New Journal of Chemistry

Electronic supplementary information (ESI)

The Reaction of N*H*-Indazoles with 1-Fluoro-2,4-dinitrobenzene: The Unusual Formation of Benzotriazole-*N*-oxides

Ibon Alkorta,^a Fernando P. Cossío,^{b]}José Elguero,^a Nieves Fresno,^a Laura Hernández-Folgado,^a Santiago García-Granda,^c Laura Menéndez-Taboada,^c Ruth Pérez-Fernández,^a Felipe Reviriego^a and Lucia Vázquez-Viñuela^c

- ^a Instituto de Química Médica, C.S.I.C., Juan de la Cierva, 3, E-28006 Madrid, Spain,
- ^b Departamento de Química Orgánica I, Kimika Fakultatea, Universidad del País Vasco
 Euskal Herriko Unibertsitatea, Manuel de Lardizabal 3, 20018 San Sebastián-Donostia, Spain,
- ^c Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo-CINN, E-33006 Oviedo, Spain

1. General experimental methods

Flash column chromatography were run on silica gel 60 (0.040–0.063 nm) from Merck. Melting points were measured in open-end glass capillary tubes and are uncorrected. ¹H and ¹³C NMR were recorded on a Bruker 300 MHz spectrometer. The chemical shifts are reported relative to the deuterated solvents. LC-MS chromatograms and spectra were recorded on a HPLC 2695 with a Waters 2996 photodiode array detector and Waters Micromass ZQ module. The column used was a Sunfire C18 with 3.5 μ m and 50 cm x 4.6 mm. MS spectra were recorded by positive ESI.

Microwave reactions were carried out using a Biotage Initiator TM 2,0. LC-MS analyses were performed using an Alliance 2695 (Waters) with a diode array UV/Vis detector Waters 2996 and interfaced to a Micromass ZQ mass spectrometer. Analyses were performed using reversed phase HPLC silica based columns: column Bridge C18 3.5 μ m. (2.1 x 100 mm). Using an injection volume of 3 μ L., a flow rate of 0.25 mL/min and gradient elution (5 to 95 % over 5 min) of acetonitrile in water. Acetonitrile contains 0.08 % v/v and water contains 0.1 % v/v formic acid. Analyses were monitored at 254 nm wavelength.

Equilibrium of **11** and its hemiacetal **17**

2. ¹H and ¹³C-NMR spectra

LHNITROF6-2

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

¹H-NMR Spectrum of **3b**

¹³C-NMR Spectrum of **3b**

LHNitroF26-2

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

4

¹³C-NMR Spectrum of **5b**

3. Electronic spectra

Compound 3 (246 nm, Abs= 0.69) [50 % EtOH, 50% PBS]

Compound 4 (274 nm, Abs= 1.20) [20 % EtOH, 80% PBS]

Compound 5 (272 nm, Abs = 1.20; 274 nm, Abs =1.19) [20 % EtOH, 80% PBS]

4. Computational data

Figure S1. Fully optimized transition structures [B3LYP(PCM)/6-31G(d) level of theory] associated with the reaction profile represented in Figure 15.

Photochemical mechanism.

Supporting Information

9

B3LYP/6-31G*

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	 6	0	1.154819	0.978152	-0.000392	
2	6	0	2.508099	1.172480	-0.000433	
3	6	0	3.073337	-0.135267	-0.000047	
4	7	0	2.153896	-1.077423	0.000224	
5	7	0	0.951081	-0.390339	0.000036	
6	6	0	-0.165484	-1.196109	0.000236	
7	6	0	-1.503856	-1.011810	0.000093	
8	7	0	-2.274833	0.197655	0.000065	
9	8	0	-3.499299	0.050269	-0.000982	
10	8	0	-1.710659	1.299958	0.001234	
11	1	0	0.318969	1.654220	-0.000601	
12	1	0	3.026698	2.120115	-0.000733	
13	1	0	4.119320	-0.414282	0.000041	
14	1	0	0.147323	-2.234891	0.000332	
15	1	0	-2.145134	-1.880894	-0.000072	

E(B3LYP)= -508.091357 a.u. NIMAG=0 ZPVE= 0.107873 a.u. E(TDB3LYP,S1)= -507.957788 a.u.

CASSCF(4,4)

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	1.168984	0.974812	0.000039
2	6	0	2.499215	1.166066	0.000125
3	6	0	3.057085	-0.151977	0.000097
4	7	0	2.130047	-1.062219	0.000013
5	7	0	0.946796	-0.380659	-0.000020
6	6	0	-0.173862	-1.183599	-0.000156
7	6	0	-1.505981	-1.009221	-0.000205
8	7	0	-2.272618	0.205496	-0.000006
9	8	0	-3.455900	0.065330	0.000458
10	8	0	-1.713120	1.264002	-0.000405
11	1	0	0.361832	1.665895	0.000013
12	1	0	3.019801	2.099896	0.000193
13	1	0	4.088500	-0.439148	0.000128
14	1	0	0.125233	-2.212262	-0.000108
15	1	0	-2.145428	-1.863842	0.000035

E(CASSCF,S0)= -505.187342 a. u. E(CASSCF-MP2,S0)= -506.621541 a. u. E(CASSCF,S1)= -504.936567 a. u. ECASSCF-MP2,S1)= -506.430792 a. u. **10** B3LYP/6-31G*

