Supporting Information

Bromine kinetic isotope effect: insight into Grignard reagent formation

Lukasz Szatkowski, ^a Agnieszka Dybala-Defratyka^{* a}, Charlie Batarseh^b, Jochanan Blum^b, Ludwik Halicz^c and Faina Gelman^{* c}

 ^a Institute of Applied Radiation Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland. E-mail: agnieszka.dybala-defratyka@p.lodz.pl
^b Department of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
^c Geological Survey of Israel, Malkhei Israel 30, Jerusalem 95501, Israel. E-mail: faina@gsi.gov.il.

Table of Contents

1. Procedure for Grignard reagent formation	S1
2. Bromine isotope ratio analysis	S2
3. KIE determination	S2
4. Computational methods	S3
5. Optimized coordinates	S6
6. References	S19

1. Procedure for Grignard reagent formation

The desired amount of magnesium powder and 20 ml of anhydrous diethyl ether were added to the dry 100-ml round bottomed flask through the septum port under constant slow flow of N_2 gas. 30 mg of iodine crystals were previously added to the flask to activate the magnesium powder. The mixture was stirred at approximately 500 rpm and heated to reflux. The desired alkyl bromide/aryl bromides (10 mmol) was added through the septum using a 5ml disposable syringe. After the required period of time (30-60min), the N_2 flow was stopped and 5 ml of H_2O were carefully added to the reaction mixture. The mixture was acidified by adding 0.5 ml of HCl solution of pH 1.18 (prepared from 0.1 of 33 N hydrochloric acid and 49.9 ml of H_2O). The organic phase and aqueous phases were separated. The aqueous phase was extracted three times with 10 ml diethyl ether and extracts were combined with the organic phase. The volume of the combined organic phase was reduced to 1 ml by solvent evaporation. The remained organic solution was dried with anhydrous magnesium sulfate and analyzed by GC-MS. The desired reaction conversions

were achieved using magnesium as a limiting agent. For every substrate reaction with conversion of 60, 70, 80 and 90% was performed twice.

2. Bromine isotope ratio analysis

Bromine isotope analysis of the brominated organic compounds was based on the previously described GC-MC-ICPMS method. Briefly, the analyte solution in acetone was injected into a GC (HP 6890) interfaced to the MC/ICPMS (NU Instrument). Strontium external spike solution (SRM 987—National Institute of Standards and Technology), was continuously injected into the system by an Aridus desolvation nebulizer. Fine-tuning of the MC/ICPMS instrument was performed according to the maximum signal of Sr. Signals of ⁸⁶Sr, ⁸⁴Sr, ⁸¹Br, ⁷⁹Br and ⁸³Kr were simultaneously collected by Faraday cups. Operating parameters for the GC-MC/ICPMS system are listed in Table S1. SRM 987 strontium reference material solution at a concentration of 1 mg l⁻¹ was used as an external spike. The continuous signal obtained for ⁸⁶Sr was about 3 V. All samples were analyzed at least three times.

GC parameters	
Injector conditions	300 °C, splitless injection
Column	HP-5 25 m (0.25 mm, 0.25 μm)
Oven temperature	60 °C, 10 °C min ⁻¹ to 250 °C
He carrier flow	3 ml min ⁻¹
Transfer line temperature	240 °C
MC/ICPMS parameters	
RF power	1200 W
Coolant flow	12 1 min ⁻¹
Auxiliary flow	1.25 l min ⁻¹
Nebulizer gas flow	0.69 1 min ⁻¹
Interface cones	Nickel
Instrument resolution	300 m/Δm
Nebulizer	PFA 50 μl min ⁻¹
Spray chamber temp.	75 °C
Desolvator temp.	160 °C
Sweep gas (argon)	3.45 1 min ⁻¹
Integration time	0.5 s

Table S1. Instrumental parameters for the GC-MC/ICPMS measurement.

3. KIE calculation

Bromine KIE values were calculated from the measured isotopic enrichment of the substrate during the reaction process using the equation (1):

$$KIE = k_{79}/k_{81} = 1/\alpha$$
 (1)

Where α - isotope fractionation factor

In this work, we derive values of α from the experimental results by using the exponential function

$$Ln R/R_0 = (\alpha - 1) Ln F$$

where *R* and *R*₀ are the isotope ratios (${}^{81}\text{Br}/{}^{79}\text{Br}$) of the residual and the initial, unreacted organobromide, respectively, and F is the fraction of organobromide remaining. Values of isotope fractionation factor α were calculated from the linear least-squared best fit to the eq. (2) (Fig. S1), refraining from forcing regressions through the origin as was suggested by Scott et al.¹

Fig. S1. Ln R/R_0 vs Ln F diagram showing change in bromine isotope ratios in 1-bromodecane (triangles); 1-bromohexane (circles); 1-bromonaphthalene (rhombs) and bromobenzene (squares) as a function of fraction remaining (F). For all the studied compounds initial point (0,0) was used.

