	-57.68	0.05 -57	.80	0.1132
#QATTIO	-64.69	-64.61	0.08 -64	.57	0.1182
#QATTIO	-118.95	-118.92	0.03 -118	.99	0.1272
#QATTOU	9.10	9.08	-0.02 9	.15	0.0761
#OATTON	-59 18	-59 12	0.06 -59	. 02	0.0903
#07.000	_61 00	-62 21	_0 22 02	20	0 1/00
#QATTOU	-01.99	-02.31	-0.32 -62	. 29	0.1402
#QATTOU	-112.0/	-112.35	-0.27 -112	.10	0.1081
#TEPHTH06	2.27	2.25	-0.02 2	.26	0.0503
#TEPHTH06	-97.69	-97.92	-0.23 -97	.78	0.1362
#TEPHTH06	-52.45	-52.41	0.04 -52	.33	0.1270
#TEPHTH06	-147.87	-148.08	-0.21 -147	.85	0.1453
#XAYMEP	0.09	0.09	-0.00 0	.09	0.0054
#XAYMEP	-94 84	-95.20	-0.36 -95	.06	0.1146
#YAVMED	-11 60	-11 52	0 16 -11	61	0 0022
TAAIMEP #VAVATE	-11.00	-11.33	0.10 -11	. UI	0.0922
#XAIMEP	-106.43	-100.03	-0.21 -106	. 38	U.1U36
# VOT DITZ	0 58	0 66	0 08 0	6/	0 0359

#XOZBUK #XOZBUK	-63.68 -27.96	-63.88 -27.92	-0.21 0.05	-63.77 -27.93	0.1124 0.0561
#XOZBUK	-91.06	-91.14	-0.08	-91.05	0.1038
#ZIVKOE '	1.53	1.56	0.03	1.59	0.0560
#ZIVKOE '	-86.12	-86.25	-0.13	-86.25	0.1415
#ZIVKOE '	-34.85	-35.13	-0.28	-35.17	0.1318
#ZIVKOE '	-119.44	-119.82	-0.39	-119.83	0.2004
#ZZZITY01	0.09	0.09	0.00	0.09	0.0030
#ZZZITY01	-62.87	-62.64	0.23	-62.72	0.0868
#ZZZITY01	-7.21	-7.28	-0.06	-7.28	0.0354
#ZZZITY01	-69.99	-69.82	0.17	-69.91	0.0744
#ZZZSPY01	0.16	0.16	-0.00	0.16	0.0026
#ZZZSPY01	-62.03	-61.95	0.08	-62.06	0.0801
#ZZZSPY01	-5.95	-6.12	-0.18	-6.04	0.0594
#ZZZSPY01	-67.82	-67.92	-0.10	-67.95	0.1020

300 K runs, cell parameters, complete runs For each crystal: a, b, c, α,β,γ start: experimental crystal structure, end: end of the 5Mstep MC run

	star	t end	%delt	aver	rmsd st	art e	end de	elt aver	rmsd	
#ABUMIT	3.588	3.689	2.8	3.672	0.021	90.12	89.9	-0.22	90.01	0.226
#ARIMTT	10 504	10 779	26	10 711	0 06	101 1	101 01	-0 09	100 2	0 399
#ADOMII	10.004	15 107	2.0	15.020	0.00	101.1	101.01	0.05	100.2	0.000
#ABUMI'I'	15.11	15.19/	0.6	15.232	0.035	89.99	89.53	-0.45	90.02	0.249
#BENZEN0	7.439	7.806	4.9	7.713	0.09	89.92	89.14	-0.78	89.89	0.378
#BENZENO	9 1 9 9	9 426	2 5	9 4 4	0 069	89 92	897	-0 22	89 9	0 291
#DENZENO	6 390	6 536	2 3	6 199	0 042	90 69	99 1/	_1 55	90 05	0 99
#BENZENU	0.309	0.000	2.5	0.499	0.042	09.00	00.14	-1.55	90.05	0.90
#BILNOZ0	9.782	9.88	1	9.931	0.058	89.92	89.19	-0.73	89./1	0.369
#BILNOZ0	6.819	7.039	3.2	6.962	0.047	90.82	90.88	0.06	91	0.238
#BILNOZ0	13.21	13.822	4.6	13.643	0.169	89.85	89.8	-0.05	90.07	0.3
#BNZOUTO	5 486	5 51	0.4	5 517	0 015	92 79	90 91	-1 88	91 92	1 1 3 3
#DNZQUIO	5.400	7 111	1 0	3.317	0.015	06.70	07.00	1.00	07.02	1.133
#BNZQUIU	0.980	/.111	1.8	1.093	0.025	96.72	97.09	0.37	91.23	0.284
#BNZQUI0	6.548	6.638	1.4	6.655	0.035	87.11	89.22	2.11	88.29	1.003
#BULVAL0	6.242	6.35	1.7	6.332	0.02	90.11	89.97	-0.14	90.03	0.23
#BULVALO	20 907	21 403	2 4	21 303	0 124	92 93	92 9	-0 02	92 97	0 185
	10 395	10 102	1	10 523	0 035	80 06	90 55	-0 41	90 02	0 304
#BOLVALO	10.303	10.492		10.525	0.055	09.90	09.00	-0.41	90.02	0.594
#CECGEX	4.608	4.622	0.3	4.63	0.014	90.05	90.15	0.1	90.03	0.23
#CECGEX	7.143	7.263	1.7	7.257	0.062	89.96	90.07	0.11	90.15	0.207
#CECGEX	11.8	12.043	2.1	11.978	0.078	90.05	90.02	-0.02	90.02	0.221
#CTCYDD	7 484	7 5 5 3	0 9	7 532	0 015	89 96	90 11	0 15	89 97	0 217
#CTCIDD	17 266	17 574	1 2	17 625	0.010	115 60	115 0	0.10	115 72	0.160
#CICIDD	17.300	11.574	1.2	17.035	0.073	113.02	113.9	0.20	113.73	0.109
#CTCYDD	8.673	8.794	1.4	8.752	0.025	89.74	90.03	0.29	90.08	0.326
#DAZNAP	13.803	14.043	1.7	13.939	0.056	89.88	90.12	0.24	89.99	0.167
#DAZNAP	10.171	10.231	0.6	10.289	0.032	92.53	88.96	-3.57	90.58	1.15
#DA7NAP	8 574	8 636	0 7	8 634	0 025	89 87	90 1	0 23	89 91	0 202
#DCDDOV1	5 021	6 007	1 1	6 017	0.020	02.07	02 04	0.20	02.21	0.202
#DCBDOXI	J.931	0.02/	τ.0	0.U1/	0.022	93.13	93.84	0.12	33.30	0.498
#DCBDOX1	6.47	6.529	0.9	6.526	0.014	90.74	90.72	-0.02	90.65	0.273
#DCBDOX1	24.774	24.994	0.9	24.954	0.045	90	90.25	0.25	90	0.208
#DCLBEN0	14.633	14.811	1.2	14.793	0.04	89.91	89.95	0.04	89.88	0.243
#DCLBENO	5 701	5 875	3 1	5 838	0 035	109 6	110 55	0 96	110 13	0 474
#DOIDDING	2.701	0.075	0.1	2.000	0.000	100.0	110.00	0.10	110.10	0.17
#DCTREN0	3.508	3.6	2.6	3.596	0.019	90.14	90.27	0.13	9U.13	0.315
#DCLBEN0	7.398	7.475	1	7.484	0.025	84.76	85.63	0.87	85.45	0.25
#DCLBEN0	5.522	5.638	2.1	5.627	0.027	111.71	111.53	-0.18	112.38	0.518
#DCLBENO	3 603	3 667	18	3 674	0 021	97 7	96 48	-1 22	96 55	0 297
#DEZDUU	14 761	15 000	1 7	15 04	0 0022	00 02	00.27	0.24	00.00	0.206
#DEZDUR	14.701	13.009	1./	15.04	0.005	90.03	90.27	0.24	90.09	0.200
#DEZDUH	5.781	5.921	2.4	5.888	0.033	89.73	90.56	0.83	89.9	0.458
#DEZDUH	9.898	10.213	3.2	10.157	0.075	90.29	89.69	-0.6	90.09	0.393
#DEZXEL	11.914	11.97	0.5	11.962	0.021	89.93	89.68	-0.25	90	0.152
#DEZXEL	9 527	9 633	1 1	9 595	0 024	89 96	89 71	-0 25	89 96	0 188
#DEZVET	7 161	7 24	1 1	7 261	0.022	00.01	00 11	0.20	00.01	0 104
#DEZAEL	7.101	7.24	1.1	7.201	0.022	09.04	90.44	0.0	90.0I	0.104
#DITBOX	6.934	1.052	1./	/.015	0.025	89.85	89.4/	-0.37	90.07	0.278
#DITBOX	6.338	6.384	0.7	6.4	0.016	104.25	104.64	0.39	104.37	0.276
#DITBOX	10.553	10.679	1.2	10.675	0.046	90.11	90.13	0.02	90.01	0.282
#F7IIRIIM	10 217	10 29	0 7	10 332	0 036	90 06	89 86	-0.2	90 05	0 136
#EZUDUM	10.217	10.20	1 2	10.552	0.000	05.00	05.00	0.2	05.03	0.100
#EZURUM	6.4/3	6.55/	1.3	6.539	0.022	95.89	95.66	-0.24	95.44	0.192
#EZURUM	12.52	12.612	0.7	12.633	0.033	90	90.27	0.27	90.05	0.209
#FACGEV	5.81	5.834	0.4	5.866	0.021	90.17	89.12	-1.05	89.99	0.599
#FACGEV	6.499	6,925	6.6	6.836	0.112	96	97.8	1.81	97.96	0.698
#FACCEN	6 567	6 965	1 5	6 9	0 069	00 0	90 37	-0.43	80 75	0 455
#FACGEV	4 522	4.000	1.7	4 5 0 1	0.000	00.70	01.00	1 20	00.05	0.400
#FACUAU	4.333	4.009	1./	4.301	0.019	09.70	91.00	1.32	09.95	0.545
#FACJAU	10.514	11.239	6.9	11.024	0.205	104	109.47	5.47	107.25	1.953
#FACJAU	6.162	6.517	5.8	6.45	0.091	90.1	89.46	-0.65	90.07	0.406
#FMANUL0	9.152	9.319	1.8	9.333	0.049	89.99	89.7	-0.29	90.03	0.301
#FMANULO	13 798	13 932	1	13 925	0 035	89 69	89 66	-0 03	89 89	0 239
#EMANULO	6 225	6 270	0 0	6 200	0.005	00.01	00.74	0.00	00.01	0.200
# F MANOLO	0.225	0.270	0.9	0.209	0.015	09.04	09.74	-0.1	09.94	0.331
#FOVNIN	7.658	7.737	1	7.725	0.016	89.85	90.47	0.62	90.06	0.206
#FOVNIN	11.239	11.388	1.3	11.37	0.034	90.14	89.89	-0.24	89.91	0.235
#FOVNIN	17.732	17.838	0.6	17.849	0.04	90.09	90.3	0.22	90	0.205
#НАҮҮАН	7 665	7 837	2.2	7 813	0 036	89 98	89 99	0	89 96	0 261
#UNVVNII	13 750	13 005	1	13 000	0.000	100 71	100 0	0 10	100 70	0 257
πΠΑΙΙΑΠ #ΠΑΙΙΑΠ	13.132	10.020		T7.000	0.033	103.11	TOA.A	0.13	T02.12	0.357
#НАҮҮАН	8.047	8.114	0.8	8.114	0.017	89.79	90.43	0.64	90.15	U.398
#HCLBNZ1	7.931	8.029	1.2	8.033	0.029	90	89.84	-0.16	90.08	0.37
#HCLBNZ1	3.549	3.636	2.5	3.609	0.018	93.59	94.16	0.57	93.85	0.228
#HCLBNZ1	14 554	14 627	0 5	14 624	0 034	89 83	89 58	-0 25	89 91	0 227
	5 10/	5 202	1 7	5 070	0 0 2 1	0/ 17	01 7	0.20	01 20	0 107
#HOWBAW	5.194	J.203	1./	5.219	0.021	94.17	94.7	0.55	94.20	0.197
#HOWBAW	5.607	5.673	1.2	5.663	0.02	95.46	94.8	-0.67	94.98	0.213
#HOWBAW	7.674	7.727	0.7	7.704	0.018	108.98	109.04	0.06	109.17	0.249
#NAPHTA1	7.426	7.614	2.5	7.559	0.041	90.04	90.02	-0.02	90.01	0.225
#NAPHTA1	5 933	5 91 9	-0.2	5 9/9	0 015	125 67	125 02	-0 65	124 61	0 251
#NADUER 1	0	0 700	1 0	0 77	0.010	120.07	120.02	0.00	127.01	0.001
#NAPHTAL	0.08/	0./92	1.2	8./6	0.023	89.9/	9U.16	0.19	09.9/	0.223
#NBORAN0	6.143	6.144	0	6.148	0.015	89.83	89.82	-0.01	89.96	0.198
#NBORAN0	9.593	9.753	1.7	9.707	0.038	89.94	89.89	-0.05	89.99	0.149
#NBORAN0	13.172	13.456	2.2	13.446	0.082	90.05	89.99	-0.05	90.02	0.164
#PUGDEB	7 256	7 457	2 8	7 450	0 060	89 96	90 19	0 21	90 15	0 483
# DIICDED	12 000	10 511	2.0	10 /00	0.009	100 00	104 00	_4 10	106 00	0.403
#PUGDEB	12.082	12.311	3.5	12.402	0.097	108.82	104.03	-4.18	100.83	0.985
#PUGDEB	6.324	6.485	2.5	6.468	0.047	89.91	89.94	0.03	89.89	0.213
#TCHLBZ0	3.665	3.768	2.8	3.735	0.022	89.95	89.66	-0.29	90.02	0.21
#TCHLBZ0	13.271	13.846	4.3	13.729	0.163	90.15	89.81	-0.34	90.03	0.186
#TCHLBZ0	12.908	12.694	-1.7	12.822	0.114	90.21	89.56	-0.65	89.94	0.381
#TFDNTT1	3 565	3 607	1 0	3 621	0 022	115 /1	115 62	0 21	115 /1	0 214
	5.505	5.007	1.2	5.021	0.022	110.41	TT3.03	0.21	110.41	0.210
#TEPNIT1	0.438	0.564	2	0.503	0.026	83.3	83.56	0.25	83.33	0.219
#TEPNIT1	7.004	7.049	0.6	7.038	0.014	102.64	101.72	-0.92	102.41	0.325
#VACCEH	7.078	7.395	4.5	7.303	0.074	89.87	90.22	0.35	89.99	0.38
#VACCEH	6 862	6 933	1	6 957	0 033	89 82	90 34	0 52	90 02	0 293
#VACCEH	9.557	9.793	2.5	9.791	0.072	90.01	90.22	0.21	90.01	0,249

