Supplementary Information for

Thioether-tethered bisquinoline derivatives as fluorescent probes for mercury(II) and iron(III) ions

Yuji Mikata,^{a,*} Fumie Nakagaki^b and Kaori Nakanishi^b

^aKYOUSEI Science Center and ^bDepartment of Chemistry, Faculty of Science, Nara Women's University, Nara 630-8506, Japan

Experimental

General

All reagents and solvents used for synthesis were from commercial sources and used as received. Acetonitrile (Dojin) was spectral grade (Spectrosol). ¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a JEOL JNM AL-400 spectrometer and referenced to internal Si(CH₃)₄ or solvent signals. UV-vis and fluorescence spectra were measured on a Jasco V-660 spectrophotometer and Jasco FP-6300 spectrofluorometer, respectively. *CAUTION: Perchlorate salts of metal complexes with organic ligands are potentially explosive. All due precautions should be taken.*

BQET¹

To the acetonitrile suspension (30 mL) of 2-chloromethylquinoline hydrochloride

(535 mg, 2.50 mmol) and 1,2-ethanedithiol (100 μ L, 1.25 mmol) was added potassium carbonate (1.38 g, 10.0 mmol) and stirred for 2 days under reflux. After removal of the solvent, the residue was extracted with chloroform/water. The organic layer was dried, evaporated, and washed with acetonitrile to give BQET as white powder. Yield, 445 mg (1.18 mmol, 94%).

¹H NMR (CDCl₃): δ 8.08 (d, 2H, *J* = 8.3 Hz), 8.00 (d, 2H, *J* = 8.3 Hz), 7.77 (m, 2H), 7.67 (m, 2H), 7.51 (m, 4H), 3.98 (s, 4H), 2.71 (s, 4H).

¹³C NMR (CDCl₃): δ 158.5, 147.1, 136.6, 129.3, 128.8, 127.2, 126.7, 126.1, 120.1, 38.5, 31.1.

6-MeOBQET

To the acetonitrile suspension (50 mL) of 6-methoxy-2-chloromethylquinoline (1.14 g, 5.51 mmol) and 1,2-ethanedithiol (226 μ L, 2.75 mmol) was added potassium carbonate (3.46 g, 25.0 mmol) and stirred for 2 days under reflux. After removal of the solvent, the residue was extracted with chloroform/water. The organic layer was dried, evaporated, and purified by silica gel column chromatography (AcOEt/CH₂Cl₂ = 1/3) to give 6-MeOBQET as white powder. Yield, 738 mg (1.69 mmol, 61%). Recrystallization from chloroform-acetonitrile afforded single crystals suitable for X-ray crystallography.

¹H NMR (CDCl₃): δ 8.07 (d, 2H, *J* = 9.0 Hz), 7.78 (d, 2H, *J* = 9.2 Hz), 7.43 (d, 2H, *J* = 9.0 Hz), 7.30 (dd, 2H, *J* = 2.8, 9.2 Hz), 7.21 (d, 2H, *J* = 2.8 Hz), 3.91 (s, 4H), 3.89 (s, 6H), 2.66, (s, 4H).

¹³C NMR (CDCl₃): δ 158.5, 157.7, 144.2, 131.0, 128.9, 122.7, 122.5, 106.5, 56.2, 38.6, 31.9.

Anal calcd for C₂₄H₂₄N₂O₂S₂ (6-MeOBQET): H, 5.54; C, 66.03; N, 6.42. Found: H, 5.58; C, 66.06; N, 6.35.

TriMeOBQET

To the acetonitrile suspension (50 mL) of 5,6,7-trimethoxy-2-chloromethylquinoline (535 mg, 2.00 mmol) and 1,2-ethanedithiol (80.0 μ L, 1.00 mmol) was added potassium carbonate (1.39 g, 10.0 mmol) and stirred for 2 days under reflux. After removal of the solvent, the residue was extracted with chloroform/water. The organic layer was dried, evaporated, and purified by silica gel column chromatography (AcOEt) to give TriMeOBQET as yellow oil. Yield, 253 mg (0.46 mmol, 46%).