4. Computational methods

All molecular geometries have been fully optimized using Gaussian09 package¹ at the M06-2X/6-31+G(d,p) level of theory² with the SMD³ representation of solvent (diethyl ether). The natures of all stationary points have been confirmed by vibrational analysis and all transition state structures additionally by IRC calculations⁴. Bromine and carbon kinetic isotope effects (Br- and C-KIEs) have been calculated using the complete Bigeleisen equation⁵ at 300 K as implemented in the ISOEFF program.⁶

a) radical pathway

In order to explore single electron transfer mechanism within outer-sphere pathway we used neutral and 1e reduced forms of PhBr and EtBr. The optimized neutral and radical anion species of PhBr where C-Br bond remained intact upon one electron reduction were used to estimate possible bromine fractionation using slightly modified method by Kavner et al. ⁷ Driving forces were computed for redox potentials of -2.5.⁸ We spanned the typical range of reorganizational energies of 25-100 kcal/mol and did not observe any difference in predicted Br-KIE which for

(2)

this entire range was equal to unity. The radical anion species of PhBr was used as a starting structure for pulling off halide ion from the organic molecule. For EtBr species since in the radical anion species C-Br bond was already broken we decided to employ the approach presented by Costentin et al.⁹ We modeled a Morse curve (Fig. S2) and based on the estimated bond dissociation energy (D), we subsequently calculated so called intrinsic barrier, $\Delta G_0^{\neq} = \frac{D+\lambda_0}{4}$, where λ_0 is the solvent reorganization free energy. Having calculated ΔG_0^{\neq} we could estimate free energy of activation according to the equation:

$$\Delta G^{\ddagger} = \Delta G_0^{\ddagger} \left(1 + \frac{\Delta G^0}{4\Delta G_0^{\ddagger}} \right) \tag{3}$$

where ΔG^0 is a driving force and a experimentally determined redox potential for EtBr of -2.16 V. ¹⁰ In the case of solvent reorganization energy we explored the most typical value range from 25 to 100 kcal/mol with a step of 5 kcal/mol and the predicted Br-KIE did not differ more than 0.3‰ and did not exhibit any meaningful deviation from unity therefore led to the conclusion that DET in the case of alkyl halide is not accompanied by bromine fractionation.

Fig. S2. Morse curve for C-Br bond breaking during DET in EtBr; D – bond dissociation energy.

b) non-radical pathway

Initial geometries of all considered models were fully optimized at the SMD/M06-2X/6-31+G(d,p) level of theory using default convergence and optimization criteria along with an

ultrafine grid for the integration (Fig. S3). They were subsequently used for locating respective transition states by decreasing the distance between magnesium atom and carbon atom substituted with bromine atom. The natures of all stationary points were confirmed by performing vibrational analysis (3N-6 real vibrations in the case of reactants and one imaginary frequency corresponding to the desired reaction coordinate in the case of transition state structure). The optimized products complexes are shown in Fig. S4.

Fig. S3. Reacting complexes with the key distances obtained for different models of the non-radical pathway.

Fig. S4. Products complexes with the key distances obtained for different models of the non-radical pathway.

5. Optimized coordinates

6. Optimized coordinates

a) radical p	oathway		
EtBr			
Neutral			
Electronic	energy $(E) = -26$	550.9833343 a	u
Gibbs Free	Energy $(G) = -$	2650.944207 a	iu
С	1.02114500	0.68591600	0.00000000
Н	1.07164600	1.31243400	-0.88957500
Н	1.07164600	1.31243300	0.88957600
С	2.07303800	-0.40012600	0.00000000
Н	3.06256900	0.06992300	-0.00000600
Н	1.99302800	-1.03186600	0.88794000
Н	1.99302000	-1.03187400	-0.88793400
Br	-0.79305700	-0.06702300	0.00000000
Radical an	ion		
Electronic	energy (E) = -2	.651.052866 au	1
Gibbs Free	Energy (G) = \cdot	2651.024593	au
С	-2.44152200	0.80016800	-0.00613000

Н	-1.47573800	1.29111700	0.02472100
Н	-3.34616800	1.39998400	0.00604700
С	-2.50393900	-0.68567800	-0.00045800
Н	-3.10220100	-1.07975100	-0.83482800
Н	-1.48974600	-1.08858600	-0.06854700
Н	-2.96860100	-1.07730500	0.91792400
Br	1.20157800	-0.00378300	-0.00016500

