Electronic Supplementary Information

for

Molecular Binding Behaviors of Triazole-Bridged Bis(β -cyclodextrin)s towards Cinchona Alkaloids

Ying-Ming Zhang, Hong-Zhong Chen, Yong Chen, Fei Ding, and Yu Liu*

Department of Chemistry, State Key Laboratory of Elemento-Organic Chemistry,

Nankai University, Tianjin 300071, People's Republic of China

yuliu@nankai.edu.cn

Contents

Fig. S1-S3 Characterization data of compound 3	Page S3
Fig. S4-S6 Characterization data of compound 4	Page S4
Fig. S7-S9 Characterization data of compound 5	Page S6
Table S1 Photophysical properties of host-guest complexes	Page S8
Fig. S10 Fluorescence spectral changes of 3/CIN system	Page S8
Fig. S11 Fluorescence spectral changes of 4/QUD system	Page S8
Fig. S12 3D column of host-guest complexation	Page S9
Fig. S13 2D ROESY spectrum of 3/CID system	Page S10
Table S2 Comparative structural information of host-guest complexes	Page S11

Fig. S1 ¹H NMR spectrum of compound 3 in D₂O (400 MHz, 25 °C)

Fig. S2 ¹³C NMR spectrum of compound **3** in DMSO- d_6 (100 MHz, 25 °C)

Fig. S3 ESI-MS spectrum of compound 3

Fig. S4 ¹H NMR spectrum of compound 4 in D₂O (400 MHz, 25 °C)

Fig. S5 ¹³C NMR spectrum of compound **4** in DMSO- d_6 (100 MHz, 25 °C)

Fig. S7 ¹H NMR spectrum of compound 5 in D_2O (400 MHz, 25 °C)

Fig. S8 ¹³C NMR spectrum of compound **5** in DMSO- d_6 (100 MHz, 25 °C)

Fig. S9 ESI-MS spectrum of compound 5

Table S1 Comparative photophysical properties of the 1:1 inclusion complexes between cinchona alkaloids and hosts **3-5** in phosphate buffer solution at 25 °C as determined by fluorometric titrations.

Host	Guest	Intensity	Emission peak (nm)	
3	CID	enhanced	413	
	CIN	enhanced	413	
	QUD	enhanced	393	
	QUN	quenched	383	
4	CID	enhanced	432	
	CIN	enhanced	431	
	QUD	<u></u> a	390	
	QUN	quenched	382	
5	CID	enhanced	435	
	CIN	enhanced	434	
	QUD	<u></u> a	383	
	QUN	quenched	382	
^a The isoluminescence points of 4/QUD and 5/QUD systems				

were 399 and 402 nm, respectively.

Fig. S10 Emission spectral changes of CIN upon addition of **3** in phosphate buffer solution (0.1 M, pH 7.2) at 25 °C ([CIN] = 1.0×10^{-5} M, [**3**] = 0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.2, 1.4×10^{-3} M, respectively, from a to 1). Inset: The nonlinear least squares analysis of the differential spectral changes (ΔF) at 415 nm to calculate the stability constant (K_s) between **3** and CID ($\lambda_{ex} = 330$ nm).

Fig. S11 Emission spectral changes of QUN upon addition of 4 in phosphate buffer solution (0.1 M, pH 7.2) at 25 °C ([QUN] = 1.0×10^{-5} M, [4] = 0, 0.1, 0.3, 0.4, 0.5,

0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.5×10^{-3} M, respectively, from a to l). Inset: The nonlinear least squares analysis of the differential spectral changes (ΔF) at 385 nm to calculate the stability constant (K_S) between **4** and QUN ($\lambda_{ex} = 330$ nm).

Fig. S12 Complex stability constants (K_s) of cinchona alkaloids with native β -, γ -CD,

and hosts **3-5** in phosphate aqueous buffer solution at 25 °C.

Fig. S13 ¹H ROESY spectrum of 3/CID system with a mixing time of 0.25 s (300 MHz, D_2O , 25 °C).

Table S2 Comparative structural information of the 1:1 inclusion complexes of cinchona alkaloids with β -CD and hosts **3** as determined by 2D NMR results.

protons	aliphatic ring	ethenyl group	phenyl ring	pyridyl ring
H5 of 3 ^{<i>a</i>}	CID	CID	<i>c</i>	<i>c</i>
	CIN	CIN	CIN	<i>c</i>
	QUD	QUD	<i>c</i>	QUD
	QUN	QUN	QUN	QUN
H5 of β -CD ^b	CIN	CIN	CIN	<i>c</i>

^{*a*} this work; ^{*b*} ref. 13; ^{*c*} No correlation can be clearly observed at the corresponding protons of host and the substituent groups of guest.