#XAYMTT	3 4 3	3 4 9 6	19	3 4 9	0 014	89 95	90 16	0 2	90 03	0 165
#VAVMTT	0 522	0 506	0.7	0 502	0 010	00 14	00.06	0 00	00.04	0 1 0 1
#AAIMII	0.332	0.590	0.7	0.393	0.010	90.14	90.00	-0.08	09.94	0.101
#XAYMIT	25.391	25.476	0.3	25.474	0.058	90.14	89.9	-0.24	90.24	0.324
#YUYPUD0	3.741	3.819	2.1	3.799	0.016	89.93	90.16	0.23	89.97	0.247
#YUYPUD0	10 682	10 938	2 4	10 919	0 068	93 28	94 71	1 4 3	94 34	0 41
	1/ 39	14 442	0.4	1/ /35	0 022	90 04	90 1	0.06	80.06	0 259
#1012000	14.30	14.442	0.4	14.455	0.022	90.04	90.1	0.00	09.90	0.250
#ACANILU	19.089	19.1/	0.4	19.156	0.04	90.12	89.82	-0.3	90.05	0.298
#ACANILO	9.381	9.543	1.7	9.558	0.063	90.01	90.19	0.18	90	0.286
#ACANTLO	7.747	7.949	2.6	7.91	0.041	90.04	90.57	0.53	90.01	0.25
#ADTDACO	7 261	7 5 2	2.2	7 514	0 042	00 66	00 05	0 4	00.00	0 22
#ADIPACU	7.301	1.55	2.3	7.514	0.042	09.00	90.05	0.4	09.00	0.22
#ADIPAC0	5.009	5.135	2.5	5.113	0.034	113.57	114.23	0.66	114.28	0.281
#ADIPAC0	10.241	10.297	0.5	10.308	0.033	89.98	90.21	0.24	89.91	0.236
#ARCLAM0	8 151	7 913	-2 9	8 1 0 4	0 11	90 03	90 31	0 29	90 21	0 29
#ADGIAMO	E 0E1	F 207	2.5	E 20E	0.11	100.75	111 41	0.25	110 75	0.27
#ARCLAMU	5.051	5.287	4./	5.205	0.057	108.75	111.41	2.00	110.75	0.0//
#ARCLAM0	8.9	9.591	7.8	9.357	0.197	89.85	89.95	0.1	90.11	0.273
#AYOJED	5.557	5.657	1.8	5.646	0.021	89.96	89.83	-0.14	89.99	0.237
#AVO.TED	10 296	10 521	2 2	10 457	0 052	101 01	100 52	-0 49	100 36	0 326
#AIOOED	10.200	11 101	2.2	11 140	0.032	101.01	100.52	0.40	100.50	0.520
#AYOJED	10.98/	11.101	1.0	11.143	0.04/	89.97	90.31	0.34	90.04	0.226
#BENZAC0	5.285	5.358	1.4	5.368	0.021	90.08	90.04	-0.03	90	0.193
#BENZAC0	4.902	4.95	1	4.966	0.017	104.88	103.84	-1.04	103.92	0.257
#BENZACO	22 052	22 481	1 9	22 338	0 129	89 93	89 68	-0.25	89 98	0 189
#DENZACO	22.032	22.401	1.5	22.550	0.120	05.55	00.00	0.20	09.90	0.105
#BIPHEN0	/.531	1.15	2.9	/.688	0.048	90.26	89.93	-0.33	89.87	0.381
#BIPHEN0	5.308	5.376	1.3	5.4	0.023	86.94	87.08	0.13	86.91	0.411
#BIPHENO	9 307	933	0 2	9 347	0 027	90 03	89 76	-0.26	89 96	0 243
#BZ7MTD0	5 110	5 156	0 7	5 172	0 010	00 14	00 03	_0 11	80 00	0 239
#BZAMID0	J.110	5.150	0.7	J.172	0.019	90.14	90.03	-0.11	09.99	0.230
#BZAMIDU	5.15	5.163	0.3	5.162	0.01	81.4	83.25	1.85	83.21	0.45
#BZAMID0	21.339	21.875	2.5	21.796	0.128	89.91	89.9	0	90.01	0.218
#DNBEN71	14.817	15.177	2.4	15.081	0.067	104.07	103.84	-0.23	103.54	0.315
#DNDEN121	13 220	13 /00	1 0	13 500	0 040	00 00	00 07	0 1 5	00 07	0 262
#DNBENZI	13.332	13.488	1.2	13.300	0.049	09.93	90.07	0.15	9U.U/	0.203
#DNBENZ1	3.557	3.673	3.3	3.656	0.03	90.05	90	-0.05	90	0.234
#DNITBZ1	10.225	10.571	3.4	10.511	0.067	90.03	89.79	-0.25	90.03	0.3
#DNTTR71	6 031	6 177	2 4	6 146	0 047	102 23	101 9	-0 33	101 79	0 321
#DNIIDZI	0.001	0.177	2.1	0.140	0.017	102.25	101.0	0.00	101.75	0.521
#DNTJBZT	5.59/	2.55	-0.8	5.58/	0.032	90.06	09.99	-0.0/	09.98	U.215
#EXODAW	5.422	5.512	1.7	5.495	0.022	94.11	93.74	-0.37	93.76	0.257
#EXODAW	6.098	6.192	1.5	6.174	0.02	92.05	92.01	-0.04	92.17	0.265
#EXODAW	7 704	7 773	0 9	7 77	0 015	107 11	107 99	0 88	107 64	0 286
# DAVENING	6.010	c. 00c	1 2	c 000	0.010	107.11	107.05	0.00	107.01	0.200
#FAX1000	0.213	6.296	1.3	0.289	0.02	90.08	89.85	-0.23	89.98	0.119
#FAXTUU0	9.861	9.99	1.3	9.954	0.028	90.14	89.87	-0.27	89.98	0.187
#FAXTUU0	15.59	15.645	0.3	15.694	0.032	90.01	89.96	-0.05	90.01	0.17
#FOVOOX	9.179	9.315	1.5	9.283	0.036	89.68	90.04	0.37	89.99	0.301
#FOVOOX	10 99	10 983	-0 1	10 995	0 021	90 1	80 08	-0.12	90	0 156
# TOV QOM	±0.00	10.905	0.1	10.000	0.021	00.1	00.00	0.12	00	0.170
#FOVQOX	5.803	5.825	0.4	5.842	0.013	89.95	89.9	-0.05	90	0.1/2
#GLURAC0	13.254	13.093	-1.2	13.268	0.089	90	90.08	0.08	90.05	0.204
#GLURAC0	4.579	4.729	3.3	4.678	0.037	96.93	96.91	-0.03	96.15	0.39
#GLURACO	9 813	10 028	2 2	9 955	0 048	89 92	90 08	0 16	90 15	0 215
#UEDEANO	1 170	1 4 5 1	6 5	1 206	0.060	70 26	70.00	0.10	70.72	0.262
#HEPIANO	4.1/0	4.431	0.5	4.300	0.009	/0.30	10.33	-0.04	10.13	0.202
#HEPTANO	4.374	4.585	4.8	4.546	0.053	83.77	85.08	1.3	85.13	0.406
#heptan0	20.213	20.521	1.5	20.472	0.066	77.38	73.85	-3.53	75.01	1.29
#HEXANE0	4.171	4.49	7.7	4.415	0.083	82.32	82.97	0.65	82.44	0.334
#HEXANE()	4 397	4 5 9 5	4 5	4 566	0 052	89 02	88 73	-0.29	89 47	0 391
#UDVANDO	0 5 6 2	0 (10	0.0	0.000	0.002	77.70	74.04	2 40	75 04	1 100
#HEXANEU	8.363	8.018	0.0	8.004	0.037	11.12	/4.24	-3.48	13.24	1.102
#HITMUS	6.866	6.974	1.6	6.97	0.027	89.97	89.97	0	90.08	0.257
#HITMUS	8.446	8.706	3.1	8.67	0.057	109.83	111.07	1.24	110.81	0.614
#HITMUS	7.392	7.662	3.7	7.611	0.088	89.99	90.34	0.35	89.96	0.28
# TOUDUD	11 000	11 011	0 0	11 002	0 036	00.0	00 00	0 01	00.2	0 672
#JURBUD	11.000	11.911	0.9	11.903	0.030	90.0	09.09	-0.91	90.2	0.073
#JOHBUD	5.986	6.169	3.1	6.147	0.054	109.1	105.7	-3.4	106.48	0.812
#JOHBUD	10.73	10.947	2	10.923	0.049	89.58	89.99	0.42	89.97	0.49
#MCTNAM1	10.722	10.978	2.4	10.945	0.076	89.75	89.72	-0.03	89.85	0.344
#MCTNDM1	16 122	16 542	2 6	16 465	0 11	00 02	00 00	0 07	00 70	0 2/1
#MCINAMI	10.152	10.040	2.0	10.405	0.11	90.02	90.09	0.07	09.19	0.541
#MCINAM1	9.758	9.84	0.8	9.825	0.022	90.06	89.84	-0.22	90.01	0.201
#NITRBE0	3.582	3.68	2.7	3.681	0.033	89.86	90.48	0.62	89.95	0.265
#NITRBE0	11.063	11.137	0.7	11.172	0.044	90.88	92.34	1.45	91.5	0.53
#NTEDDEO	12 010	14 212	2 0	14 276	0 1 0 9	00 02	00 70	0 1 4	00 07	0 200
#NIIRBEU	10.910	11.JLZ	2.0	1 1 . 2 / 0	0.108	09.92	07./0	-0.14	20.07	0.299
#OCTANE0	4.161	4.387	5.4	4.363	0.065	84.17	83.89	-0.28	84.03	0.253
#OCTANE0	4.378	4.524	3.3	4.513	0.035	85.37	85.68	0.31	85.73	0.241
#OCTANE()	10.98	11.097	1.1	11.061	0.03	77.61	75.65	-1.96	75.73	0.895
	6 69	6 7 2 3	0 6	6 73	0 015	00 12	00 52	0 1	80 06	0 301
#LUDALDI	10.00	14 074	0.0	10./3	0.010	110 04	JU.JZ	1	117 00	0.091
#PHBALD1	тз.697	14.074	2.8	13.963	0.097	119.04	TT\'38	-1.66	TT\.83	0.298
#PHBALD1	6.733	6.64	-1.4	6.675	0.034	90.1	90.18	0.08	90.01	0.158
#OATTTO	4 945	4 975	06	4 973	0 008	89 85	90 15	03	89 79	0 263
#02000000	13 633	13 600	0.5	13 700	0 000	107 46	106 47	0	106 20	0 250
#QATITO	10.000	10.020	0.5	13.702	0.022	107.40	100.4/	-0.90	100.29	0.332
#QATTIO	1.554	/.6/4	1.6	/.668	0.037	90.02	90.01	-0.01	90.02	0.113
#QATTOU	5.323	5.411	1.6	5.392	0.021	89.85	89.57	-0.28	90.1	0.214
#QATTOU	6.817	7.011	2.8	6.953	0.045	90.01	90.42	0.41	90.13	0.241
#OATTOI	16 696	16 539	-n 9	16 619	0 067	89 91	90 02	0 09	89 93	0 205
##₽₽₽₩₩₩		10.000	0.9		0.007	100 10	00.02	1 05	00 01	0.200
#ILPHTHU	1.182	1.85	0.9	1.092	0.03/	TOO.TO	30.ZI	-1.95	20.ZI	0.405
#TEPHTH0	6.514	6.644	2	6.58	0.041	107.01	108.44	1.43	108.24	υ.627
#TEPHTH0	3.445	3.471	0.8	3.477	0.01	95.57	96.83	1.27	96.72	0.347
#XAYMEP	3.516	3.613	2.8	3.583	0.021	99.03	98.98	-0.05	99.39	0.319
#YZVMPD	5 224	5 242		5 274	0 016	101 17	100 70	_0 27	100 65	0 200
#AAIMEP	J.234	J.243	0.2	J.Z/4	0.010	TOT'T\	T00.13	-0.3/	TOO.03	0.306
#XAYMEP	9.098	9.128	0.3	9.165	0.026	96.21	96.06	-0.15	96.11	0.232
#XOZBUK	9.356	9.413	0.6	9.425	0.015	90.08	89.82	-0.26	89.88	0.289
#XOZBUK	5.281	5.323	0.8	5.323	0.017	91.71	90.96	-0.75	91.05	0.438
#X07.BIIK	12.451	13.033	4 7	12.873	0.148	90.01	89.98	-0.04	89.98	0.189
#7 TUPOP	6 0/F	6 00/		6 000	0 016	110 15	110 04	_0 1	110 2	0 204
# L I V NOL	0.040	0.094	0./	0.090	0.010	104 00	101 5	-0.1	104 00	0.284
#ZIVKOE	6.149	6.257	1.8	6.242	0.025	104.09	104.5	0.42	104.36	0.208
#ZIVKOE	10.073	10.158	0.8	10.169	0.024	97.99	98.05	0.07	98.1	0.276
#ZZZITY0	5.391	5.432	0.8	5.463	0.035	90.04	89.97	-0.06	90	0.218
#777TTY0	5.276	5.758	9 1	5.574	0.124	94 12	89 72	-4 4	91 48	1 12
"	10 505	10 244	2.1 1 7	10 404	0.124	27.14 QA A4	00.00	-0 -2	21.40	Z
# · · · · · · · · · · · · · · · · · · ·			/							