PhBr

Neutral

Electronic e	nergy (E) = -2	803.3652141 a	au
Gibbs Free I	Energy (G) = \cdot	2803.304264	au
С	2.16752800	-1.20474800	0.00021500
С	0.77351900	-1.21378200	0.00009000
Н	3.95401000	0.00000000	0.00035700
С	2.86869400	0.00000000	0.00025700
С	0.09357000	0.00000000	0.00000700
С	0.77351900	1.21378200	0.00004100
С	2.16752800	1.20474800	0.00017100
Н	0.22724600	2.15088800	-0.00002600
Н	2.70324200	2.14907500	0.00020300
Н	0.22724600	-2.15088800	0.00006100
Н	2.70324200	-2.14907500	0.00028400
Br	-1.79660400	0.00000000	-0.00015900
Radical anic	n		
Electronic e	nergy (E) = -2	803.3869005 a	au
Gibbs Free I	Energy (G) = \cdot	-2803.335936	au
С	-2.20407100	-1.20807200	-0.04203200
С	-0.76249700	-1.24460200	0.07259400
Н	-3.97181700	-0.01533200	-0.09600400
С	-2.88388500	-0.00801900	-0.03288400
С	-0.11204700	0.00885900	0.02538500
С	-0.75759700	1.21839300	-0.00902600
С	-2.20124200	1.23493900	0.05547300
Н	-0.19096600	2.14159300	-0.08559600
Н	-2.73820200	2.17746600	0.06770600
Н	-0.20806900	-2.17048600	0.15930400
Н	-2.75454400	-2.14305100	-0.12582000
Br	1.81118900	0.00002400	-0.00961900

TS of dehalogenation

product of C-Br cleavage

b) non-radical pathway

EtBr

- Mg model			
Reacting con	mplex		
Electronic er	nergy (E) = -23	851.0312139 a	u
Gibbs Free H	Energy $(G) = -$	2850.997207 a	u
Mg	3.19610000	-0.42595200	-0.01175100
Br	-0.98128500	-0.65356200	-0.06515900
С	-0.37383300	1.05268000	0.69164700
Н	-1.15525900	1.35248200	1.38902900
Н	0.53919700	0.82296600	1.24345500
С	-0.14834300	2.07698100	-0.39565400
Н	0.61847500	1.74215000	-1.10016200
Н	-1.06855500	2.27802500	-0.94955200
Н	0.19097600	3.01250100	0.06285000
Transition st	ate		
Electronic en	nergy (E) = -23	850.9731666 a	u
Gibbs Free I	Energy $(G) = -$	2850.940557 a	u
Mg	0.01456300	2.02134700	-0.03114600
Br	0.95595700	-0.47172000	-0.04490300
С	-1.47677100	-0.36582400	0.72982400
Н	-1.18202300	-1.28347700	1.22472100
Н	-1.65651000	0.45500500	1.41742300
С	-2.35581700	-0.50488800	-0.46471400
Н	-2.71744100	0.45885200	-0.82796600
Н	-1.86275600	-1.02649400	-1.28782300
Н	-3.21898300	-1.12558700	-0.17167000
Product com	plex		
Electronic er	nergy (E) = -23	851.1072407 a	u
Gibbs Free H	Energy $(G) = -$	2851.073675 a	u
Mg	-0.60418100	-0.29008900	-0.00056600
Br	1.76679000	0.08090400	0.00009400
С	-2.67549900	-0.61452400	0.00038400
Н	-2.91387000	-1.23523000	-0.87390600
Н	-2.91403700	-1.23472000	0.87508500

С	-3.55588800	0.64360300	0.00001800
Н	-3.37153900	1.27034700	0.87988800
Н	-3.37125100	1.27012900	-0.87992100
Н	-4.62846000	0.40444100	-0.00007400

- Mg4 model

Reacting complex

Electronic energy (E) = -3451.1920254 au Gibbs Free Energy (G) = -3451.165410 au Mg -2.58868600 1.24389500 -1.35436200 Mg -1.26321600 -1.39041300 -0.33780800Mg -4.30522600 -0.98506800 -0.02908800 Mg -2.35883900 0.66808900 1.69119200Br 2.79227500 -0.59215700 -0.07512900 С $1.85472500 \quad 0.94790600 \quad 0.70637800$ Η 0.94189200 0.54169600 1.14656100 Η 2.51109700 1.31614500 1.49412300 С 1.56940600 1.99246000 -0.34639100 Н $1.03108200 \quad 2.82597400 \quad 0.11968400$ Η 2.49270800 2.37713500 -0.78701400 Η 0.94042000 1.58430600 -1.14297700 Transition state Electronic energy (E) = -3451.1511968 au Gibbs Free Energy (G) = -3451.127294 au Mg -0.16421100 1.76518900 -0.67994200