¹H NMR (CD₃OD): δ 8.29 (d, 2H, *J* = 9.0 Hz), 7.34 (d, 2H, *J* = 9.0 Hz), 7.18 (s, 2H), 4.06 (s, 6H), 4.02 (s, 6H), 4.00 (s, 6H), 3.96 (s, 4H), 2.71, (s, 4H).

¹³C NMR (CD₃OD): δ 157.9, 155.9, 146.7, 145.0, 140.4, 131.1, 118.6, 117.8, 103.7, 61.6, 61.2, 56.1, 38.5, 31.3.

Anal. calcd for C₂₈H₃₃N₂O_{6.5}S₂ (TriMeOBQET 0.5H₂O): H, 5.88; C, 59.45; N, 4.95. Found: H, 5.80; C, 59.68; N, 5.11.

[Hg(BQET)(ClO₄)]ClO₄

In an acetonitrile solution of BQET was added equimolar amount of $Hg(ClO_4)_2$ 6H₂O in ethanol, and the solution was kept at 4 °C under ether diffusion condition to give colorless crystals. Yield, 23%.

¹H NMR (DMSO-*d*₆): δ 8.64 (d, 2H, *J* = 8.4 Hz), 8.42 (d, 2H, *J* = 8.4 Hz), 8.17 (d, 2H, *J* =

7.3 Hz), 7.94 (m, 2H), 7.82 (m, 2H), 7.73 (d, 2H, J = 8.5 Hz), 4.63 (s, 4H), 3.03 (s, 4H).
¹³C NMR (DMSO-*d*₆): δ 154.6, 145.0, 139.8, 131.5, 128.8, 128.2, 127.9, 127.4, 123.5, 36.8,
31.1.

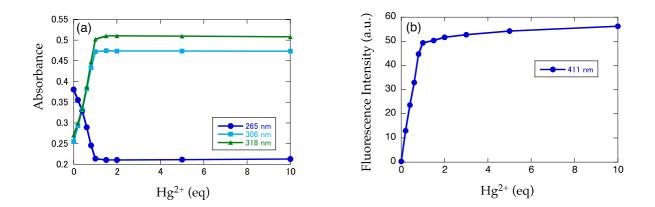
Anal. calcd for C₂₂H₂₀Cl₂HgN₂O₈S₂ ([Hg(BQET)(ClO₄)₂]): H, 2.60; C, 34.05; N, 3.61. Found: H, 2.78; C, 34.25; N, 3.82.

X-ray crystallography

Single crystals of 6-MeOBQET and [Hg(BQET)(ClO₄)]ClO₄ were covered by Paraton-N oil and mounted on a glass fiber. All data were collected at 123 K on a Rigaku Mercury CCD detector, with monochromatic MoK \square radiation, operating at 50 kV/40 mA. Data were processed on a PC using CrystalClear Software (Rigaku). Structures were solved by direct methods (SIR-92)² and refined by full-matrix leastsquares methods on F^2 (SHELXL-97).³ Crystal data are summarized in Tables S1. CCDC-924739 and 924740 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via <u>www.ccdc.cam.ac.uk/datarequest/cif</u>.

References

- 1 V. Amendola, C. Mangano, P. Pallavicini and M. Zema, *Inorg. Chem.*, 2003, **42**, 6056.
- 2 A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori and M. Camalli, *J. Appl. Cryst.*, 1994, **27**, 435.


3 G. M. Sheldrick, SHELXL-97, Program for refinement of cystal structures,

University of Göttingen, Germany, 1997.