#ZZZSPY0	9.9	10.163	2.7	10.117	0.078	90.25	89.75	-0.5	89.97	0.399
#ZZZSPY0	7.286	7.529	3.3	7.5	0.065	90.16	90.07	-0.08	90.06	0.248
#ZZZSPY0	16.809	16.952	0.8	16.908	0.059	90.36	90.26	-0.1	90.08	0.304

300 K runs, cell parameters, convergence tests last 2 Msteps For each crystal: a, b, c, α,β,γ start: 3 Mstep frame, end: end of the 5Mstep MC run

	sta	rt end	%delt	ave:	r rmsd	start	end	del	t aver	rmsd
#ABUMIT	3.667	3.689	0.6	3.685	0.006	90.23	89.90	-0.33	90.08	0.202
#ABUMIT	10.745	10.779	0.3 1	0.760	0.011	99.69	101.01	1.32	100.29	0.363
#ABUMTT	15 279	15 197	-0 5 1	5 230	0 023	90 13	89 53	-0 60	90 05	0 274
#BENZEN07	7 745	7 806	0.8	7 780	0 035	90.10	89.14	-1 27	89.79	0 413
#DENZEN07	0.440	7.000	0.0	1.100	0.035	00.40	09.14	-1.2/	09.79	0.413
#BENZENU7	9.446	9.420	-0.2	9.424	0.020	90.04	89.70	-0.34	89.80	0.327
#BENZEN07	6.533	6.536	0.1	6.535	0.009	91.00	88.14	-2.87	89.34	0.754
#BILNOZ01	9.926	9.880	-0.5	9.897	0.026	89.42	89.19	-0.22	89.52	0.333
#BILNOZ01	6.960	7.039	1.1	7.001	0.019	90.97	90.88	-0.09	91.04	0.193
#BILNOZ01	13.681	13.822	1.0 1	3.799	0.044	90.04	89.80	-0.23	90.08	0.380
#BNZOUT03	5.517	5.510	-0.1	5.520	0.015	91.07	90.91	-0.16	90.81	0.252
#PN70UT03	7 091	7 111	0.3	7 109	0.009	97 09	97.09	0 01	07 23	0 295
#DNZQUIUS	6.0001	6 620	0.5	6.647	0.000	00.01	00.00	0.01	00.20	0.205
#BNZQUIU3	0.002	0.038	-0.4	0.04/	0.009	88.91	89.22	0.32	89.30	0.196
#BULVAL03	6.340	6.350	0.2	6.333	0.010	89.88	89.97	0.09	89.97	0.187
#BULVAL03	21.337	21.403	0.3 2	21.390	0.053	93.51	92.90	-0.61	92.97	0.182
#BULVAL03	10.550	10.492	-0.6 1	.0.531	0.020	90.08	89.55	-0.53	89.83	0.361
#CECGEX	4.625	4.622	-0.1	4.624	0.016	89.75	90.15	0.40	90.11	0.185
#CECGEX	7 324	7 263	-0.8	7 307	0 036	90 17	90 07	-0 10	90 12	0 168
#CECCEY	11 077	12 043	1 / 1	1 033	0 049	90 50	00 02	0 43	90 01	0 200
#CECGEA	11.0//	12.043	1.4 1	.1.933	0.049	09.39	90.02	0.45	90.01	0.209
#CTCYDD	/.51/	1.553	0.5	7.530	0.014	90.06	90.11	0.05	89.96	0.189
#CTCYDD	17.607	17.574	-0.2 1	7.599	0.038	115.94	115.90	-0.04	115.79	0.135
#CTCYDD	8.772	8.794	0.3	8.770	0.018	89.94	90.03	0.09	90.20	0.218
#DAZNAP	13.933	14.043	0.8 1	3.997	0.028	90.19	90.12	-0.07	90.00	0.176
#DAZNAP	10.308	10.231	-0.7 1	0.281	0.028	90.19	88.96	-1.23	89.33	0.363
#DA7NAP	8 638	8 636	-0.0	8 617	0 021	89 78	90 10	0 32	89 93	0 180
#DADNAL	6.000	0.000	0.0	6.017	0.021	02.10	02.04	0.32	02.00	0.100
#DCBDOXI0	0.031	0.027	-0.1	0.029	0.011	93.13	93.04	0.72	93.09	0.301
#DCBDOX10	6.521	6.529	0.1	6.531	0.013	90.91	90.72	-0.18	90.72	0.233
#DCBDOX10	24.978	24.994	0.1 2	24.969	0.017	89.89	90.25	0.35	89.98	0.256
#DCLBEN01	14.833	14.811	-0.1 1	4.798	0.023	89.52	89.95	0.43	89.85	0.228
#DCLBEN01	5 852	5 875	0 4	5 846	0 013	110 52	110 55	0 03	110 28	0 342
#DCI PENO1	3 602	3 600	-0.1	3 604	0.006	90.23	00 27	0.03	90 14	0 333
#DCLBENUI	5.002	3.000	-0.1	3.004	0.000	90.23	90.27	0.05	90.14	0.555
#DCLBEN02	/.486	1.4/5	-0.1	7.494	0.016	85.//	85.63	-0.14	85.51	0.260
#DCLBEN02	5.626	5.638	0.2	5.638	0.018	112.62	111.53	-1.09	112.55	0.386
#DCLBEN02	3.696	3.667	-0.8	3.683	0.011	96.48	96.48	-0.00	96.49	0.204
#DEZDUH	15.061	15.009	-0.3 1	5.080	0.042	90.30	90.27	-0.03	90.07	0.291
#DE2DUH	5 897	5 921	0 4	5 902	0 011	89 38	90 56	1 1 8	89 85	0 425
#DEZDUU	10 010	10 010	0.4	0.207	0.011	00.40	20.50	0 70	00.00	0.425
#DEZDUH	10.213	10.213	0.0 1	.0.207	0.022	90.42	89.69	-0.73	90.06	0.370
#DEZXEL	11.971	11.970	-0.0 1	1.955	0.014	89.98	89.68	-0.30	89.97	0.164
#DEZXEL	9.612	9.633	0.2	9.609	0.020	90.20	89.71	-0.49	89.97	0.233
#DEZXEL	7.269	7.240	-0.4	7.269	0.014	89.87	90.44	0.57	90.05	0.223
#DTTBOX	7.022	7.052	0.4	7.030	0.017	89.95	89.47	-0.48	90.05	0.317
#DITEON	6 303	6 39/	-0.1	6 307	0 011	104 73	104 64	-0 10	104 49	0 230
#DIIBOX	10.393	10.504	-0.1	0.397	0.011	104.75	104.04	-0.10	104.40	0.230
#DITBOX	10.723	10.679	-0.4 1	.0.685	0.030	90.01	90.13	0.11	89.98	0.286
#EZURUM	10.329	10.290	-0.4 1	.0.324	0.023	90.14	89.86	-0.28	90.04	0.141
#EZURUM	6.518	6.557	0.6	6.553	0.018	95.40	95.66	0.25	95.46	0.177
#EZURUM	12.578	12.612	0.3 1	2.620	0.016	90.16	90.27	0.12	90.07	0.201
#FACGEV	5 887	5 834	-0.9	5 858	0 024	89 14	89 12	-0.02	90 27	0 703
#ENCCEV	6 001	6 025	0.5	6 002	0.021	00.16	07.00	0.02	00.27	0.527
#FACGEV	0.001	0.925	0.0	0.903	0.033	90.40	97.00	-0.00	90.39	0.527
#FACGEV	6.850	6.865	0.2	6.855	0.016	90.32	89.37	-0.95	89.42	0.351
#FACJAU	4.586	4.609	0.5	4.590	0.013	89.15	91.08	1.94	90.11	0.699
#FACJAU	11.170	11.239	0.6 1	.1.200	0.022	108.58	109.47	0.90	108.99	0.383
#FACJAU	6.494	6.517	0.4	6.512	0.011	90.68	89.46	-1.23	89.97	0.521
#FMANUL01	9 367	9 31 9	-0.5	9 351	0 016	90 09	89 70	-0 39	90 07	0 273
#EMANULO1	13 0/1	13 032	-0 1 1	3 010	0.021	90.05	89.66	_0.20	90.01	0 211
#IMANULO1	13.341	13.332	0.1 1	6 200	0.021	00.00	00.74	0.20	00.00	0.211
#PMANOLUI	0.295	0.270	-0.3	0.290	0.011	09.01	09.74	0.13	90.00	0.324
#FOVNIN	1./40	1.131	-0.0	1.121	0.011	90.19	90.47	0.28	90.10	0.229
#FOVNIN	11.392	11.388	-0.0 1	1.385	0.014	90.16	89.89	-0.27	89.84	0.235
#FOVNIN	17.883	17.838	-0.3 1	7.848	0.026	90.04	90.30	0.27	90.00	0.183
#HAYYAH	7.795	7.837	0.5	7.822	0.021	89.93	89.99	0.05	89.90	0.232
#НАУУАН	13 902	13 895	-0 0 1	3 894	0 010	109 98	109 90	-0 07	109 78	0 309
#117777711	0 122	0 114	0.0 1	0 115	0.010	00.77	100.12	0.07	00.24	0.240
#NALIAN	0.133	0.114	-0.2	0.113	0.012	09.11	90.43	0.00	90.24	0.340
#HCLBNZII	8.045	8.029	-0.2	8.030	0.009	89.66	89.84	0.18	90.15	0.306
#HCLBNZ11	3.609	3.636	0.8	3.618	0.013	93.88	94.16	0.28	93.93	0.220
#HCLBNZ11	14.664	14.627	-0.3 1	4.629	0.019	90.01	89.58	-0.43	89.84	0.200
#HOWBAW	5.273	5.283	0.2	5.279	0.008	94.13	94.70	0.58	94.31	0.220
#HOWBAW	5 667	5 673	0 1	5 661	0 010	95 12	94 80	-0 33	9/ 92	0 176
#UOMDAW	7 700		0.1	7 710	0 016	100 22	100 04	_0 20	100 12	0 101
#HOWBAW	7.700	1.121	0.4	/./10	0.016	109.23	109.04	-0.20	109.12	0.191
#NAPHTA10	/.584	/.614	0.4	1.579	0.021	90.33	90.02	-0.30	89.96	0.187
#NAPHTA10	5.933	5.918	-0.3	5.950	0.016	123.89	125.02	1.12	124.75	0.270
#NAPHTA10	8.747	8.792	0.5	8.773	0.017	89.83	90.16	0.33	90.02	0.153
#NBORAN02	6.154	6.144	-0.2	6.141	0.011	89.74	89.82	0.08	89.95	0.187
#NBOPAN02	9 702	9 753	0 5	9 740	0 017	90 01	89 89	-0 13	89 96	0 128
#NDORANUZ	12 401	3./33	0.0	2 400	0.01/	20.UI	09.03	-U.13	09.90	0.120
#NBORANU2	13.491	13.430	-0.3 1		0.026	09.12	89.99	0.28	09.99	0.104
#PUGDEB	7.503	7.457	-0.6	1.507	0.024	90.52	90.18	-0.35	90.24	0.457
#PUGDEB	12.403	12.511	0.9 1	2.468	0.029	107.29	104.63	-2.66	106.52	1.226
#PUGDEB	6.481	6.485	0.1	6.497	0.023	89.82	89.94	0.12	89.95	0.186
#TCHLBZ03	3.753	3.768	0.4	3.748	0.011	90.11	89.66	-0.45	89.94	0.183
#TCHI 8703	13 785	13 846	0 / 1	3 871	0 040	89 88	89 81	-0 07	90 02	0 202
##CUIDE000	10 741	10 604	_0 / 1	2 707	0 007	00.40	00 FC	0 1 2	20.02	0.202
#ICALB2U3	141	12.094	-0.4 1	2.101	0.02/	09.43	03.30	0.13	07.02	0.3//
#TEPNIT11	3.658	5 3.607	-1.4	3.629	0.012	115.21	115.63	0.42	115.43	0.211
#TEPNIT11	6.480	6.564	1.3	6.510	0.023	83.51	83.56	0.05	83.29	0.210