8			
Mg	-2.90266200	0.35866800	-1.41655000
Mg	-2.20928000	1.18265200	1.67869800
Mg	-1.65114800	-1.69325200	0.57233700
Br	0.86580200	-0.93784900	-0.10570500
С	2.83532800	0.49371000	-0.59141800
Н	3.37593400	-0.37222200	-0.96261700
Н	2.62219400	1.22055700	-1.37179700
С	3.27121900	1.02561800	0.74029600
Н	2.64188000	1.85641100	1.07296600
Н	3.23427700	0.25403000	1.51522500
Н	4.31099200	1.39087700	0.69812000
Product com	plex		

Electronic energy (E) = -3451.2662786 au Gibbs Free Energy (G) = -3451.242183 au Mg 1.73135700 -0.27375500 1.95496900

Mg	-0.33569400	0.17202300	-0.35900000
Mg	1.74646700	-1.91891700	-1.09716700
Mg	4.25775000	-0.20134500	-0.12101100
Br	-2.62735900	-0.55941000	0.09619800
С	0.44178700	2.06661900	-0.93682400
Н	1.54313600	2.07089800	-0.93575200
Н	0.14612300	2.27943900	-1.97489000
С	-0.08210700	3.17922100	-0.01517200
Н	0.26484800	4.18611400	-0.29292800
Н	-1.17877700	3.21380000	-0.01185700
Н	0.22560300	3.01801000	1.02700400

- Mg-2DEE

Reacting co	omplex		
Electronic energy (E) = -3318.1624066 au			
Gibbs Free	Energy $(G) = -$	3317.873957	au
Mg	-0.63150000	-0.83322400	-0.16350800
Br	5.06949700	-0.46795400	-0.35784600
0	-1.45043400	1.41409300	-0.58853600
С	-1.12604100	2.68490500	-0.03469600
Н	-0.89908700	3.38237100	-0.85360300
Н	-1.98786800	3.08255300	0.51857200
С	-2.38510900	1.45966600	-1.66307400
Н	-2.38938000	0.44820600	-2.08552600
Н	-2.00373300	2.13986000	-2.43785300
С	0.06729200	2.53418300	0.88556400
Н	0.93280000	2.14723100	0.33940200
Н	0.32906200	3.50820800	1.31009900
Н	-0.15769900	1.84968400	1.71017200
С	-3.78479900	1.86068500	-1.23178500
Н	-4.46915100	1.76327000	-2.08053600
Н	-4.13693000	1.20997800	-0.42594300
Н	-3.82739800	2.89890400	-0.88969600
0	-2.96880400	-1.05648800	0.16651600
С	-3.65538500	-1.80837500	-0.83296500
Н	-4.53970500	-1.23930700	-1.15653600
Н	-2.95771000	-1.86481100	-1.67623700
С	-3.73144500	-0.80278600	1.34478400
Н	-4.72929500	-0.44362200	1.05052700
С	-4.03701700	-3.20900200	-0.38618900

Н	-4.80506700	-3.20146100	0.39199000
Н	-4.43427000	-3.76362100	-1.24178900
Н	-3.15688200	-3.73970300	-0.00976400
Н	-3.86096300	-1.73378900	1.91006900
С	-3.01248800	0.23083300	2.18759500
Н	-2.86045700	1.15506500	1.62280700
Н	-3.60721200	0.45491800	3.07827500
Н	-2.03760600	-0.14415800	2.51522700
С	3.16110500	-0.39034400	0.10251600
Н	2.70598100	0.25976900	-0.64392500
Н	2.78302200	-1.40231000	-0.03341100
С	2.97876500	0.11391300	1.51690400
Н	3.48769900	-0.53502200	2.23436000
Н	3.36366100	1.13088600	1.63149300
Н	1.90845100	0.11108100	1.75276200
Transition st	ate		
Electronic er	nergy (E) = -3	318.1450092 a	iu
Gibbs Free E	Energy (G) = \cdot	-3317.853910 a	au
Mg	0.42175900	0.22398400	-0.66323200
Br	-4.69846300	0.28800400	-0.28640100
0	1.81590800	-1.51527400	-0.64270200
С	1.67242700	-2.83255800	-0.10259400
Н	1.68565700	-3.55186700	-0.93175300
Н	2.52474400	-3.04875500	0.55328300
С	2.98391600	-1.33439200	-1.45132400
Н	2.81622100	-0.40372300	-2.00609100
Н	3.03219600	-2.14968000	-2.18476100
С	0.37497800	-2.92267600	0.67189500
Н	-0.48689800	-2.72460100	0.02779800
Н	0.27120600	-3.92963400	1.08690700
Н	0.36546700	-2.21224800	1.50458900
С	4.26087800	-1.24561600	-0.63640500
Н	5.09976700	-1.01589400	-1.30076000
Н	4.18381400	-0.45095900	0.11161600
Н	4.49002200	-2.18601700	-0.12752600
0	2.21870200	1.27048600	0.13330000
С	2.86910900	2.20959800	-0.73126300
Н	3.94715900	1.99630300	-0.72528700
Н	2.48153100	1.99105900	-1.73270400
C	2.62637800	1.33855500	1.50345000