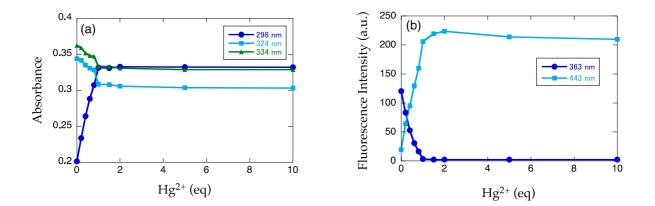

	6-MeOBQET	[Hg(BQET)(ClO ₄)]ClO ₄
Formula	$C_{24}H_{24}N_2O_2S_2$	$C_{22}H_{20}Cl_2HgN_2O_8S_2$
FW	436.59	776.02
Crystal system	monoclinic	triclinic
Space group	C2/c	<i>P-</i> 1
<i>a,</i> Å	45.859(4)	14.2333(7)
<i>b,</i> Å	6.0059(4)	14.4741(7)
<i>c,</i> Å	15.7820(10)	15.0775(9)
α, deg	90	101.0406(15)
β, deg	105.080(4)	113.0721(8)
γ, deg	90	111.1031(3)
<i>V</i> , Å ³	4197.1(5)	2457.8(2)
Ζ	8	4
D_{calc} , g cm ⁻³	1.382	2.097
μ, mm ⁻¹	0.2780	6.7189
2θ _{max} , deg	55	55
temp, K	123	123
no. reflns collected	19768	24541
no. reflns used	4804	11047
no. of params	367	668
R _{int}	0.0259	0.028
Final R1 ($I > 2\sigma(I)$) ^{<i>a</i>}	0.0424	0.0364
wR2 (all data) ^b	0.1105	0.0856
GOF	1.086	1.097

Table S1. Crystallographic Data for 6-MeOBQET and [Hg(BQET)(ClO₄)]ClO₄

 ${}^{a}R1 = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. \quad {}^{b}wR2 = [\Sigma w[(F_{o}{}^{2} - F_{c}{}^{2})^{2}] / \Sigma [w(F_{o}{}^{2})^{2}]]^{1/2}.$

Fig. S1 Hg²⁺ titration profile for 34 μ M BQET in CH₃CN at 25 °C. (a) UV-vis absorbance changes at 265, 306 and 318 nm. (b) Fluorescence intensity changes (λ_{ex} = 317 nm) at 411 nm.

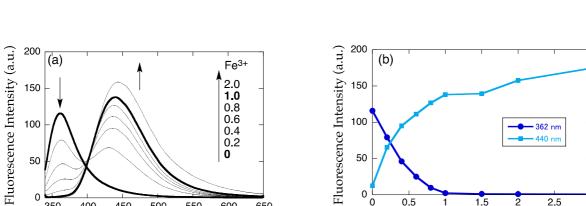
Fig. S2 Hg²⁺ titration profile for 34 μ M 6-MeOBQET in CH₃CN at 25 °C. (a) UV-vis absorbance changes at 298, 324 and 334 nm. (b) Fluorescence intensity changes (λ_{ex} = 334 nm) at 363 and 443 nm.

550

600

650

50


0 <u>350</u>

400

450

500

Wavelength (nm)

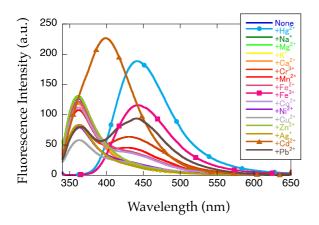
50

0 [°]L 0

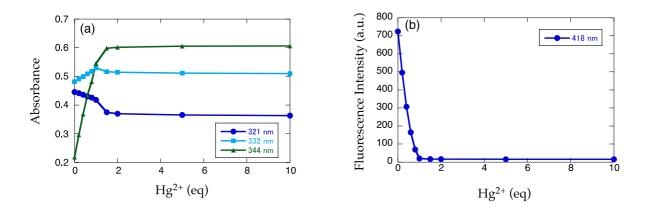
0.5

1.5

Fe³⁺ (eq)