#TEPNIT11	7.025 7.049	0.4 7.032	0.008 102.6	7 101.72	-0.96 102.36	0.357
#VACCEH	7.318 7.395	1.1 7.361	0.021 89.81	90.22	0.40 89.88	0.355
#VACCEH	6.947 6.933	-0.2 6.947	0.016 89.68	90.34	0.67 90.02	0.319
#VACCEH	9.829 9.793	-0.4 9.845	0.022 90.11	90.22	0.12 90.04	0.226
#XAYMIT	3.491 3.496	0.1 3.489	0.008 90.02	90.16	0.14 90.04	0.176
#XAYMIT	8.590 8.596	0.1 8.593	0.014 89.74	90.06	0.32 89.88	0.143
#XAYMIT	25.545 25.476	-0.3 25.503	0.044 90.74	89.90	-0.84 90.16	0.387
#YUYPUD01	3.806 3.819	0.4 3.807	0.014 90.36	90.16	-0.20 90.01	0.254
#YUYPUD01	10.942 10.938	-0.0 10.944	0.031 94.65	94.71	0.06 94.49	0.337
#YUYPUD01	14.389 14.442	0.4 14.429	0.022 90.01	90.10	0.09 89.94	0.215
#ACANTL01	19.103 19.170	0.3 19.127	0.025 90.09	89.82	-0.27 90.05	0.226
#ACANTL01	9.634 9.543	-0.9 9.587	0.024 90.41	90.19	-0.22 89.96	0.259
#ACANTL01	7 919 7 949	0 4 7 925	0 020 89 74	90 57	0.83 90.06	0 231
#ADTPAC07	7 535 7 530	-0 1 7 538	0 010 89 81	90 05	0 24 89 97	0 221
#ADTPAC07	5 141 5 135	-0 1 5 134	0 008 114 12	114 23	0 11 114 30	0 110
#ADTPAC07	10 279 10 297	0 2 10 294	0 014 89 72	90 21	0 49 89 91	0 233
#ARCLAM01	8 093 7 913	-2 2 7 992	0 055 90 52	90.31	-0 21 90 14	0 311
#ARCLAM01	5 234 5 287	1 0 5 255	0.021 110 83	111 41	0 58 111 27	0 188
#ARCLAM01	9 117 9 591	1 5 9 540	0.021 110.05	20 05	-0 15 89 99	0.175
#AVO.TED	5 644 5 657	0.2 5.651	0.014 89 85	89.83	-0.02 89.89	0.186
#AYO.TED	10 492 10 521	0.3 10 480	0.014 00.00	100 52	0.02 00.00	0.100
#AYO.TED	11 156 11 161	0.0 11 129	0.023 99.01	90.31	0.20 80 08	0.204
#RENZAC07	5 369 5 358	-0.2 5.360	0.024 90.05	90.01	-0.21 89.96	0.177
#DENZAC07	4 976 4 950	-0.2 5.500	0.000 90.25	102 04	0.01 102 01	0.166
#DENZAC07	4.970 4.900	-0.J 4.901	0.010 103.04	103.04	-0.01 103.01	0.174
#DENZACU/	7 701 7 750	0.5 22.454	0.032 09.09	09.00	-0.01 09.93	0.1/4
#BIPHEN04	7.701 7.750 E 420 E 270	U.6 /./ZI	0.022 89.41	89.93	0.53 89.58	0.343
#BIPHEN04	0.210 0.220	-1.2 5.403	0.019 86.09	87.08	0.99 86.70	0.323
#BIPHENU4	9.310 9.33U	U.1 9.334	0.010 90.11	09./0	-0.35 89.85	0.243
#BZAMIDUI	5.1/6 5.156	-0.4 5.1/2	0.016 90.03	90.03	0.00 89.99	0.213
#BZAMID01	5.155 5.163	U.2 5.166	0.008 83.67	83.25	-0.42 83.38	0.180
#BZAMID01	21.934 21.875	-0.3 21.860	0.046 90.04	89.90	-0.14 89.94	0.173
#DNBENZ14	15.066 15.177	0.7 15.103	0.050 103.61	103.84	U.24 103.70	0.171
#DNBENZ14	13.467 13.488	0.2 13.512	0.022 90.13	90.07	-0.06 90.06	0.238
#DNBENZ14	3.691 3.673	-0.5 3.677	0.010 90.08	90.00	-0.08 89.98	0.263
#DNITBZ11	10.483 10.571	0.8 10.535	0.032 90.01	89.79	-0.23 90.01	0.293
#DNITBZ11	6.161 6.177	0.3 6.187	0.011 101.84	101.90	0.07 102.02	0.205
#DNITBZ11	5.564 5.550	-0.3 5.558	0.015 89.87	89.99	0.12 90.03	0.208
#EXODAW	5.498 5.512	0.3 5.509	0.008 93.53	93.74	0.21 93.78	0.261
#EXODAW	6.171 6.192	0.3 6.177	0.011 92.22	92.01	-0.21 92.15	0.247
#EXODAW	7.762 7.773	0.1 7.773	0.012 107.65	107.99	0.34 107.74	0.208
#FAXTUU01	6.282 6.296	0.2 6.300	0.007 90.06	89.85	-0.20 89.94	0.115
#FAXTUU01	9.961 9.990	0.3 9.971	0.014 90.01	89.87	-0.14 90.00	0.195
#FAXTUU01	15.709 15.645	-0.4 15.688	0.024 89.96	89.96	-0.00 90.00	0.141
#FOVQOX	9.324 9.315	-0.1 9.313	0.011 90.17	90.04	-0.13 90.07	0.340
#FOVOOX	10.991 10.983	-0.1 10.991	0.012 89.83	89.98	0.15 89.99	0.142
#FOVQOX	5.849 5.825	-0.4 5.833	0.007 90.07	89.90	-0.17 89.90	0.152
#GLURAC03	13.243 13.093	-1.1 13.179	0.049 90.18	90.08	-0.10 89.98	0.178
#GLURAC03	4.692 4.729	0.8 4.714	0.013 96.39	96.91	0.51 96.49	0.197
#GLURAC03	9.965 10.028	0.6 9.994	0.024 90.40	90.08	-0.32 90.18	0.245
#HEPTAN02	4.416 4.451	0.8 4.433	0.018 78.39	78.33	-0.06 78.67	0.262
#HEPTAN02	4.575 4.585	0.2 4.578	0.013 84.97	85.08	0.11 85.16	0.375
#HEPTAN02	20.516 20.521	0.0 20.496	0.038 74.53	73.85	-0.69 74.13	0.566
#HEXANE01	4 458 4 490	0 7 4 480	0 008 82 59	82 97	0 38 82 65	0 335
#HEXANE01	4 593 4 595	0 1 4 601	0 006 89 72	88 73	-0 99 89 40	0 452
#HEYANE01	8 686 8 618	-0.8 8 653	0.029 74 39	74 24	-0 15 74 44	0.152
#HIDAANDOI #HITMIIS	6 977 6 974	-0.0 6.972	0.023 74.33	89 97	0.15 89 97	0.265
#HITMUS	9 697 9 706	0.1 9.696	0.019 110 02	111 07	0.15 111 27	0.200
#HITMUS	7 697 7 662	-0.3 7 600	0.016 0.013	111.07	0.13 111.27	0.233
# TOURUD	11 011 11 011	-0.3 7.090	0.010 90.13	90.34	0.21 90.14	0.249
#JOUDDUD	6 202 6 160	-0 5 6 10F	0.021 00.9/	105.09	-0 60 105 02	0.370
#JOHBUD	0.202 0.109	-0.5 6.185	0.014 106.39	105.70	-0.69 105.83	0.320
#UURBUU #MCTNTAM1 0	10 001 10 070	_0 1 10 004	0.020 90.01	09.99	_0.01 90.20	0.317
#MCINAMIO	16 500 16 540	-0.1 10.984	0.023 03.99	03.12	1 07 00 00	0.243
#MCTNAM10	10.JJZ 10.J43 0 010 0 0/0	0.0 10.000	0.000 09.02	20.03	1.07 09.02	0.430
#MITTORDO	2.010 2.04U 3.713 3.400	-0 9 3 700	0.011 00.01	09.04 QA 10	0.00 09.92	0.190
#NTTOEUL	J. / LJ J. 0000	-0 6 11 144	0.020 01 00	20.40 02 21	1 1 2 01 70	0.270
#NITEDEO1	1/ 357 1/ 210	_0 3 14 2FF	0.020 91.22	22.34 00 70	-0 22 00 04	0.370
#NITKBEUL	1 201 14.31Z	-U.J 14.300	0.020 90.01	07.10	-0.23 90.04	0.272
#OCTANEU1	4.394 4.38/	-0.2 4.405	0.012 83./9	03.89 05.09	0.10 05 00	0.227
#OCTANEUL	4.J20 4.J24	-0.0 4.524		03.00	-U.10 00.0U	0.202
#OUTANEU1	LT.U/8 TT.U9/	0.2 II.U81	0.014 /5.19	13.65	U.43 /5.13	0.33/
#PHBALDI1	0.129 0.123	-U.1 b./34	0.009 89.34	9U.52	T.TQ QA.A3	0.410
#PHBALD11	14.009 14.074	U.5 14.038	0.024 117.46	11/.38	-0.08 117.77	0.246
#PHBALD11	0.04/ 0.640	-U.1 6.650	U.UIU 90.16	90.18	0.02 90.05	0.164
#QATTIO	4.958 4.975	0.3 4.972	0.006 89.83	90.15	0.32 89.91	0.268
#QATTIO	13.753 13.698	-0.4 13.712	0.013 106.14	106.47	0.33 106.31	0.253
#QATTIO	7.697 7.674	-0.3 7.689	0.008 90.12	90.01	-0.12 90.04	0.106
#QATTOU	5.382 5.411	0.5 5.407	0.012 90.12	89.57	-0.55 90.05	0.230
#QATTOU	6.992 7.011	0.3 6.988	0.010 89.79	90.42	0.62 90.15	0.283
#QATTOU	16.618 16.539	-0.5 16.560	0.027 90.31	90.02	-0.29 89.88	0.187
#TEPHTH06	7.948 7.850	-1.2 7.886	0.025 97.55	98.21	0.66 98.12	0.253
#TEPHTH06	6.575 6.644	1.1 6.618	0.032 108.91	108.44	-0.47 108.59	0.400
#TEPHTH06	3.487 3.471	-0.4 3.477	0.008 97.10	96.83	-0.27 96.90	0.160
#XAYMEP	3.585 3.613	0.8 3.600	0.011 99.42	98.98	-0.44 99.17	0.218
#XAYMEP	5.263 5.243	-0.4 5.267	0.013 100.42	100.79	0.37 100.86	0.253
#XAYMEP	9.188 9.128	-0.7 9.148	0.019 95.89	96.06	0.17 96.09	0.219
#XOZBUK	9.421 9.413	-0.1 9.423	0.011 89.46	89.82	0.36 89.87	0.244
#XOZBUK	5.324 5.323	-0.0 5.311	0.011 91.41	90.96	-0.45 90.93	0.273
#XOZBUK	12.872 13.033	1.3 12.987	0.052 90.06	89.98	-0.08 90.05	0.201
#ZIVKOE '	6.918 6.894	-0.3 6.892	0.013 110.26	110.04	-0.22 110.40	0.286
#ZIVKOE '	6.258 6.257	-0.0 6.258	0.014 104.23	104.50	0.27 104.40	0.189