Center	Atomic	Atomic	Coordir	nates (Angst	roms)
Number	Number	Туре	Х	Y	Z

1	6	0	-0.434195	-0.649688	0.422418
2	6	0	-1.723904	-1.325675	0.117130
3	6	0	-2.607620	-0.326541	-0.143930
4	7	0	-2.078516	0.953654	-0.192651
5	7	0	-0.787312	0.769560	0.075872
6	6	0	0.220300	1.624546	0.015658
7	6	0	1.537475	1.111078	0.113083
8	7	0	1.822280	-0.182672	-0.029921
9	8	0	0.669130	-1.053108	-0.352937
10	8	0	2.912791	-0.740574	-0.098105
11	1	0	-0.142290	-0.649550	1.488459
12	1	0	-1.907723	-2.382454	0.232140
13	1	0	-3.669131	-0.425454	-0.336140
14	1	0	0.013993	2.674657	-0.141696
15	1	0	2.402293	1.746133	0.246311

E(B3LYP)= -508.032642 a. u. NIMAG=0 ZPVE= 0.106989 E(TDB3LYP,S1)=-507.971319 a. u.

CASSCF(4,4)

CenterAtomicAtomicCoordinates(Angstroms)NumberNumberTypeXYZ160-0.419265-0.6199170.416260-1.701610-1.3141010.106	
Number Number Type X Y 2 1 6 0 -0.419265 -0.619917 0.416 2 6 0 -1.701610 -1.314101 0.106	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Z
2 6 0 -1 701610 -1 314101 0 106	6405
	6801
3 6 0 -2.579420 -0.350618 -0.145	5090
4 7 0 -2.046874 0.941769 -0.168	8290
5 7 0 -0.778965 0.762397 0.085	5021
6 6 0 0.225200 1.631976 0.021	1008
7 6 0 1.537837 1.103421 0.080	0168
8 7 0 1.769514 -0.198981 -0.055	5804
9 8 0 0.681173 -0.996381 -0.347	7952
10 8 0 2.845934 -0.770414 -0.063	3014
11 1 0 -0.142406 -0.659636 1.466	6352
12 1 0 -1.859437 -2.368178 0.185	5440
13 1 0 -3.626431 -0.452928 -0.346	6488
14 1 0 0.017356 2.669889 -0.126	6274
15 1 0 2.411880 1.704349 0.206	6463

E(CASSCF,S0) = -505.114617 a. u. E(CASSCF-MP2,S0) = -506.562533 a. u. E(CASSCF,S1) = -504.989975 a. u. ECASSCF-MP2,S1) = -506.429923 a. u.12 D21 VD(c 210*

B3LYP/6-31G* Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0 -0.590763 -0.630593 0.596753 2 6 0 -1.802318 -1.274019 0.214969 3 6 0 -2.591787 -0.269172 -0.340575 4 7 0 -2.040550 0.958776 -0.401840 5 7 0 -0.799400 0.738658 0.154136 6 6 0 0.228988 1.566384 0.133095 7 6 0 1.528464 1.063985 0.265947 8 7 0 1.806863 -0.232153 -0.066989 9 8 0 0.809530 -1.127031 -0.225039 10 8 0 2.940143 -0.613935 -0.349157 11 1 0 -0.147699 -0.704313 1.593345

Electronic Supplementary Material (ESI) for New Journal of Chemistry This journal is © The Royal Society of Chemistry and The Centre National de la Recherche Scientifique 2013

13	1	0	-3.605947	-0.379558	-0.708416
14	1	0	0.033211	2.610798	-0.084162
15	1	0	2.403510	1.692397	0.325292

E(B3LYP)= -508.018027 a. u. NIMAG=1 (-737.9960 cm⁻¹) ZPVE= 0.105616 a. u. E(TDB3LYP,S1)= -507.971319 a. u.

CASSCF(4,4)

Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z 1 6 0 -0.502606 -0.633285 0.585 2 6 0 -1.731960 -1.275982 0.219 3 6 0 -2.523460 -0.270030 -0.340 4 7 0 -1.990587 0.915542 -0.300 5 7 0 -0.781251 0.728933 0.352	
Number Number Type X Y Z 1 6 0 -0.502606 -0.633285 0.585 2 6 0 -1.731960 -1.275982 0.219 3 6 0 -2.523460 -0.270030 -0.340 4 7 0 -1.990587 0.915542 -0.300 5 7 0 -0.781251 0.728933 0.352	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	671
3 6 0 -2.523460 -0.270030 -0.340 4 7 0 -1.990587 0.915542 -0.300 5 7 0 -0.781251 0.728933 0.352 6 0 0 -0.347118 1.580017 0.110	341
4 7 0 -1.990587 0.915542 -0.300 5 7 0 -0.781251 0.728933 0.352 6 0 0.247118 1.580017 0.118	013
5 7 0 -0.781251 0.728933 0.352	384
	2715
0 0 0.24/110 1.30001/ 0.119	250
7 6 0 1.516108 1.116799 -0.009	228
8 7 0 1.737641 -0.225197 -0.166	5497
9 8 0 0.700221 -0.988363 -0.434	476
10 8 0 2.833492 -0.741686 -0.045	5152
11 1 0 -0.007759 -0.854157 1.517	198
12 1 0 -1.962110 -2.311959 0.340	634
13 1 0 -3.500984 -0.386349 -0.764	876
14 1 0 0.016673 2.625526 0.079	985
15 1 0 2.392658 1.727278 0.013	\$120

E(CASSCF,S0-S1)=- 505.0761925 a. u. E(CASSCF-MP2, S0-S1)= -506.529006 a. u.