2

440 nm


2.5

3

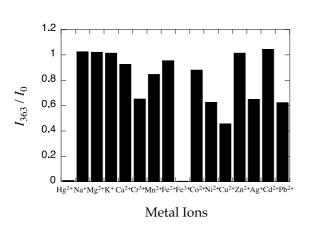
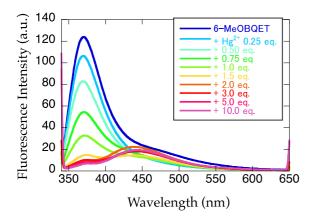
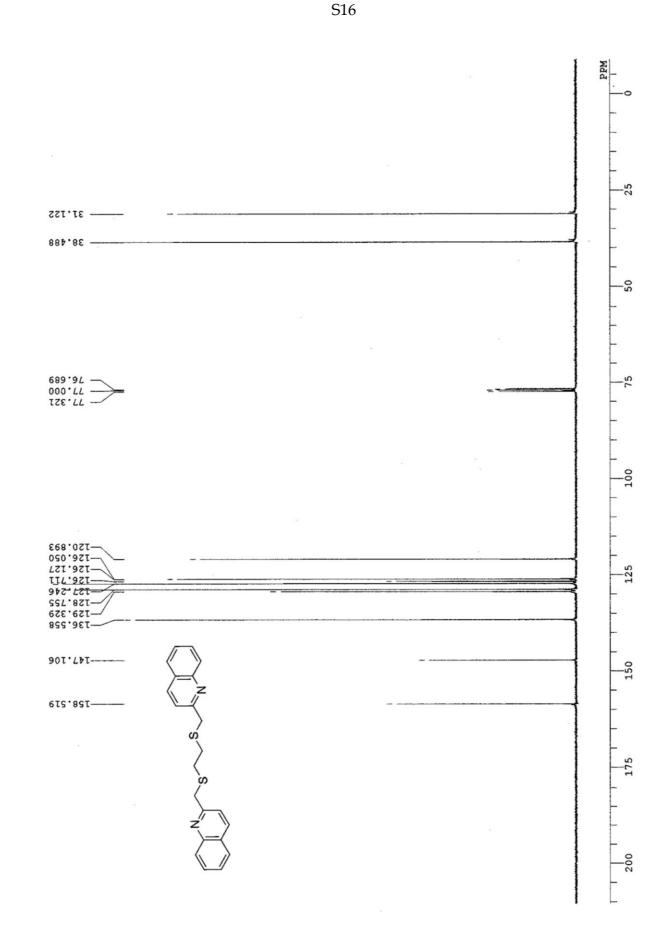
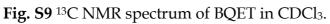

Fig. S3 (a) Fluorescence (λ_{ex} = 334 nm) spectra of 34 μ M 6-MeOBQET in acetonitrile at 25 °C in the presence of various concentration of Fe^{3+} ranging from 0 to 68 $\mu M.$ (b) Fluorescence intensity changes at 363 and 443 nm.

Fig. S4 Comparison of fluorescence spectra of 34 μ M 6-MeOBQET (λ_{ex} = 334 nm) in CH₃CN at 25 °C in the presence of 1 equivalent of Hg²⁺ (light blue, circles), Fe³⁺ (red magenta, squares) cadmium (light brown, triangles) and other metal ions (various colors, no marks).

Fig. S5 Hg²⁺ titration profile for 34 μ M TriMeOBQET in CH₃CN at 25 °C. (a) UVvis absorbance changes at 321, 332 and 344 nm. (b) Fluorescence intensity changes (λ_{ex} = 334 nm) at 418 nm.

Fig. S6 The relative fluorescence intensity of 6-MeOBQET at 363 nm in the presence of 1 equivalent of metal ions in acetonitrile at 25 °C. I_0 is the emission intensity of free ligand.


Fig. S7 Fluorescence (λ_{ex} = 334 nm) spectra of 34 μ M 6-MeOBQET in acetonitrile/water (1/1) at 25 °C in the presence of various concentration of Hg²⁺ ranging from 0 to 340 μ M.