Н	3.72484700 1.35809300 1.53839600
С	2.58639200 3.65629300 -0.37168900
Н	3.04310600 3.94464800 0.57855700
Н	2.99953700 4.30445200 -1.15039300
Н	1.50730900 3.83078600 -0.31525300
Н	2.25139400 2.26601100 1.95071200
С	2.08001700 0.13524400 2.24322300
Н	2.45538900 -0.79619300 1.81012700
Н	2.38350900 0.18332300 3.29291000
Н	0.98422300 0.12470800 2.21265100
С	-2.39658500 0.13326500 -0.10315600
Н	-2.29171600 -0.54406400 -0.93754400
Н	-2.23065300 1.17721100 -0.31917800
С	-2.27856600 -0.37826300 1.31953100
Н	-2.74376400 0.33529000 2.00528100
Н	-2.80994400 -1.32937600 1.41590100
Н	-1.24956900 -0.53520100 1.65056200
Product cor	nplex
Electronic e	energy (E) = -3318.3089124 au
Gibbs Free	Energy (G) = -3318.013946 au
Mg	0.18578000 0.00592800 0.58024700
Br	-0.23109800 2.35362000 -0.07876800
0	-1.52517100 -0.69582500 -0.39323300
С	-2.76985000 -0.21580400 0.15417600
Н	-2.97179600 0.77255500 -0.27723900
Н	-3.56477500 -0.90743600 -0.14037800
С	-1.48708700 -0.61428900 -1.83359500
Н	-0.45256800 -0.82509700 -2.10896000
Н	-1.71274900 0.42016700 -2.12092300
С	-2.66686100 -0.14291100 1.66050900
Н	-1.93321300 0.60430800 1.98378800
Н	-3.63620900 0.15779200 2.06832600
Н	-2.40190100 -1.11651700 2.08250700
С	-2.43166700 -1.59856900 -2.49641100
Н	-2.24278300 -1.59684500 -3.57409100
Н	-2.26362700 -2.61255900 -2.12005400
Н	-3.48195200 -1.33754800 -2.34471300
0	
	1.52993000 -0.61904300 -0.88492100
С	1.52993000-0.61904300-0.884921002.452145000.37472700-1.37997500

Н	1.82795300	1.19011600	-1.74989200
С	2.10943500	-1.92790800	-0.73131600
Н	2.62815100	-2.17134800	-1.66588900
С	3.39968900	0.85842800	-0.29909200
Н	4.04929200	0.05735400	0.06444900
Н	4.03456700	1.65167000	-0.70531000
Н	2.84391000	1.27465900	0.54828700
Н	2.84219400	-1.90990900	0.08308400
С	1.00930900	-2.92804300	-0.44894000
Н	0.26629000	-2.93332600	-1.25179400
Н	1.44477700	-3.92859200	-0.37651300
Н	0.50740200	-2.71716000	0.50134000
С	0.96243900	-0.65371800	2.44540700
Н	1.33168200	0.24926400	2.96014200
Н	1.87689100	-1.22567700	2.20663000
С	0.12044100	-1.46783900	3.43970200
Н	0.67461400	-1.78691700	4.33568400
Н	-0.74242300	-0.89345000	3.79884100
Н	-0.28430300	-2.38219600	2.98367400

PhBr

- Mg model

Reacting complex

Electronic energy (E) = -3003.4130418 au

Gibbs Free Energy (G) = -3003.357505 au			
С	-2.02127900	-0.78031900	1.20533400
С	-0.63872600	-0.59987600	1.21326800

Н	-3.79336400	-1.00155500	0.00003600
С	-2.71678100	-0.86449700	0.00003300
С	0.03497700	-0.50590600	0.00002400
С	-0.63869500	-0.60017000	-1.21321400
С	-2.02124900	-0.78060800	-1.20527000
Н	-0.09699900	-0.52829100	-2.15032700
Н	-2.55239000	-0.85076100	-2.14955900
Mg	-0.79910400	3.08592600	-0.00014800
Br	1.90548600	-0.24240700	0.00001600
Н	-0.09705500	-0.52776400	2.15037800
Н	-2.55244400	-0.85024300	2.14962600