#ZIVKOE '	10.158	10.158	-0.0	10.179	0.016	98.24	98.05	-0.18	97.96	0.257
#ZZZITY01	5.447	5.432	-0.3	5.434	0.017	90.04	89.97	-0.07	90.04	0.247
#ZZZITY01	5.630	5.758	2.3	5.686	0.038	90.74	89.72	-1.02	90.48	0.460
#ZZZITY01	10.479	10.344	-1.3	10.416	0.041	89.96	89.68	-0.28	90.04	0.296
#ZZZSPY01	10.166	10.163	-0.0	10.148	0.022	89.68	89.75	0.07	90.23	0.373
#ZZZSPY01	7.548	7.529	-0.3	7.522	0.011	90.01	90.07	0.06	90.04	0.223
#ZZZSPY01	16.877	16.952	0.4	16.901	0.052	90.20	90.26	0.06	90.05	0.325

300 K runs, density, complete runs start: experimental crystal structure, end: end of the 5Mstep MC run

	start	end	%delt	aver	rmsd
#ABUMIT	1.748	1.646	-5.78	1.657	0.0211
#BENZEN07	1.187	1.080	-9.03	1.097	0.0241
#BILNOZ01	1.287	1.180	-8.31	1.202	0.0227
#BNZQUI03	1.444	1.391	-3.62	1.391	0.0109
#BULVAL03	1.278	1.215	-4.95	1.220	0.0132
#CECGEX	1.370	1.316	-3.93	1.322	0.0098
#CTCYDD	1.765	1.708	-3.22	1.713	0.0101
#DAZNAP	1.438	1.394	-3.06	1.397	0.0077
#DCBDOX10	1.772	1.713	-3.33	1.719	0.0108
#DCLBEN01	1.771	1.665	-6.01	1.675	0.0192
#DCLBEN02	1.803	1.710	-5.18	1.719	0.0178
#DEZDUH	1.700	1.582	-6.94	1.597	0.0291
#DEZXEL	1.782	1.735	-2.62	1.738	0.0090
#DITBOX	1 332	1 287	-3 36	1 290	0 0088
#EZURUM	1 401	1 362	-2 75	1 358	0 0097
#FACGEV	1 537	1 379	-10 24	1 404	0.0355
#FAC TALL	1 7/0	1 566	-10.24	1 604	0.0333
#FMANUT 01	1 506	1 452	-3 59	1 1 1 9	0.0435
# PMANULU I	1 024	1 077	-3.50	1 000	0.0120
#FOVNIN #UDVVDU	1 200	1 240	-2.90	1 252	0.0110
#UGI DNR11	2.314	1.249	-3.89	1.232	0.0091
#HCLBNZII	2.314	2.221	-4.01	2.230	0.0169
#HOWBAW	1.330	1.289	-3.50	1.297	0.0080
#NAPHTALU	1.369	1.312	-4.16	1.313	0.0099
#NBORANU2	1.405	1.352	-3.72	1.359	0.0113
#PUGDEB	1.672	1.499	-10.34	1.533	0.0377
#TCHLBZ03	1.920	1.820	-5.21	1.834	0.0207
#TEPNIT11	1.503	1.445	-3.85	1.456	0.0092
#VACCEH	1.147	1.060	-7.54	1.070	0.0207
#XAYMIT	1.628	1.581	-2.92	1.584	0.0084
#YUYPUD01	1.484	1.415	-4.59	1.426	0.0141
#ACANIL01	1.294	1.235	-4.59	1.240	0.0133
#ADIPAC07	1.402	1.337	-4.66	1.345	0.0158
#ARCLAM01	1.361	1.264	-7.11	1.280	0.0223
#AYOJED	1.250	1.181	-5.51	1.192	0.0121
#BENZAC07	1.469	1.401	-4.62	1.404	0.0141
#BIPHEN04	1.379	1.319	-4.31	1.322	0.0117
#BZAMID01	1.447	1.391	-3.83	1.393	0.0129
#DNBENZ14	1.638	1.529	-6.65	1.543	0.0227
#DNITBZ11	1.655	1.574	-4.89	1.581	0.0160
#EXODAW	1.597	1.540	-3.57	1.547	0.0105
#FAXTUU01	1.798	1.745	-2.93	1.748	0.0111
#FOVQOX	1.409	1.384	-1.77	1.383	0.0052
#GLURAC03	1.484	1.424	-4.08	1.429	0.0118
#HEPTAN02	0.945	0.845	-10.55	0.862	0.0220
#HEXANE01	0.941	0.843	-10.46	0.856	0.0241
#HITMUS	1.435	1.332	-7.12	1.346	0.0223
#JOHBUD	1.466	1.356	-7.46	1.371	0.0254
#MCINAM10	1.269	1.198	-5.55	1.210	0.0167
#NITRBE01	1.483	1.395	-5.89	1.394	0.0229
#OCTANE01	0.978	0.895	-8.43	0.905	0.0188
#PHBALD11	1.506	1.454	-3.45	1.462	0.0088
#QATTIO	1.232	1.194	-3.12	1.194	0.0079
#QATTOU	1.142	1.103	-3.42	1.110	0.0076
#TEPHTH06	1.700	1.648	-3.02	1.650	0.0104
#XAYMEP	1.636	1.581	-3.38	1.580	0.0106
#XOZBUK	1.503	1.415	-5.83	1.431	0.0173
#ZIVKOE '	1 545	1 498	-3.05	1 502	0 0091
#ZZZTTY01	1 181	1 090	-7 73	1 106	0 0185
#777SPY01	1.163	1.087	-6 52	1.100	0.0171
			0.02		· · · · / ·

300 K runs, density, convergence test last 2 Mstep start: 3 Mstep frame, end: end of the 5Mstep MC run

	start	end	%delt	aver	rmsd
#ABUMIT	1.645	1.646	0.06	1.643	0.0028
#BENZEN07	1.086	1.080	-0.58	1.083	0.0043
#BILNOZ01	1.200	1.180	-1.67	1.186	0.0057
#BNZQUI03	1.389	1.391	0.21	1.388	0.0032
#BULVAL03	1.214	1.215	0.03	1.214	0.0030
#CECGEX	1.322	1.316	-0.49	1.319	0.0038
#CTCYDD	1.718	1.708	-0.58	1.714	0.0041
#DAZNAP	1.394	1.394	-0.00	1.394	0.0029
#DCBDOX10	1.714	1.713	-0.05	1.714	0.0023
#DCLBEN01	1.667	1.665	-0.16	1.669	0.0037
#DCLBEN02	1.711	1.710	-0.03	1.711	0.0048
#DEZDUH	1.583	1.582	-0.07	1.581	0.0072

#DEZXEL	1.732	1.735	0.19	1.735	0.0024
#DITBOX	1.286	1.287	0.09	1.287	0.0023
#EZURUM	1.368	1.362	-0.44	1.357	0.0055
#FACGEV	1.381	1.379	-0.09	1.382	0.0040
#FACJAU	1.581	1.566	-0.91	1.575	0.0049
#FMANUL01	1.440	1.452	0.85	1.446	0.0037
#FOVNIN	1.871	1.877	0.33	1.879	0.0045
#HAYYAH	1.253	1.249	-0.30	1.250	0.0038
#HCLBNZ11	2.227	2.221	-0.27	2.231	0.0057
#HOWBAW	1.299	1.289	-0.72	1.296	0.0045
#NAPHTA10	1.303	1.312	0.70	1.309	0.0029
#NBORAN02	1.354	1.352	-0.08	1.351	0.0021
#PUGDEB	1.524	1.499	-1.61	1.506	0.0070
#TCHLBZ03	1.828	1.820	-0.46	1.825	0.0056
#TEPNIT11	1.448	1.445	-0.22	1.453	0.0043
#VACCEH	1.065	1.060	-0.48	1.057	0.0038
#XAYMIT	1.580	1.581	0.07	1.583	0.0022
#YUYPUD01	1.425	1.415	-0.69	1.420	0.0077
#ACANIL01	1.232	1.235	0.22	1.236	0.0025
#ADIPAC07	1.336	1.337	0.09	1.337	0.0029
#ARCLAM01	1.263	1.264	0.11	1.265	0.0024
#AYOJED	1.185	1.181	-0.26	1.190	0.0052
#BENZAC07	1.398	1.401	0.26	1.399	0.0042
#BIPHEN04	1.315	1.319	0.29	1.318	0.0038
#BZAMID01	1.383	1.391	0.57	1.387	0.0034
#DNBENZI4	1.534	1.529	-0.30	1.532	0.0053
#DNITBZII	1.588	1.5/4	-0.82	1.5/6	0.0043
#EXODAW	1.348	1.340	-0.54	1.543	0.0033
#FAXTUUUI	1.747	1.745	-0.11	1.742	0.0036
#FOVQOX	1.3/6	1.384	0.58	1.381	0.0031
#GLURACUS	1.420	1.424	-0.16	1.423	0.0036
#HEPIANUZ	0.031	0.043	-0.08	0.049	0.0043
#HEAANEU1 #HITTMIIC	1 329	1 332	-0.03	1 333	0.0027
#ITTHUS	1 351	1 356	0.37	1 355	0.0037
#MCINAM10	1 196	1 198	0.50	1 200	0.0042
#NITTREF()1	1 370	1 395	1 87	1 382	0.0055
#OCTANE01	0 897	0 895	-0.16	0 895	0.0007
#PHRAI.D11	1 459	1 454	-0.34	1 458	0.0022
#OATTIO	1 187	1 194	0.53	1 190	0.0026
#OATTOU	1.106	1.103	-0.33	1.106	0.0019
#TEPHTH06	1 641	1 648	0 46	1 646	0 0039
#XAYMEP	1.577	1.581	0.26	1.577	0.0028
#XOZBUK	1.432	1.415	-1.16	1.422	0.0042
#ZIVKOE '	1.494	1.498	0.25	1.498	0.0042
#ZZZITY01	1.097	1.090	-0.69	1.096	0.0045
#ZZZSPY01	1.089	1.087	-0.16	1.093	0.0039

300 K runs, energies, complete runs for each crystal: intramolecular, LP, Coulombic, total lattice energy start: experimental crystal structure, end: end of the 5Mstep MC run

	start	end	%delt	aver	rmsd	
#ABUMIT	0.00	0.00	0.00	0.00	0.0000	intram
#ABUMIT	-68.90	-62.14	6.76	-62.80	1.0285	LP
#ABUMIT	-3.32	-2.94	0.37	-2.96	0.0820	Coulombic
#ABUMIT	-72.21	-65.08	7.13	-65.76	1.1007	total
#BENZEN07	0.00	0.00	0.00	0.00	0.0000	
#BENZEN07	-43.56	-37.18	6.38	-37.69	1.0569	
#BENZEN07	-8.45	-6.73	1.72	-6.90	0.3560	
#BENZEN07	-52.01	-43.91	8.10	-44.59	1.3970	
#BILNOZ01	0.00	0.00	0.00	0.00	0.0000	
#BILNOZ01	-67.94	-57.78	10.16	-59.44	1.7836	
#BILNOZ01	-3.19	-2.88	0.31	-2.98	0.0596	
#BILNOZ01	-71.13	-60.65	10.48	-62.42	1.8377	
#BNZQUI03	0.00	0.00	0.00	0.00	0.0000	
#BNZQUI03	-49.01	-45.95	3.06	-46.26	0.4357	
#BNZQUI03	-28.22	-25.18	3.04	-25.13	0.5897	
#BNZQUI03	-77.23	-71.14	6.10	-71.40	0.8884	
#BULVAL03	0.00	0.00	0.00	0.00	0.0000	
#BULVAL03	-63.46	-57.73	5.74	-58.08	0.8730	
#BULVAL03	-8.06	-7.32	0.74	-7.27	0.1591	
#BULVAL03	-71.52	-65.05	6.47	-65.35	0.9926	
#CECGEX	0.00	0.00	0.00	0.00	0.0000	
#CECGEX	-65.74	-61.67	4.07	-61.92	0.5881	
#CECGEX	-34.18	-31.89	2.28	-31.96	0.4184	
#CECGEX	-99.91	-93.56	6.35	-93.88	0.9132	
#CTCYDD	0.00	0.00	0.00	0.00	0.0000	
#CTCYDD	-89.65	-84.05	5.60	-84.27	0.8268	
#CTCYDD	-2.14	-2.09	0.05	-2.11	0.0497	
#CTCYDD	-91.79	-86.14	5.65	-86.39	0.8304	
#DAZNAP	0.00	0.00	0.00	0.00	0.0000	
#DAZNAP	-71.55	-66.96	4.59	-67.30	0.6415	
#DAZNAP	-22.25	-21.07	1.18	-21.16	0.1867	
#DAZNAP	-93.80	-88.03	5.78	-88.46	0.8031	
#DCBDOX10	0.00	0.00	0.00	0.00	0.0000	
#DCBDOX10	-119.15	-113.12	6.03	-113.49	0.8764	
#DCBDOX10	-2.01	-1.77	0.25	-1.84	0.0782	