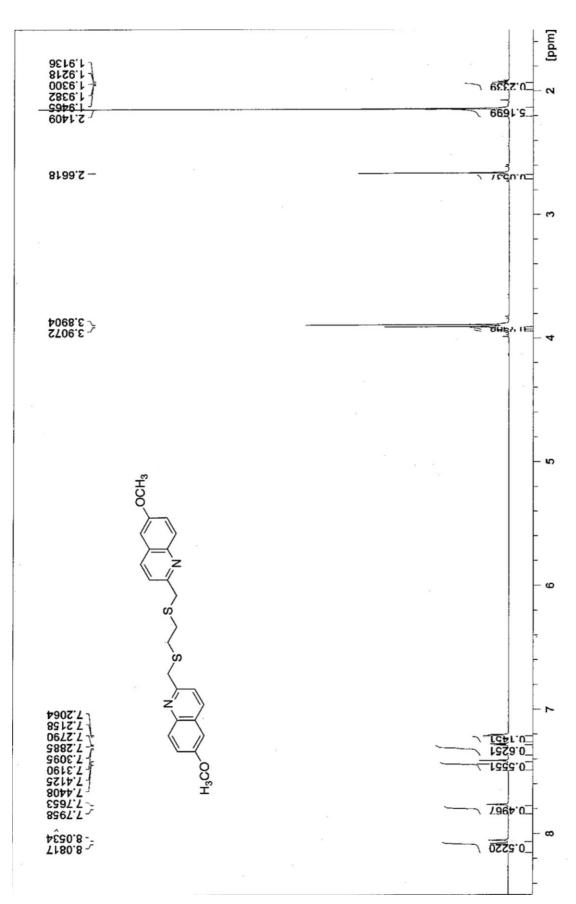

Mad 800.0----000.0---1.616 9<u>5</u>9.1-869.1-2 627.2-7.97 --3.982 2.00 9 992.7 281.7 881.7 203'L 805'L 225.F 525.*T* 879°L 223.7 £0.2 \$99.7 Z0.1 699'L E70.73 L89 · L 48:f = 069'L-T9L'L-Þ9L'L-T8L'L-Þ8L'L-Þ66'L-ÞT0'8-690'8-060'8 -2-

Fig. S8 ¹H NMR spectrum of BQET in CDCl₃.

Fig. S10 ¹H NMR spectrum of 6-MeOBQET in CD₃CN.

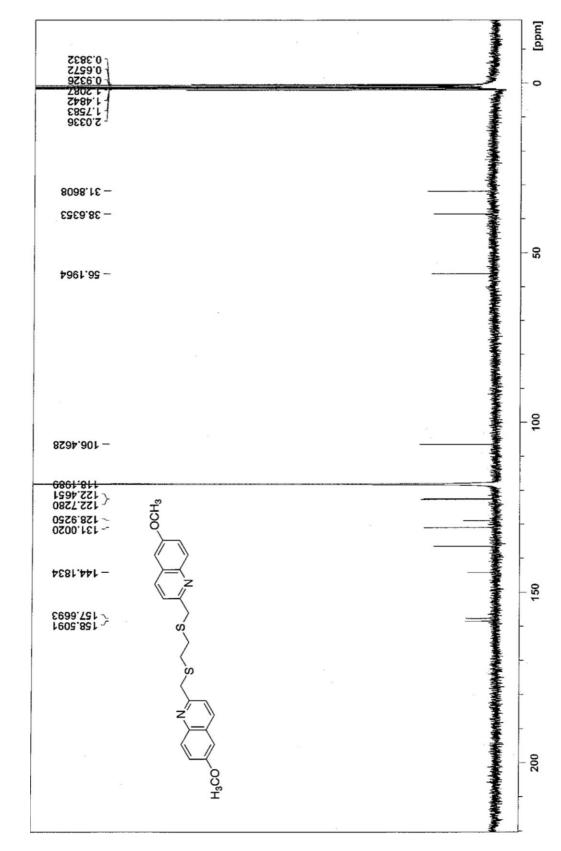


Fig. S11 ¹³C NMR spectrum of 6-MeOBQET in CD₃CN.