Transition state

Electronic energy (E) = -3003.3626292 au

Gibbs Free Energy (G) = -3003.306892 au			
С	-2.40580600 -0.14477500 1.20503400		
С	-1.02892600 0.05868300 1.21647700		
Н	-4.18065200 -0.39901800 0.00000400		
С	-3.10793000 -0.23623700 0.00000200		
С	-0.35112000 0.23873200 -0.00000400		
С	-1.02891400 0.05857000 -1.21647600		
С	-2.40579200 -0.14489200 -1.20503000		
Н	-0.49783700 0.13190000 -2.15969400		
Н	-2.93159100 -0.23804800 -2.15143200		
Mg	1.17128400 2.11730900 -0.00007600		
Br	1.68443100 -0.67935100 0.00002500		
Н	-0.49786200 0.13210100 2.15969600		
Н	-2.93161500 -0.23783700 2.15143800		
Product con	plex		
Electronic e	nergy (E) = -3003.4946425 au		
Gibbs Free	Energy (G) = -3003.437440 au		
С	-3.50877300 1.20355900 -0.00026900		
С	-2.11142100 1.19522000 0.00058800		
Н	-5.29964900 0.00020500 -0.00170700		
С	-4.21317200 0.00011900 -0.00090800		
С	-1.36580500 -0.00011800 0.00064700		
С	-2.11161600 -1.19532700 0.00058700		
С	-3.50896700 -1.20343500 -0.00026900		
Н	-1.60187400 -2.15782700 0.00117800		
Н	-4.04711500 -2.14798600 -0.00050400		
Mg	0.72346000 -0.00005800 0.00061200		
Br	3.10954100 0.00001000 -0.00026400		
Н	-1.60152600 2.15763900 0.00117800		
Н	-4.04676900 2.14819700 -0.00050500		
- Mg4 model			
Reacting complex			
Electronic energy (E) = -3603.5730307 au			
Gibbs Free Energy (G) = -3603.524061 au			

	0.		
С	-0.83405100	2.13669100	1.22200400
С	-1.52608800	0.92634100	1.22212800
Н	0.01553500	3.71444300	0.02640400
С	-0.53302500	2.77793800	0.02122900
С	-1.90710600	0.36799100	0.00665100

С	-1.63587100	1.00366000	-1.20056000
С	-0.94200500	2.21293900	-1.18603400
Н	-1.94737200	0.55777500	-2.13929400
Н	-0.71565200	2.70683600	-2.12598700
Mg	1.32894400	-1.10818600	-0.14086800
Br	-2.83172300	-1.28159100	-0.00240800
Н	-1.75092800	0.41927000	2.15453400
Н	-0.52235500	2.57019100	2.16729200
Mg	3.28669900	0.48901300	1.63320000
Mg	3.44006400	0.74483700	-1.45146400
Mg	4.30262300	-1.93118100	-0.08346700

Transition state

Electronic energy (E) = -3603.5312522 au

Gibbs Free Energy (G) = -3603.483243 au

С	-2.07586500	2.04371200	1.20522600
С	-1.52117400	0.76859600	1.19982200
Н	-2.81017300	3.69667800	0.02054900
С	-2.37878300	2.70126800	0.00848500
С	-1.19122300	0.16162300	-0.02604200
С	-1.59817000	0.76441000	-1.23113900
С	-2.15117700	2.03988600	-1.20350800
Н	-1.41605200	0.27079300	-2.18041500
Н	-2.40521100	2.52399300	-2.14287800
Mg	1.06999600	-0.68145200	-0.06847400
Br	-1.47653000	-2.01571800	0.00874400
Н	-1.28428500	0.27442400	2.13666000
Н	-2.27558900	2.52667800	2.15816000
Mg	2.88533900	0.87703900	1.80130400
Mg	2.61307800	1.71630700	-1.23194000
Mg	4.04560300	-1.04684500	-0.50215600

Product complex

Electronic energy (E) = -3603.6587942 au

Gibbs Free Energy (G) = -3603.609946 au

С	-3.02610600	-1.60048700	1.20081400
С	-1.69328400	-1.17617200	1.20987000
Н	-4.71264900	-2.15142200	-0.02872100
С	-3.67533800	-1.82878200	-0.01220100
С	-0.94690500	-0.96979500	0.03054800
С	-1.64241400	-1.21675600	-1.17154500
С	-2.97606700	-1.63808500	-1.20462100

Н	-1.13630800	-1.07114900	-2.12682700
Н	-3.46974400	-1.81291000	-2.15747200
Mg	0.99607600	-0.08555600	0.05427200
Br	3.34978100	-0.67474000	-0.00110800
Н	-1.22813300	-1.00180700	2.18113800
Н	-3.55827100	-1.74827500	2.13750500
Mg	-0.01779400	2.33274800	1.71368900
Mg	-2.66529200	2.32973400	-0.07890400
Mg	0.07229700	2.25490000	-1.71272500