#DCBDOX10	-121.16	-114.88	6.28	-115.33	0.8948
#DCLBEN01	0.00	0.00	0.00	0.00	0.0000
#DCLBEN01	-71.30	-64.73	6.58	-65.09	0.9959
#DCLBEN01	-2.79	-2.49	0.30	-2.52	0.0493
#DCLBEN01	-74.09	-67.21	6.88	-67.61	1.0358
#DCLBEN02	0.00	0.00	0.00	0.00	0.0000
#DCLBEN02	-73.62	-67.67	5.94	-67.97	0.8890
#DCLBEN02	-3.59	-3.12	0.47	-3.25	0.0693
#DCLBEN02	-//.20	-/0./9	6.41	-/1.22	0.9390
#DEZDUH	40.00	0.00	0.00	12 07	0.0000
#DEZDUR #DEZDUR	-49.33	-43.43	1 35	-43.07	0.9323
#DEZDUH	-66 01	-13.33	7 26	-13.32	1 2073
#DEZXEL	0.00	0.00	0.00	0.00	0.0000
#DEZXEL	-87.94	-83.62	4.33	-83.47	0.6701
#DEZXEL	-17.42	-16.07	1.35	-16.24	0.2184
#DEZXEL	-105.36	-99.68	5.68	-99.70	0.8486
#DITBOX	0.00	0.00	0.00	0.00	0.0000
#DITBOX	-90.97	-85.64	5.33	-85.65	0.8276
#DITBOX	-8.60	-8.13	0.46	-8.16	0.0901
#DITBOX	-99.57	-93.77	5.80	-93.82	0.8911
#EZURUM	0.00	0.00	0.00	0.00	0.0000
#EZURUM	-/1./8	-67.38	4.41	-67.30	0.69/1
#EZURUM	-21.09	-20.06	1.03	-19.88	0.2441
#EZOROM #FACCEV	- 92.00	-07.44	0 00	-07.10	0.0904
#FACGEV	-46 15	-38 48	7 66	-39 48	1 3005
#FACGEV	-6.12	-4.56	1.56	-4.88	0.3063
#FACGEV	-52.26	-43.04	9.22	-44.35	1.5950
#FACJAU	0.00	0.00	0.00	0.00	0.0000
#FACJAU	-42.52	-36.01	6.51	-37.00	1.0943
#FACJAU	-11.19	-9.35	1.85	-9.58	0.3874
#FACJAU	-53.72	-45.35	8.36	-46.58	1.4567
#FMANUL01	0.00	0.00	0.00	0.00	0.0000
#FMANUL01	-73.24	-68.00	5.24	-67.85	0.8538
#FMANUL01	-10.43	-9.91	0.51	-9.81	0.1361
#FMANUL01	-83.66	-77.91	5.75	-77.67	0.9692
#FOVNIN	102.14	0.00	0.00	0.00	0.0000
#FOVNIN #FOUNTN	-102.14	-90.00	0 10	-96.59	0.8918
#FOVNIN	-105 97	-100 33	5 64	-100 28	0.0433
#HAYYAH	103.57	0 00	0 00	0 00	0.0100
#HAYYAH	-76.20	-71.38	4.82	-71.31	0.7351
#HAYYAH	-8.58	-7.85	0.73	-7.94	0.1520
#HAYYAH	-84.78	-79.23	5.55	-79.24	0.8411
#HCLBNZ11	0.00	0.00	0.00	0.00	0.0000
#HCLBNZ11	-110.12	-102.86	7.26	-103.73	1.0384
#HCLBNZ11	9.16	8.32	-0.84	8.60	0.1974
#HCLBNZ11	-100.96	-94.54	6.42	-95.13	0.8962
#HOWBAW	0.00	0.00	0.00	0.00	0.0000
#HOWBAW	-81.44	-/6.26	5.18	-/6.62	0./314
#HOWBAW	-11.22	-10.13	1.09	-10.33	0.2126
#NAPHTA10	0 00	0 00	0.27	0 00	0.0741
#NAPHTA10	-77 56	-72 17	5 39	-72 08	0.0000
#NAPHTA10	-8.61	-8.20	0.41	-8.13	0.0957
#NAPHTA10	-86.17	-80.37	5.80	-80.21	0.9103
#NBORAN02	0.00	0.00	0.00	0.00	0.0000
#NBORAN02	-62.43	-58.16	4.28	-58.61	0.6053
#NBORAN02	-34.24	-32.73	1.51	-32.44	0.3217
#NBORAN02	-96.68	-90.89	5.79	-91.05	0.8639
#PUGDEB	0.00	0.00	0.00	0.00	0.0000
#PUGDEB	-48.59	-41.65	6.94	-42.69	1.2228
#PUGDEB	-/./9	-5.46	2.33	-6.13	0.5663
#PUGDEB	-30.38	-47.11	9.27	-48.82	1./635
#TCHLBZ03	-82 05	-75 09	6 96	-75 71	1 0492
#TCHLBZ03	0.55	-0.01	-0.56	0.12	0.1695
#TCHLBZ03	-81.51	-75.10	6.41	-75.59	0.9366
#TEPNIT11	0.00	0.00	0.00	0.00	0.0000
#TEPNIT11	-74.90	-70.94	3.96	-70.83	0.6161
#TEPNIT11	-31.99	-30.14	1.85	-30.38	0.2765
#TEPNIT11	-106.89	-101.08	5.81	-101.21	0.8660
#VACCEH	0.00	0.00	0.00	0.00	0.0000
#VACCEH	-47.94	-41.72	6.22	-42.43	0.9934
#VACCEH	-6.83	-5.55	1.28	-5.64	0.2777
#VACCEH	-54.77	-4/.27	1.50	-48.07	1.2550
#AAIMI'I' #yavmtu	0.00	-100 20	0.00	U.UU	0.0000
#AAIMIT #AAIMIT	-15 EO	-11 57	5.U8 1 01	-14 64	0./139
#XAYMTT	-120 87	-114 77	6 10	-115 25	0.19/8
#YUYPUD01	0.00	0,00	0,00	0.00	0.0000
#YUYPUD01	-71.65	-67.39	4.27	-67.27	0.6773
#YUYPUD01	-31.03	-28.93	2.10	-29.15	0.3718
#YUYPUD01	-102.68	-96.32	6.37	-96.42	1.0084
#ACANIL01	3.05	4.44	1.39	4.65	0.2984
#ACANIL01	-72.54	-66.71	5.83	-67.15	0.9128
#ACANIL01	-36.19	-33.42	2.77	-33.63	0.4685
#ACANIL01	-105.68	-95.68	9.99	-96.13	1.5233
#ADIPAC07	3.13	8.87	5.74	8.27	U.9187

#ADTPAC07	-89 45	-82 20	7 25	-82 57	1 2668
#ADTRAC07	-46.65	-42.22	1 13	_12 99	0 6629
#ADIIAC07	10.00	115 55	17 41	117 10	0.0025
#ADIPAC0/	-132.97	-115.55	17.41	-11/.18	2./342
#ARCLAM01	2.07	5.25	3.19	5.54	0.5650
#ARCLAM01	-51.72	-46.07	5.66	-46.91	0.9267
#ARCLAM01	-33.87	-30.50	3.37	-30.77	0.6382
#ARCLAM01	-83.53	-71.32	12.21	-72.15	2.0281
#AYOJTED	0 12	0 10	-0.02	0 10	0 0054
#AVO TED	-67 16	-61 29	5 99	-61 76	0 9365
#AIOUED	-07.10	-01.20	1 10	-01.70	0.0000
#AIOJED	-5.89	-4./1	1.18	-4.8/	0.2091
#AYOJED	-72.93	-65.90	7.03	-66.53	1.0115
#BENZAC07	1.29	3.28	1.99	3.15	0.3000
#BENZAC07	-66.29	-61.16	5.13	-61.20	0.8019
#BENZAC07	-23.64	-21.09	2.55	-21.19	0.4355
#BENZAC07	-88 64	-78 98	9 66	-79 23	1 4714
#DIDUENO4	E 00	5 50	0.20	5.57	0 0627
#DIFNEN04	0.00	J.J.J.	-0.29	5.57	0.0027
#BIPHEN04	-89.43	-82.85	6.58	-83.02	0.985/
#BIPHEN04	-12.77	-11.85	0.92	-11.93	0.1802
#BIPHEN04	-96.32	-89.11	7.21	-89.37	1.0829
#BZAMID01	2.16	5.78	3.62	5.75	0.5508
#BZAMID01	-73.09	-68.32	4.77	-68.31	0.7683
#BZAMTD01	-33 40	-30 42	2 97	-30 68	0 5032
#B7AMTD01	-104 32	-92.96	11 36	-93.23	1 7461
#DZARIEDOI	104.52	2.50	11.00	0.00	1.7401
#DNBENZI4	0.38	0.70	0.32	0.62	0.05/9
#DNBENZ14	-72.26	-65.06	7.21	-65.77	1.1213
#DNBENZ14	-13.64	-11.97	1.67	-11.97	0.3322
#DNBENZ14	-85.52	-76.32	9.20	-77.12	1.4235
#DNITBZ11	0.15	0.53	0.38	0.51	0.0664
#DNTTBZ11	-72 77	-65 99	6 78	-66 45	0 9765
#DNITE711	-20 44	-19 56	0.88	-19 60	0 2057
#DNIIDZII	20.44	10.00	0.00	10.00	1 1040
#DNITBZII	-93.06	-85.02	8.05	-85.55	1.1940
#EXODAW	0.84	2.71	1.87	2.59	0.3092
#EXODAW	-87.24	-81.93	5.31	-82.48	0.7406
#EXODAW	-29.05	-27.61	1.43	-27.74	0.2719
#EXODAW	-115.45	-106.84	8.61	-107.63	1.2028
#FAXTUU01	0.34	0.92	0.58	0.90	0.0885
#FAYTIII01	-86 38	-81 71	4 66	-81 69	0 7200
#FAX10001	20.00	01.71	1 21	01.00	0.7200
#FAAIUUUI	-20.03	-20.72	1.31	-20.92	0.2102
#FAXTUUUI	-114.06	-107.51	6.55	-10/./1	0.9650
#FOVQOX	6.16	8.30	2.14	8.19	0.3166
#FOVQOX	-73.47	-69.63	3.84	-69.93	0.5750
#FOVQOX	-62.84	-58.41	4.42	-58.44	0.6819
#FOVQOX	-130.15	-119.74	10.41	-120.18	1.4763
#GLURAC03	6.36	10.60	4.25	10.33	0.6688
#GLURAC03	-82 33	-76 04	6 28	-76 81	0 9582
#GLURAC03	-55.00	-19 99	5 01	-50 28	0 8232
#GLUIDAC02	120 07	115 / 2	15 54	116 76	2 2004
#GLURACUS	-130.97	-113.43	13.34	-110.70	2.3004
#HEPTANUZ	1.54	5.8/	4.34	5.45	0.8154
#HEPTAN02	-64.89	-53.13	11.76	-54.95	2.0180
#HEPTAN02	0.41	0.03	-0.37	0.10	0.0831
#HEPTAN02	-62.95	-47.22	15.73	-49.40	2.7374
#HEXANE01	1.46	1.17	-0.29	3.57	1.6779
#HEXANE01	-57.88	-47.57	10.30	-48.87	1.8748
#HEXANE01	0 21	0 05	-0 16	0 10	0 0655
#1102201001	EC 01	46.05	0.10	45 20	0.0000
#HEXANEU1	-36.21	-40.35	9.85	-45.20	2.4090
#HITMUS	1.52	3.1/	1.65	3.03	0.2976
#HITMUS	-75.78	-65.86	9.93	-67.00	1.5639
#HITMUS	-31.88	-29.20	2.68	-29.24	0.4814
#HITMUS	-106.14	-91.89	14.25	-93.21	2.2685
#JOHBUD	1.13	0.92	-0.21	0.92	0.0500
#JOHBUD	-54.67	-47.86	6.81	-48.33	1.1686
#.TOHBUD	-24 46	-21 17	3 29	-21 58	0 6480
# TOUDUD	70 01	21.17	0.00	60.00	1 7400
#JORBOD	-/0.01	-00.11	9.09	-09.00	1.7492
#MCINAMIU	5.05	8.11	3.06	8.46	0.5658
#MCINAM10	-81.50	-73.51	7.99	-74.27	1.4822
#MCINAM10	-22.19	-20.60	1.59	-20.62	0.3355
#MCINAM10	-98.64	-85.99	12.64	-86.43	2.0777
#NITRBE01	0.10	0.22	0.13	0.23	0.0282
#NITRBE01	-60.62	-54.71	5.90	-54.56	1.0147
#NTTRBE01	-12 50	-11 34	1 15	-11 37	0 2234
#NITEDEO1	-73 02	-65.93	7 10	-65 71	1 23/0
#NIIRBEUI	-73.02	-03.03	1.19	-03.71	1.2349
#OCTANEU1	1.81	-3.09	-4.90	2.39	2.9614
#OCTANE01	-/5.15	-64.59	10.56	-65.49	T.83./8
#OCTANE01	0.58	0.29	-0.29	0.27	0.0809
#OCTANE01	-72.76	-67.39	5.38	-62.82	2.9805
#PHBALD11	1.22	2.93	1.71	2.77	0.2571
#PHBALD11	-71.10	-67.80	3.30	-67.71	0.5590
#PHBALD11	-42.67	-38,66	4.01	-39.57	0.6431
#PHRAT.D11	-112 55	-103 52	9 0 2	-104 51	1 2883
#020011	2 27	7 11	1 07	7 05	1.2003
#QAITIO	3.3/	/.44	4.0/	1.25	0.0221
#QATTIO	-2/.68	-54.29	3.39	-34.65	0.5051
#QATTIO	-04.61	-60.37	4.24	-60.24	0./129
#QATTIO	-118.92	-107.21	11.70	-107.63	1.7147
#QATTOU	9.08	13.75	4.67	13.32	0.7617
#QATTOU	-59.12	-56.01	3.10	-56.29	0.4655
#QATTOU	-62.31	-56.71	5.60	-56.88	0.8680
#QATTOU	-112.35	-98.97	13.38	-99.85	1.9409
#TEPHTH06	2.25	5,93	3.69	5.97	0.6158
#TEPHTH04	-97 92	-03 03	2 QQ	-93 20	0 7/0/
##EDIMINC	-50 11	_10.03	4.09	-10 22	0.7424
πιμεμιμυσ	-JZ.41	-40.00	4.02	-40.23	0./240