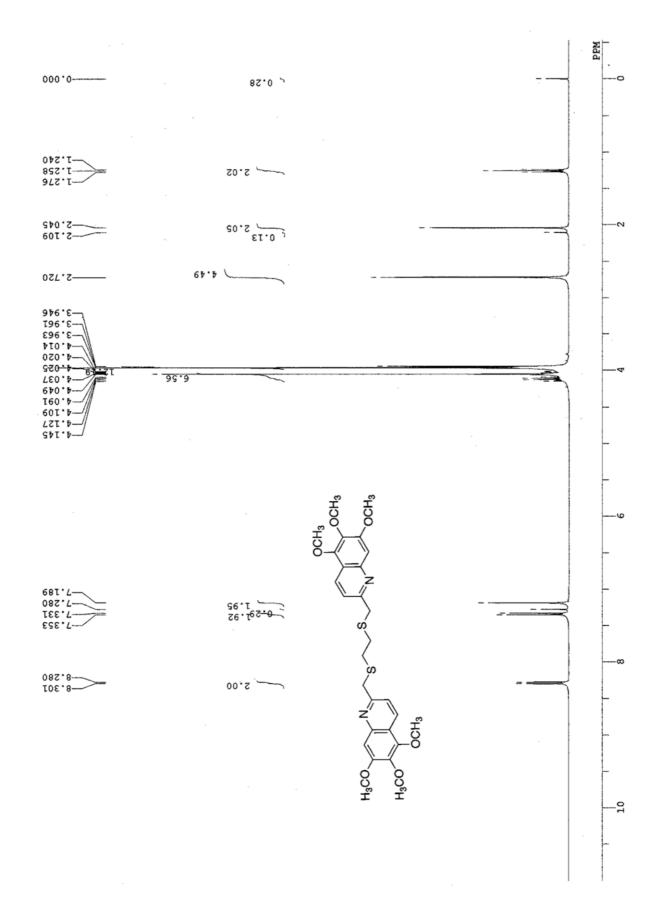


Fig. S12 ¹H NMR spectrum of TriMeOBQET in CDCl₃.

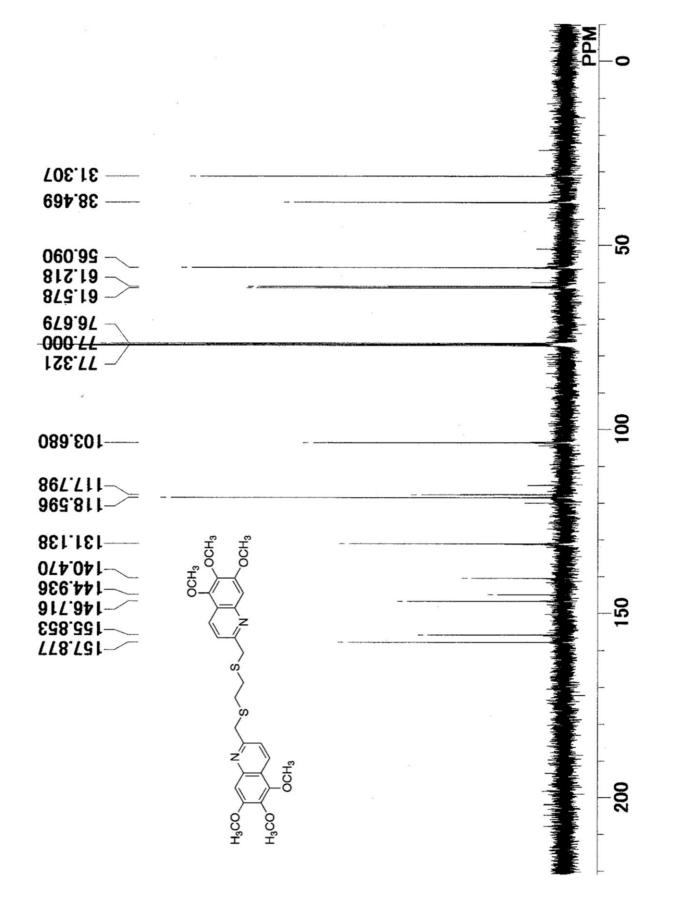


Fig. S13 ¹³C NMR spectrum of TriMeOBQET in CDCl₃.