- Mg-2DEE

Reacting complex

Electronic e	energy (E) = -3	470.5530191 a	au
Gibbs Free	Energy $(G) = -$	3470.244658	au
С	2.25604700	2.96094400	-0.67055100
С	2.42733900	1.62623800	-1.03691200
Н	2.22929500	4.38533900	0.94502300
С	2.36205800	3.34503600	0.66553200
С	2.69455800	0.68471900	-0.04828200
С	2.81135500	1.05037200	1.28895900
С	2.63681700	2.38821100	1.64163500
Н	3.04384200	0.30728400	2.04447500
Н	2.72248100	2.67831100	2.68435300
Mg	-1.12986300	1.56951300	0.79579100
Br	3.04452200	-1.10834200	-0.55018800
Н	2.36236300	1.32763200	-2.07797900
Н	2.04381800	3.69932700	-1.43759600
0	-4.41248900	0.13694300	-0.22346300
С	-4.39623600	-0.61153300	0.97577600
Н	-3.96130600	-0.00097700	1.78486100
Н	-5.42614000	-0.86975700	1.27044300
С	-5.04047300	1.39438200	-0.07430300
Н	-4.55269700	1.95548200	0.74001700
Н	-6.09770400	1.25562100	0.20360300
С	-3.56214800	-1.85591300	0.75408500
Н	-3.51608100	-2.44913400	1.67314200
Н	-3.99663500	-2.47599400	-0.03629500
Н	-2.54415200	-1.57411000	0.46360600
С	-4.92170400	2.15014900	-1.38053500
Н	-5.40017400	1.59476300	-2.19236200

Н	-5.40260000	3.12935300	-1.29838600
Н	-3.86765400	2.30121500	-1.63526900
0	-0.22610600	-1.52898200	-0.04066700
С	-0.00616800	-2.54991800	0.91007900
Н	0.89374400	-3.12381000	0.63575300
Н	-0.85732700	-3.25133300	0.90715900
С	-0.40334900	-2.03894600	-1.34658100
Н	-1.27692600	-2.71129600	-1.36646400
Н	0.47921700	-2.63376000	-1.63253300
С	0.16203900	-1.90969600	2.27056200
Н	0.40087500	-2.66687300	3.02339600
Н	0.97416500	-1.17605400	2.23878200
Н	-0.75451200	-1.39215900	2.57283600
С	-0.59664500	-0.87769900	-2.29670800
Н	-0.66972800	-1.23779200	-3.32745600
Н	-1.51043400	-0.32559400	-2.05500200
Н	0.25218900	-0.18963100	-2.22451500
Transition s	tate		
Electronic e	nergy (E) = -3	8470.5204893 a	au
Gibbs Free I	Energy (G) = \cdot	-3470.205588 :	au
С	1.92756500	-1.28713400	2.06369300
С	1.78695100	-0.07508300	1.39541100
Н	2.40767600	-3.39252500	1.91096100
С	2.28948300	-2.45185900	1.38340400
С	1.90522200	-0.01352900	-0.01984500
С	2.44072900	-1.16246100	-0.67418000
С	2.57772100	-2.35590300	0.00669500
Н	2.65906800	-1.11134000	-1.73598800
Н	2.92218800	-3.23197600	-0.53751600
Mg	-0.52832400	0.32113600	-1.04138500
Br	2.57191100	1.74526900	-0.67023500
Н	1.54401400	0.82264600	1.95564000
Н	1.77198200	-1.31128700	3.14000600
0	-2.20640800	1.45345500	-0.21148100
С	-2.20251700	2.40142600	0.85865300
Н	-2.88364700	3.22207300	0.59994900
Н	-2.57236300	1.92073900	1.77304600
С	-3.47642300	1.23153100	-0.83489900
Н	-3.25454000	0.65213200	-1.73950800
Н	-3.87655600	2.20302000	-1.15201100