#TEPHTH06	-148.08	-135.48	12.60	-135.55	1.9620
#XAYMEP	0.09	0.27	0.18	0.29	0.0401
#XAYMEP	-95.20	-89.90	5.30	-89.74	0.8388
#XAYMEP	-11.52	-10.72	0.81	-10.66	0.1761
#XAYMEP	-106.63	-100.34	6.29	-100.11	0.9819
#XOZBUK	0.66	1.87	1.21	1.80	0.2057
#XOZBUK	-63.88	-57.05	6.83	-57.68	1.0378
#XOZBUK	-27.92	-26.54	1.38	-26.54	0.2400
#XOZBUK	-91.14	-81.72	9.42	-82.42	1.4091
#ZIVKOE '	1.56	1.44	-0.11	1.51	0.0614
#ZIVKOE '	-86.25	-81.49	4.76	-81.99	0.6677
#ZIVKOE '	-35.13	-33.01	2.12	-33.13	0.3864
#ZIVKOE '	-119.82	-113.05	6.77	-113.61	0.9656
#ZZZITY01	0.09	0.15	0.06	0.15	0.0115
#ZZZITY01	-62.64	-54.62	8.01	-55.65	1.3092
#ZZZITY01	-7.28	-6.06	1.21	-6.08	0.2484
#ZZZITY01	-69.82	-60.53	9.29	-61.58	1.5438
#ZZZSPY01	0.16	0.16	0.00	0.16	0.0047
#ZZZSPY01	-61.95	-55.41	6.55	-55.75	1.0897
#ZZZSPY01	-6.12	-5.13	1.00	-5.26	0.2217
#ZZZSPY01	-67.92	-60.37	7.55	-60.85	1.2846

300 K runs, energies, convergence test last 2 Mstep for each crystal: intramolecular, LP, Coulombic, total lattice energy start: 3 Mstep frame, end: end of the 5Mstep MC run

	start	end	%delt	aver	rmsd
#ABUMTT	0.00	0.00	0.00	0.00	0.0000
#ABUMTT	-62 24	-62 14	0 10	-62 21	0 1748
#ABUMTT	-2 90	-2 94	-0.04	-2 91	0 0272
#ABUMTT	-65 14	-65 08	0.06	-65 13	0 1856
#BENZEN07	0 00	0 00	0.00	0 00	0 0000
#BENZEN07	-37 27	-37 18	0.00	-37 14	0.2140
#BENZEN07	-6.85	-6 73	0.05	-6 73	0.2140
#BENZEN07	-44 12	-43 91	0.12	-43.86	0.0020
#DINZEN07	0 00	10.01	0.21	-3.00	0.2791
#BILNOZ01	-58 94	-57 79	1 16	-59 15	0.0000
#BILNOZ01	-2 95	-2 99	0.07	-2 94	0.4314
#DILNOZ01	-2.95	-2.00	1 22	-2.94	0.0324
#BILNOZ01	-01.09	-00.05	1.23	-01.09	0.4400
#DNZQUIU3	46.24	45.00	0.00	16.00	0.0000
#BNZQ0103	- 40.24	-45.55	-0.29	-40.24	0.2020
#BNZQ0103	-24.09	-23.10	-0.30	-24.95	0.1414
#DNZQ0103	-/1.13	-/1.14	-0.01	-/1.1/	0.2043
#BULLVALO3	-57 90	-57 73	0.00	-57 72	0.0000
#BULLVALO3	-37.90	-37.73	-0.15	- 37.72	0.1010
#BULVAL03	-65 07	-65.05	0.13	-64 99	0.0730
#CECCEV	-03.07	-05.05	0.02	-04.99	0.1955
#CECGEA	62 20	61 67	0.00	61 01	0.0000
#CECGEA	-02.29	-01.07	0.02	-01.01	0.2041
#CECGEA	-31.90	-31.09	0.09	-31.93	0.1703
#CECGEA	-94.27	-93.30	0.71	-93.74	0.2701
#CTCIDD	-94 54	-94 05	0.00	-94 17	0.0000
#CICIDD	-04.54	-04.00	0.49	-04.17	0.2970
#CICIDD	-2.12	-2.09	0.03	-2.11	0.0314
#CICIDD	-00.00	-00.14	0.52	-00.20	0.31/0
#DAZNAF	-66.98	-66.96	0.00	-67 13	0.0000
#DAZNAF	-21 24	-21 07	0.03	-21 09	0.1045
#DAZNAP	-21.24	-21.07	0.17	-21.09	0.0920
#DCBDOV10	0 00	0.00	0.20	0 00	0.10/0
#DCBDOX10	-113 07	-113 12	-0.04	-113 16	0.0000
#DCBDOX10	-1 83	-1 77	0.04	-1 87	0.2244
#DCBDOX10	-114 90	-114 88	0.00	-115 03	0.2466
#DCLBEN01	0 00	0.00	0.02	0.00	0.2400
#DCLBEN01	-64 93	-64 73	0.00	-64 80	0 1803
#DCLBEN01	-2 52	-2 49	0.03	-2 51	0.0311
#DCLBEN01	-67.45	-67 21	0.03	-67 31	0.0311
#DCLBEN02	0,00	0 00	0.21	0 00	0.1002
#DCLBEN02	-67 73	-67 67	0.00	-67.63	0.2362
#DCLBEN02	-3.26	-3 12	0.00	-3 23	0.0521
#DCLBEN02	-70 99	-70 79	0.20	-70.87	0 2481
#DEZDUH	0 00	0 00	0 00	0 00	0 0000
#DEZDUH	-43 44	-43 43	0 01	-43 38	0 2650
#DEZDUH	-15 40	-15 33	0.08	-15 38	0 0681
#DEZDUH	-58.85	-58 75	0.00	-58 76	0 3039
#DEZXEL	0 00	0 00	0.00	0 00	0 0000
#DEZXEL	-83 44	-83 62	-0.17	-83 32	0 1977
#DEZXEL	-16 10	-16 07	0 03	-16 14	0 0769
#DEZXEL	-99 54	-99 68	-0.14	-99 47	0 1889
#DITBOX	0.00	0 00	0 00	0 00	0 0000
#DITBOX	-85.72	-85.64	0.08	-85.50	0,2458
#DITBOX	-8.16	-8.13	0.03	-8.14	0,0561
#DITBOX	-93.88	-93.77	0.11	-93.64	0.2653
#EZURUM	0.00	0.00	0.00	0.00	0.0000
#EZURUM	-67.83	-67.38	0.45	-67.23	0.3305
#EZURUM	-20.05	-20.06	-0.01	-19.86	0.1558
#EZURUM	-87.88	-87.44	0.44	-87.09	0.3963
#FACGEV	0.00	0.00	0.00	0.00	0.0000
#FACGEV	-38.74	-38.48	0.26	-38.73	0.1828

#FACGEV	-4.68	-4.56	0.12	-4.67	0.0787
#FACGEV	-43.42	-43.04	0.38	-43.41	0.2219
#FACJAU	0.00	0.00	0.00	0.00	0.0000
#FACJAU	-36.73	-36.01	0.72	-36.34	0.2744
#FACJAU	-9.50	-9.35	0.15	-9.35	0.0607
#FACJAU	-46.23	-45.35	0.87	-45.69	0.2926
#FMANUL01	0.00	0.00	0.00	0.00	0.0000
#FMANUL01	-67.22	-68.00	-0.78	-67.71	0.2049
#FMANUL01	-9.74	-9.91	-0.17	-9.81	0.0674
#FMANUL01	-76 97	-77 91	-0 94	-77 52	0 2330
#FOUNTN	0.00	0.00	0.00	0.00	0.0000
#FOVININ	0.00	0.00	0.00	0.00	0.0000
#FOVNIN	-90.19	-90.00	-0.41	-90.00	0.3077
#FOVNIN	-3.70	-3./4	-0.03	-3.70	0.0402
#FOVNIN	-99.90	-100.33	-0.44	-100.25	0.3/31
#HAYYAH	0.00	0.00	0.00	0.00	0.0000
#HAYYAH	-71.54	-71.38	0.16	-71.18	0.2466
#HAYYAH	-7.97	-7.85	0.12	-7.90	0.0754
#HAYYAH	-79.51	-79.23	0.28	-79.09	0.2641
#HCLBNZ11	0.00	0.00	0.00	0.00	0.0000
#HCLBNZ11	-103.47	-102.86	0.61	-103.44	0.3799
#HCLBNZ11	8.58	8.32	-0.26	8.51	0.1550
#HCLBNZ11	-94.89	-94.54	0.35	-94.94	0.2578
#HOWBAW	0 00	0 00	0.00	0 00	0 0000
#UOWDAW	76 04	76.26	0.00	76 50	0.0000
#HOWDAW	-70.04	-70.20	0.59	-70.39	0.2/44
# HOWBAW	-10.39	-10.13	0.20	-10.33	0.1421
#HOWBAW	-87.24	-86.39	0.85	-86.91	0.3525
#NAPHTAIO	0.00	0.00	0.00	0.00	0.0000
#NAPHTA10	- 11 . 70	-72.17	-0.47	-71.87	0.2441
#NAPHTA10	-8.09	-8.20	-0.11	-8.13	0.0802
#NAPHTA10	-79.79	-80.37	-0.58	-80.00	0.2596
#NBORAN02	0.00	0.00	0.00	0.00	0.0000
#NBORAN02	-58.13	-58.16	-0.02	-58.37	0.1584
#NBORAN02	-32.32	-32.73	-0.41	-32.37	0.1576
#NBORAN02	-90.45	-90.89	-0.44	-90.74	0.1901
#PUGDEB	0 00	0 00	0 00	0 00	0 0000
#PUGDEB	-42 41	-41 65	0.76	-41 80	0 2172
#DUCDED	5 00	5 4 G	0.50	5 64	0.1200
#PUGDEB	-J.90	-3.40	1.00	-3.04	0.1390
#PUGDEB	-48.39	-47.11	1.28	-4/.44	0.3169
#TCHLBZ03	0.00	0.00	0.00	0.00	0.0000
#TCHLBZ03	-75.37	-75.09	0.29	-75.28	0.2490
#TCHLBZ03	0.03	-0.01	-0.05	-0.03	0.0334
#TCHLBZ03	-75.34	-75.10	0.24	-75.31	0.2505
#TEPNIT11	0.00	0.00	0.00	0.00	0.0000
TEPNIT11	-70.85	-70.94	-0.09	-70.71	0.2050
TEPNIT11	-30.39	-30.14	0.25	-30.31	0.0935
TEPNIT11	-101.24	-101.08	0.16	-101.03	0.2303
#VACCEH	0.00	0.00	0.00	0.00	0.0000
#VACCEH	-42 06	-41 72	0 34	-41 83	0 2218
#WACCEH	-5 53	-5 55	-0.02	-5.45	0.0530
#WACCEH	-47 59	-47 27	0.02	-47 28	0.0000
#VACCEII	-47.59	-47.27	0.52	-47.20	0.2323
#AAIMII #VAVMTU	100.00	100.00	0.00	100.00	0.0000
#XAIMIT	-100.38	-100.20	0.18	-100.57	0.2800
#XAYMI'I'	-14.45	-14.5/	-0.12	-14.5/	0.1434
#XAYMIT	-114.82	-114.77	0.06	-115.14	0.2462
#YUYPUD01	0.00	0.00	0.00	0.00	0.0000
#YUYPUD01	-67.43	-67.39	0.05	-67.17	0.2763
#YUYPUD01	-28.98	-28.93	0.05	-29.04	0.1639
#YUYPUD01	-96.41	-96.32	0.10	-96.21	0.3905
#ACANIL01	4.62	4.44	-0.18	4.66	0.1390
#ACANIL01	-66.88	-66.71	0.17	-66.87	0.2328
#ACANIL01	-33.40	-33.42	-0.01	-33.49	0.1473
#ACANTLO1	-95 66	-95 68	-0.03	-95 71	0 3258
#ADTPAC07	8 70	8 87	0 17	8 58	0 2355
#ADTPAC07	-81 70	-82 20	-0.50	-82.06	0 3211
#ADTDAC07	-12 71	-12 20	0.00	-42 65	0.3721
#ADIFAC07	115 71	-42.22	0.49	-42.00	0.3437
#ADITACU/	-113./1	-113.33	0.10	-110.13	0.4433
#ARCLAMU1	5./8	5.25	-0.53	5.61	0.1/95
#ARCLAM01	-46.48	-46.07	0.41	-46.30	0.1697
#ARCLAM01	-30.29	-30.50	-0.21	-30.46	0.1342
#ARCLAM01	-70.99	-71.32	-0.33	-71.15	0.2228
#AYOJED	0.10	0.10	-0.00	0.10	0.0021
#AYOJED	-61.38	-61.28	0.09	-61.62	0.2523
#AYOJED	-4.76	-4.71	0.05	-4.78	0.0801
#AYOJED	-66.03	-65.90	0.14	-66.31	0.2918
#BENZAC07	3.30	3.28	-0.02	3.24	0.1177
#BENZAC07	-61.17	-61.16	0,00	-60.99	0.1703
#BENZAC07	-21 12	-21 09	0 03	-21 01	0.1898
#BENZAC07	-78 99	-78 98	0 01	-78 76	0 2275
#BIPHENO/	5 57	5 50	0 02	5 56	0 0383
#DILIENU4	_00 //	-60 05	.0.02	_00.00	0.0002
#DIPHENU4	-02.40	-02.00	-0.39	-02.12	0.2560
#BIPHENU4	-11.80	-11.85	-0.05	-11.88	0.08/4
#BIPHEN04	-88.69	-89.11	-0.42	-89.04	0.3018
#BZAM1D01	5.57	5.78	0.21	5.86	U.1550
#BZAMID01	-67.79	-68.32	-0.53	-68.03	0.2466
#BZAMID01	-30.30	-30.42	-0.12	-30.51	0.1929
#BZAMID01	-92.52	-92.96	-0.44	-92.68	0.3375
#DNBENZ14	0.64	0.70	0.06	0.62	0.0508
#DNBENZ14	-65 46	-65.06	0.40	-65.20	0.2057
	00.10				
#DNBENZ14	-12.00	-11.97	0.04	-11.97	0.1377