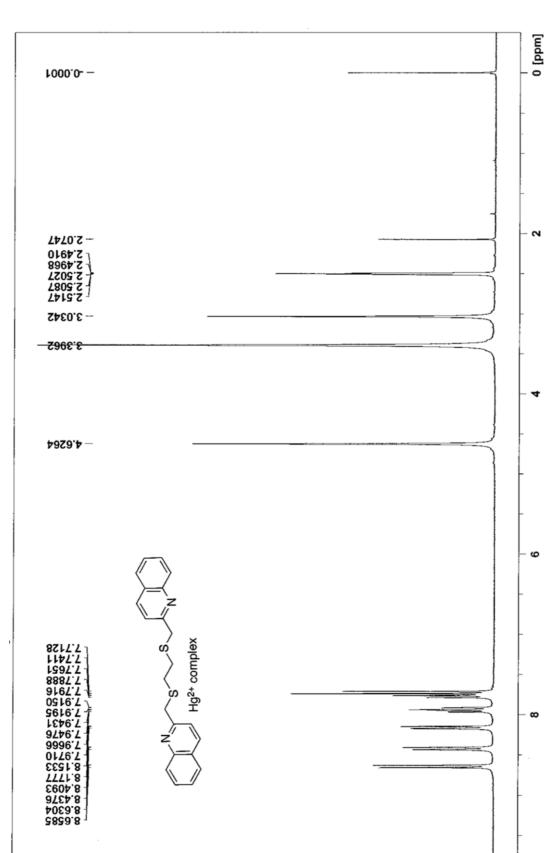
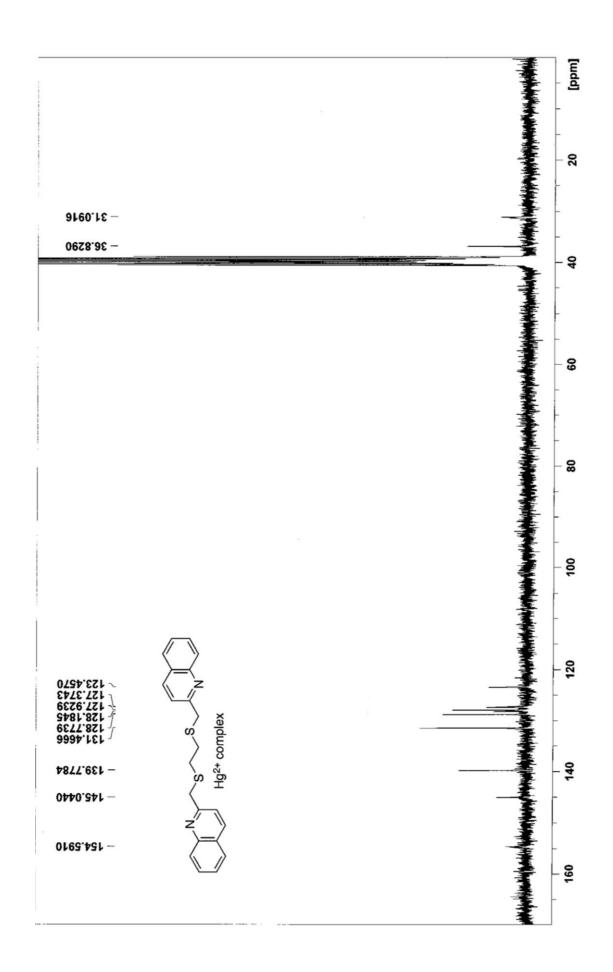



Fig. S14 ¹H NMR spectrum of [Hg(BQET)(ClO₄)]ClO₄ in DMSO-*d*₆.

S23

Fig. S15 ¹³C NMR spectrum of [Hg(BQET)(ClO₄)]ClO₄ in DMSO-*d*₆.