С	-0.79103000	2.91613900	1.04679900
Н	-0.44268200	3.43986900	0.15252200
Н	-0.76153500	3.60740300	1.89448300
Н	-0.09356400	2.09700900	1.25430800
С	-4.46257800	0.49008500	0.04598000
Н	-5.40870000	0.37786000	-0.49306900
Н	-4.08338300	-0.50509400	0.29226200
Н	-4.67091000	1.03508000	0.97216700
0	-1.70499400	-1.41868100	-0.33198100
С	-1.93640700	-2.40819300	-1.34438300
Н	-2.78210000	-3.03121900	-1.02572100
Н	-2.24192500	-1.84307800	-2.23117900
С	-1.43069100	-1.96249400	0.96673300
Н	-2.13819400	-2.78177300	1.15110300
С	-0.70919800	-3.24802800	-1.65189200
Н	-0.41098800	-3.86902600	-0.80222300
Н	-0.92926600	-3.90970900	-2.49566400
Н	0.13287300	-2.60364400	-1.92744100
Н	-0.41250400	-2.36998400	0.98473400
С	-1.58694100	-0.87623200	2.00988700
Н	-2.61145200	-0.49671400	2.04016100
Н	-1.33463000	-1.28592100	2.99280400
Н	-0.90596400	-0.04036800	1.81639800
Product con	nplex		
Electronic e	nergy (E) = -3	470.6996298 a	u
Gibbs Free l	Energy $(G) = -$	3470.383766	au
С	2.25604700	2.96094400	-0.67055100
С	2.42733900	1.62623800	-1.03691200
Н	2.22929500	4.38533900	0.94502300
С	2.36205800	3.34503600	0.66553200
С	2.69455800	0.68471900	-0.04828200
С	2.81135500	1.05037200	1.28895900
С	2.63681700	2.38821100	1.64163500
Н	3.04384200	0.30728400	2.04447500
Н	2.72248100	2.67831100	2.68435300
Mg	-1.12986300	1.56951300	0.79579100
Br	3.04452200	-1.10834200	-0.55018800
Н	2.36236300	1.32763200	-2.07797900
Н	2.04381800	3.69932700	-1.43759600
0	-4.41248900	0.13694300	-0.22346300

С	-4.39623600	-0.61153300	0.97577600
Н	-3.96130600	-0.00097700	1.78486100
Н	-5.42614000	-0.86975700	1.27044300
С	-5.04047300	1.39438200	-0.07430300
Н	-4.55269700	1.95548200	0.74001700
Н	-6.09770400	1.25562100	0.20360300
С	-3.56214800	-1.85591300	0.75408500
Н	-3.51608100	-2.44913400	1.67314200
Н	-3.99663500	-2.47599400	-0.03629500
Н	-2.54415200	-1.57411000	0.46360600
С	-4.92170400	2.15014900	-1.38053500
Н	-5.40017400	1.59476300	-2.19236200
Н	-5.40260000	3.12935300	-1.29838600
Н	-3.86765400	2.30121500	-1.63526900
0	-0.22610600	-1.52898200	-0.04066700
С	-0.00616800	-2.54991800	0.91007900
Н	0.89374400	-3.12381000	0.63575300
Н	-0.85732700	-3.25133300	0.90715900
С	-0.40334900	-2.03894600	-1.34658100
Н	-1.27692600	-2.71129600	-1.36646400
Н	0.47921700	-2.63376000	-1.63253300
С	0.16203900	-1.90969600	2.27056200
Н	0.40087500	-2.66687300	3.02339600
Н	0.97416500	-1.17605400	2.23878200
Н	-0.75451200	-1.39215900	2.57283600
С	-0.59664500	-0.87769900	-2.29670800
Н	-0.66972800	-1.23779200	-3.32745600
Н	-1.51043400	-0.32559400	-2.05500200
Н	0.25218900	-0.18963100	-2.22451500

7. References

- 1. Scott, K. M., Lu, X., Cavanaugh, C. M., Liu, J.S. , Geochim. Cosmochim. Acta, 2004, 68, 433.
- Gaussian 09, Revision A.02, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.;

Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian, Inc.*, Wallingford CT, **2009**.

- Zhao, Y.; Truhlar, D. G. *Theor. Chem. Acc.* 2008, *120* (1-3), 215–241; DOI:10.1007/s00214-007-0310x; Y. Zhao and D. G. Truhlar, *Acc. Chem.* Res., 2008, 41, 157; Frisch, M. J.; Pople, J. A.; Binkley, J. S. J. Chem. Phys. 1984, 80 (7), 3265; DOI: 10.1063/1.447079
- 4. Marenich, A. V., Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113 (118), 6378; DOI: 10.1021/jp810292n
- 5. Fukui, K. Acc. Chem. Res. 1981, 14 (12), 363; DOI: 10.1021/ar00072a001.
- 6. Bigeleisen, J. J. Chem. Phys. 1949, 17 (8), 675.
- 7. Anisimov, V., Paneth, P. J. Math. Chem. 1999, 26 (1-3), 33.
- 8. A. Kavner, F. Bonet, A. Shahar, J. Simon and E. Young, Geochim. Cosmochim. Ac., 2005, 69, 2971.
- 9. Andrieux, C. P., Jean-Michel Saveant, J.-M. and K. Binh Su, J. Phys. Chem. 1986, 90, 3815.
- 10. Costentin C. Chem. Phys. 2006, 324, 40.
- 11. Vasudevan, D., . Russ. J. Electrochem., 2005, 41 (3), 310.