#DNITBZ11	0.50	0.53	0.03	0.54	0.0296
#DNTTBZ11	-66.63	-65.99	0.64	-66.17	0.2810
#DNTTBZ11	-19 67	-19 56	0 11	-19 60	0 0910
#DNITB211	-85 80	-85 02	0 78	-85 24	0 3253
#EXODAW	2 56	2 71	0.15	2 66	0.0200
#EXODAW	2.50	2.71	0.10	2.00	0.1039
#EXODAW	-02.11	-01.93	0.10	-02.20	0.2024
#EXODAW	-27.82	-27.61	0.21	-27.69	0.1302
#EXODAW	-107.38	-106.84	0.53	-107.31	0.3280
#FAXTUU01	0.89	0.92	0.03	0.91	0.0380
#FAXTUU01	-81.20	-81.71	-0.51	-81.43	0.1785
#FAXTUU01	-27.00	-26.72	0.27	-26.85	0.1156
#FAXTUU01	-107.31	-107.51	-0.21	-107.37	0.1630
#FOVQOX	8.20	8.30	0.11	8.27	0.1160
#FOVOOX	-69.53	-69.63	-0.09	-69.76	0.2203
#FOVOOX	-58 14	-58 41	-0.27	-58 25	0 2259
#FOV00X	-119 48	-119 74	-0.26	-119 75	0.2636
#FUVQUA	10 01	10 00	-0.20	-119.75	0.2030
#GLURACU3	10.81	10.60	-0.21	10.65	0.1505
#GLURAC03	-76.82	-76.04	0.77	-76.43	0.2612
#GLURAC03	-50.26	-49.99	0.27	-49.96	0.2618
#GLURAC03	-116.27	-115.43	0.83	-115.74	0.3816
#HEPTAN02	5.96	5.87	-0.08	5.94	0.1104
#HEPTAN02	-53.80	-53.13	0.67	-53.74	0.4628
#HEPTAN02	0.10	0.03	-0.07	0.04	0.0390
#HEPTAN02	-47 74	-47 22	0 52	-47 77	0 4819
#HEYANF01	5 44	1 17	-4 27	2 23	1 5853
#UEVANE01	17 17	17 57	1.27	17 61	0 10/0
# MEAANEU1	-4/.4/	-47.37	-0.10	-47.04	0.1049
#HEXANEU1	0.01	0.05	0.03	0.05	0.0269
#HEXANE01	-42.02	-46.35	-4.34	-45.37	1.6296
#HITMUS	3.44	3.17	-0.27	3.07	0.1578
#HITMUS	-65.91	-65.86	0.05	-66.21	0.2842
#HITMUS	-28.85	-29.20	-0.35	-29.11	0.1603
#HITMUS	-91.32	-91.89	-0.58	-92.25	0.4517
#JOHBUD	0 89	0 92	0 02	0 89	0 0178
#JOHBUD	-47 61	-47.86	-0.26	-47.63	0 1990
# TOUDUD	21 20	-47.00	-0.20	-47.03	0.1330
#JOHBUD	-21.20	-21.17	0.03	-21.23	0.1122
#JOHBOD	-67.92	-68.11	-0.20	-67.97	0.2507
#MCINAM10	8.72	8.11	-0.61	8.52	0.2836
#MCINAM10	-72.82	-73.51	-0.68	-73.43	0.3296
#MCINAM10	-20.57	-20.60	-0.04	-20.60	0.2645
#MCINAM10	-84.67	-85.99	-1.33	-85.50	0.5419
#NITRBE01	0.22	0.22	0.00	0.24	0.0210
#NITERE01	-53 73	-54 71	-0.98	-54 12	0 3202
#NTTRBE01	-11 22	-11 34	-0 13	-11 28	0 0650
#NITEDEO1	-64 73	-65.93	_1 10	-65 16	0 3494
#NIIRBEUI	-04.75	-05.05	-1.10	-03.10	0.3404
#OCIANE01	1.75	-3.09	-4.04	-0.13	2.2330
#OCTANEU1	-64.67	-64.59	0.08	-64.54	0.24/6
#OCTANE01	0.21	0.29	0.08	0.23	0.0361
#OCTANE01	-62.70	-67.39	-4.68	-64.44	2.2054
#PHBALD11	2.76	2.93	0.17	2.86	0.1053
#PHBALD11	-67.49	-67.80	-0.31	-67.59	0.3132
#PHBALD11	-39.57	-38.66	0.92	-39.22	0.3040
#PHBALD11	-104.30	-103.52	0.78	-103.95	0.3755
#OATTIO	7 32	7 44	0.12	7 41	0 1579
#QATTIO	-54 70	-51 20	0.12	-54 53	0.1927
#QAIIIO	-54.70	- 54.29	0.41	-54.55	0.1027
#QATTIO	-59.45	-60.37	-0.92	-60.07	0.3374
#QATTIO	-106.83	-107.21	-0.39	-107.19	0.3474
#QATTOU	13.26	13.75	0.49	13.68	0.1969
#QATTOU	-56.12	-56.01	0.11	-56.10	0.2361
#QATTOU	-56.58	-56.71	-0.12	-56.75	0.2305
#QATTOU	-99.45	-98.97	0.48	-99.17	0.2907
#TEPHTH06	5.84	5.93	0.09	6.11	0.2678
#TEPHTH06	-92.89	-93.03	-0.13	-93.07	0.2935
#TEPHTH06	-47 60	-48 38	-0.78	-47 97	0 3011
#TEDUTUOC	-13/ 66	-135 /0	_0 90	-13/ 02	0.3035
#ILPHINUO	-134.00	-133.40	-0.02	-134.93	0.3930
#XAYMEP	0.28	0.27	-0.01	0.29	0.0151
#XAYMEP	-89.78	-89.90	-0.12	-89.58	0.2722
#XAYMEP	-10.45	-10.72	-0.27	-10.69	0.1397
#XAYMEP	-99.95	-100.34	-0.39	-99.98	0.2895
#XOZBUK	1.82	1.87	0.05	1.87	0.1057
#XOZBUK	-57.68	-57.05	0.63	-57.29	0.2074
#XOZBUK	-26.56	-26.54	0.02	-26.56	0.0962
#X0ZBUK	-82 42	-81 72	0 70	-81 98	0.2713
#2TVKOF !	1 5/	1 11	-0 00	1 /0	0 0580
#7TUVOE	_01 00	_01 /0	-0.09	_01 00	0.0000
# GIVNOE	-01.09	-01.49	0.40	-01.02	0.253/
#ZIVKOE '	-32.89	-33.01	-0.13	-32.97	0.1901
#ZIVKOE '	-113.23	-113.05	0.18	-113.30	0.2907
#ZZZITY01	0.15	0.15	-0.00	0.16	0.0031
#ZZZITY01	-55.22	-54.62	0.60	-54.93	0.3290
#ZZZITY01	-5.99	-6.06	-0.07	-6.03	0.0802
#ZZZITY01	-61.06	-60.53	0.53	-60.81	0.3440
#ZZZSPY01	0.16	0.16	0.01	0.16	0.0049
#7775PV01	-55 42	-55 41	0 01	-55 45	0 3051
#77790V01	-5 17	-5 13	0.01	-5 16	0 0576
#7770DV01	-0.17	-60 27	0.03	-60 VE	0.00/0
# 4445 PYUL	-00.43	-00.3/	υ.υю	-00.40	0.3∠6/

Equilibrium structure and dynamics in organic crystals by Monte Carlo simulation. Critical assessment of force fields and comparison with static packing analysis Angelo Gavezzotti

Electronic Supplementary Information: Supplementary Figures 1-16.

Scheme. Compounds considered with their Cambridge Structural Database refcodes.

Fig. S2. (a) Variation in total crystal energy from the experimental crystal structure to the end of the 100 K simulation. (b) Convergence of LP, Coulombic and total energies: average values with their rmsd's.

Figure S3. Convergence of cell parameters: (a) average cell edges with their rmsd in the last 2 Msteps of the simulation. (b) The same for cell angles. Deviating crystals are labeled with their CSD refcodes (see Scheme)

Fig. S4. Comparison between experimental sublimation enthalpies and lattice energies estimated as E=-Ulattice-2RT at 300 K. For the low-melting compounds (n-alkanes, bullvalene, encircled) this is a rough approximation and results in an underestimation of the sublimation enthalpy.

Fig. S5. Variation in intramolecular energies from the experimental crystal structure to the end of the 100 K simulations at 100 K.

Fig. S6. Percent variation in cell edges (a), and absolute values of variation in cell angles (b), on going from 100 to 300 K.

Fig. S7. Shifts in the center-of-mass radial distribution functions from static experimental crystal structure (peaks) to end of simulation (squares).

naphthalene hstframe

Fig. S9. (a) Radial distribution function of intermolecular C...C distances in the last frame of the naphthalene crystal simulation at 300 K. The vertical axis marks the sum of accepted average intermolecular radii. (b) Similar picture for the 2,3-diazanaphthalene crystal (DAZNAP): squares, last frame of the simulation; circles joined by lines, the single values in the static experimental crystal structure.

Fig. S10. The inexplicable radial distribution function of F...F contacts in the final frame of the simulation of 1,2,3,4-tetrafluoronaphthalene (CAXNUL).

Fig. S11. The Cl...Cl radial distribution functions from the simulation of crystals of chlorinated compounds at 300 K (the picture from the average of the last 10 frames is quite similar with slightly sharper peaks). The areas on the left of the vertical axis are for contacts below the sum of accepted average intermolecular radii.

Fig. S12. The radial distribution functions of hydrogen-bonding (a) OH...O distances in acids, and (b) NH...O distances in amides, from the average of the last 10 frames of the crystal simulations at 300 K.

Fig. S13. The dome-shaped radial distribution function of C-H...O distances in the final frame of the simulation at 300 K of the norbornene anhydride crystal (NBORAN02).

Fig. S15. (a) Methyl rotation in the acetanilide crystal simulation: partial localization (hindered rotation) at 100 K, almost free rotation at 300 K. (b) The same for the methyl group in the MCINAM crystal: hindered rotation at both temperatures. Snapshot (last) frames in both cases.

Fig. S16. The spread around planarity (0-30°) of nitro group rotations in 1,4,-dinitrobenzene: circles, squares, number of molecules in the computational box for each value of the torsion angle. The distribution drops to zero even before the rise of the intramolecular potential (triangles, kJ/mol) above 3RT.